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Abstract

Radar sensors are becoming crucial for environmental perception in a world with the tre-

mendous growth of unmanned aerial vehicles (UAVs) or drones. When public safety is a

concern, the localization of drones are of great significance. However, a drone used for a

wrong motive can cause a serious problem for the environment and public safety, given the

fact that the dynamic movement of a drone’s emission signal and location tracking is differ-

ent from existing positioning. This study proposes a safety zone characterized by the pres-

ence of N radars sensors with a goal to track and destabilized rogue drones attending to

penetrate safety zones (stadium and school). Specifically, a new joint estimation based on a

Gaussian filter has been introduced for spectrum sharing and detection awareness. The

profit of this novel sensing method can be clearly seen when the two joint hidden states are

taken into consideration. Therefore, the drone’s emission state is analyzed by estimating its

movement jointly. Considering the drone’s unknown states and actual positioning, an algo-

rithm is developed based on dynamic states space model. Where Bernoulli filter model is

designed to estimate recursively the unknown stages of the drone and its changing location

based on time. Meanwhile a power control acted from the radar to the targeted drones so

that rogue drones are optimally tracked and destabilized over time. Furthermore, an

expanding mechanism has been generated to accurately track the drone and enhance

detection. A thoughtful result of the experimentation shows clearly that, even when the

drone is moving, spectral detection can be performed accurately by chasing its positions. Its

demonstrates at 90% of credibility that the original signal has a direct effect on the propa-

gated signal. Therefore, the magnitude of the Doppler shift increases with frequency. And

the clue of its positioning can be used for cognitive radio optimization.

1. Introduction

The utilization of drones has increased exponentially with rising technology in recent years.

However, unmanned aerial vehicles (UAVs) or drones can become extremely dangerous for

public safety and people’s privacy, when others applications and tools are added unto it such as
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urveillance, agriculture data analysis, movie making, mineral exploration without control and

good monitoring [1]. Therefore, careful studies in UAVs and spectrum access are of greater

importance. A deep analysis of anti-drone systems has been presented in [2,3], where a sce-

nario of drones cooperating in order to track and destabilize rogue drones. The target (rogue

drones) displays a stochastic dynamic movement and their trajectory overtime needs to be

estimated from noisy sensor measurements. It also specified that the mobile agents show a lim-

ited sensing range, and that they can detect the presence of the rogue drones inside their sens-

ing range with a probability of less than one. Consequently, due to the sensing limitation, it is

well-noted that, in addition to the target measurements, the mobile agents receive false-alarm

measurements as well. Recently, there has been a significant research-based on target detection

and the use of radar micro-Doppler [4–11].

In [12–14] studies, an analysis based on TVDs (Time Velocity Diagrams) of small helicop-

ters and multicopters, reveals that both are from simulations and measurements (X-band

radars). The authors presented the properties of a single rotor and multiple rotors, with an

even and odd number of blades, and with short and long integration time. Even though the

system performs well, the on-ground and simulation tests are limited due to the lack of supple-

mentary parameters such as the change of weather or environmental changes. In [15], the

authors presented a Doppler spectrum access without time resolution. The Doppler spectrum

is then used by a boosting classifier. The simulation has been executed at where the radar sig-

nal was generated from a moving helicopter. Its inefficiency lies on the fact that radar signal

and target (drones) are moving at the same time and this will cause some detections problem.

A useful ultra-wideband (UWB) Antenna for UAV applications has been proposed in [16,17],

where antennas with a reflector are used to increase the gain at 2.4 GHz for UAV utilization

and a monopole antenna that operates at 800 MHz was analyzed. In [18], a Pedestrian Dead

Reckon (PDR) structure based on Inertial Navigation System (INS) sensor and UWB system

was analyzed, where a modified zero-velocity detection algorithm and Kalman-type filter was

developed to get the best angle by coupling zero-velocity information and single UWB. In

[19], a mapping antenna array was presented with a circular polarization at the frequency

range of 1.5Ghz to 1.65Ghz.A low-profile antenna structure was proposed in [20], where a

Rogers Duroid 5880LZ material with dimensions of 29mm X 39mm was applied.

Experimental research based on multistatic passive radar with a single antenna for drone

detection has been presented in [21], where the dominant direct-path signal (the strongest

static clutter) in the reference channel was considered as an effective signal [22–26] and a sce-

nario was proposed to utilize a compact single antenna receiver for the UAV detection. In this

paper, we addressed a spectrum access for massive multi-input multi-output (MIMO) radar

covering a safety zone for rogue drones intrusion. Here, MIMO radar and UAV (drone) share

interferences on the same spectral zone. Our main goal here is to detect and track until the

destabilization of the target (drones). The contribution of this work is summed up as follows:

1. The localization tracking of the drone with unknown emission states has been investigated

and a new sensing technique has been proposed to estimate the localization of the drone

and at the same time detect its spectral position. Specifically, in this new technique the

tracking of the drone cannot be interrupted even though its emission states are suspended.

Therefore, this technique came to break the traditional method which doesn’t consider the

dynamic emission states of the drone.

2. Novel algorithm based on massive MIMO radar and drone spectrum sensing which rely on

dynamic Bayesian filter approach. The particularity of this approach is that, the unknown

emission state of the drone is analyzed as an additional hidden state that needs to be ana-

lyzed, instead of its changing locations. Considering the limited information available in
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spectrum access, we used received signal strength to estimate recursively the two hidden

states. Meanwhile, this technique can also be extended in other scenario such as spectrum

access between MIMO radar, 5G Communication system, and drone localization.

3. A Soft joint distribution algorithm has been developed, where the emission state of the

drone and other associated state such as its unknown positions, are analyzed like Bernoulli

random finite set (BRFS). We took the advantage of Bayesian assumption algorithm to esti-

mate recursively drone’s existence state and its dynamic positioning,which most of the

times in real live are difficult to analyze. To enhance the tracking scenario of the drone

when its goes off, a horizon analysis was developed, which can be adjusted prior to uncer-

tainty inference process. It is demonstrated by an extensive numerical experimentation

that, the system is not only efficient but also in estimating the drone’s location and detec-

tion, uncertainty of reception can be measured, therefore, the system can constantly be

optimized.

The rest of the paper is organized as follows: the sensing methodology, dynamical states,

dynamical positioning, and statistical detection of the drone is presented in section 2. In Sec-

tion 3, we presented numerical experiment and performance analyses. We discussed the per-

formance of the sytem and Algorithm scenarios in section 4. Section 5 is the conclusion of the

paper.

2. Materials and methods

2.1. System model

By considering simultaneous observation from spectrum sensing of MIMO radar and drone

localization, we addressed a cooperative scenario as presented in Fig 1. Our drone system is

moving as Brownian models continuous motion [27]. For a better analysis and representation,

we denote M, a cooperative MIMO radar in cartesian coordinate, with position of each node

noted by am = [xm, ym]t(m = 1,2, 3,. . .M).

We considered this information to be previously known by the data center. To perform

spectrum sensing and drone localization at the same time, a two-step scenario scheme were

selected. In the first step, the mth MIMO radar antenna will intercept the nearest wireless net-

work at each time discrete t, and receive the information about the local observation ot,m. In

the Following step, all MIMO radar node will send their observation data information to the

data center for analysis. The Information will then be compiled and the observation will be

extracted based on the observation vector ot = ot1 ; ot2 ; . . . ; otM
h it

and the emission state of the

drone positions will be estimated rt; x
0

t; y
0

t

� �
.

2.1.1. Sensing method. For easy analysis, the dynamic notation can be summarized as,

rt ¼ R rt� 1ð Þ ð1Þ

R(.) is a dynamic function R!R which specifies stochastic progress of drone’s emission

states R. By considering the fact that drone is an agent vulnerable to any movement and exter-

nal influence while in the air, we define two transitional functions R!R,

vt ¼ V vt� 1; h1ð Þ ð2Þ

yt ¼ y yt� 1; h2ð Þ ð3Þ

These two random stochastics represent the behaviors of drone speed movement vt and

angular orientation θt while in the air, which are moved independently and randomly by
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noises h1 and h2 respectively. Drone still in the air is a dynamic agent, which means we will

have to define its dynamic movement,

Ut ¼ I Ut� 1; vt; ytð Þ ð4Þ

Where I(.) is the transition function R2! R2, specifies the dynamics drone’s movement with

the vector location Ut ¼ x0t; y
0

t

� �t
,and the observation function,

ot ¼ O Ut; rt;wt nð Þð Þ ð5Þ

ot is the measurement equation with observation function 0(.): RM! R1,which describes the

relationship between two hidden states rt, ut and the measurement ot,m.

From here, three assumptions have been made to execute the sensing. First, a segment of a

periodic sensing is performed, where the emission state of the drone is assumed to remain

fixed. This means rt will remain unchanged for one sensing period of Tr,after that it will

change.

Secondly, the static Gaussian filter was considered at this stage. The observation ot,m is rela-

tive between the mth radar and the moving drone. The noise random estimation of the nth

portion at discrete time t noted as wt(n) of Eq (5) is assumed to be independent identical distri-

bution with zero mean additive white Gaussian noise, where variance is s2
w,which is also inde-

pendent identical distribution of two hidden states.

Thirdly, we considered the drone as moving with positioning Ut ¼ x0t; y
0

t

� �t
and its remain

constant during a period of time Tr.

Fig 1. Spectrum sharing for massive MIMO radar and drones detection entering safety zone on brownian motion.

https://doi.org/10.1371/journal.pone.0268834.g001
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2.1.2. Drone’s dynamic states. After analysis, we find out that the progress of emission

states of drone over time T, can be represented as a finite states engine and can be described as

two states Markov process [28–32] R = {R0, R1}. If we consider the drone as active and moving

with emission states R1 at time t, then the survival probability of an active drone can be writ-

ten,

Pr ) Pr rtþ1 ¼ 1nrt ¼ 1
� �

ð6Þ

Pr ) Pr rtþ1 ¼ 1nrt ¼ 1
� �

¼ ltDt þ o Dtð Þ;

Where λt is the survival rate. Dealing with a Markov process, the probability of transition will

depend on only the current state. We can determine the probability of the drone remaining in

its survival movement by adding all the probabilities of its ways of progress:

Pr rtþ1 ¼ 1
� �

¼ Pr rtþ1 ¼ 1nrt ¼ 1
� �

P rt ¼ 1ð Þ

Pr rtþ1 ¼ 1nrt ¼ 2
� �

P rt ¼ 2ð Þþ

. . .þ Pr rtþ1 ¼ 1nrt ¼ r
� �

P rt ¼ rð Þ
ð7Þ

The computation of Eq (7) can easily lead us to matrix notation. Then the vector of each

survival probability can be written as,

p tð Þ ¼

P rt ¼ 1ð Þ

P rt ¼ 2ð Þ

..

.

Pð rt ¼ rð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð8Þ

And it is transition matrix can be represented as,

A ¼

P 1n1ð Þ P 1n2ð Þ . . . P 1nrð Þ

P 2n1ð Þ P 2n2ð Þ . . . P 2nrð Þ

..

.

P rn1ð Þ P rn2ð Þ . . . P rnrð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð9Þ

The drone will go into sleeping mode on states R0 with a probability 1 − Pr in the following

time t+1. If the drone stays in sleeping mode R0, it will move again into R1 states with a birth

probability,

Pb ) Pr rtþ1 ¼ 1nrt ¼ 0
� �

ð10Þ

Pb ) Pr rtþ1 ¼ 1nrt ¼ 1
� �

¼ mtDt þ o Dtð Þ;

Where μt is the birth rate and it may remain in states R0 in the next time with a probability

1 − Pb. In the same way, we can determine the probability of the drone remaining in its birth

probability by adding all the probabilities of its ways of maintenance:

Pr rtþ1 ¼ 1
� �

¼ Pr rtþ1 ¼ 1nrt ¼ 0
� �

P rt ¼ 0ð Þ
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Pr rtþ1 ¼ 1nrt ¼ 1
� �

P rt ¼ 1ð Þþ

. . .þ Pr rtþ1 ¼ 1nrt ¼ r � 1
� �

P rt ¼ r � 1ð Þ
ð11Þ

Then the vector and transition matrix of each birth probability can be written respectively

as,

p0 tð Þ ¼

P rt ¼ 0ð Þ

P rt ¼ 1ð Þ

..

.

P rt ¼ r � 1ð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð12Þ

A0 ¼

P 1n0ð Þ P 1n1ð Þ . . . P 1nr � 1ð Þ

P 2n0ð Þ P 2n1ð Þ . . . P 2nr � 1ð Þ

..

.

P rn0ð Þ P rn1ð Þ . . . P rnr � 1ð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð13Þ

It is worthy to note that in the above mentioned dynamic probability, the transitional

matrix is specific with the drone devises. In other wireless devises the dynamic transition

remain invariant for a longer period T [33].

2.1.3. Drone’s dynamic positioning. Firstly, statistical action of the speed and orientation

of the drones were studied, where it was realized that the drone is moving following a random

walking process. As two random variables, the speed and orientation Eqs (2) and (3) at time t

can be written as,

vt ¼ vt� 1 þ h1 h1 � N 0; s2

v

� �
ð14Þ

yt ¼ yt� 1 þ h2 h2 � ε 0; s2

y

� �
ð15Þ

Where s2
v and s2

y
represent the variances of drone’s acceleration and direction, respectively.

We consider that the two noises N 0; s2
v

� �
and ε 0; s2

y

� �
which are Gaussian, are following the

path of random walking. By considering the above equations, based on speed and orientation

of the drone, we can then represent the dynamic cartesian equations of its position by,

xt ¼ xt� 1 þ vtcos ytð Þ ð16Þ

yt ¼ yt� 1 þ vtsin ytð Þ ð17Þ

Where xt and yt represent the abscissa and ordinate of the cartesian axes position of the drone

respectively.

2.1.4. Statistical detection. In order to derive a decision rule and the detection analysis,

which maximizes Pr[rt+1 = 1\rt = 1]. Based on the observation set ot,m, given this realization,

the conditional probability of correct detection can be written as,

Pr rtþ1 ¼ 1nrt ¼ ot;m
� �
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and the observed signal in practice can be represented as,

ot;m ¼
XN

n¼1
rt

ffiffiffiffiffi
Er

p
at nð Þd

� a=2
t;m þ wt nð Þ

h i2

ð18Þ

Where ot,m is the received signal strength of the mth radar, dt,m is the distance that separate the

mth radar and the stirring drone at time t, α is the path loss fading which supposed to be

greater than 2. ρt represent the received gain of the mth radar which is from radar processing

devises. N = Tƒ is the samples size and ƒ is the sampling frequency. at(n) is the progression of

drone’s message indications, where n = 1,2, ‥‥, N. For easy analysis, binary phase shift keying

(BPSK) has been considered, where at(n) = {+1, -1}, with Er the emission power. For the

absence of drone, the received signal strength is simply,

ot;m ¼
XN

n¼1
wt

2 nð Þ ð19Þ

With a moving drone, the observation also may continue to be uncertain. Therefor an Euclid-

ean distance between the targeted agent, e.g. drone and the radar are for a greater importance.

dt;m ) kUt � amk2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0t � xm
� �2

þ y0t � ym
� �2

q

ð20Þ

By considering the distance dt,m and drone’s emission states rt, the component likelihood

density can be written as p(ot,m\dt,m,rt). As the N has to be very huge (such as, N� 100), we

can estimate the likelihood functions by applying Gaussian densities of i.i.d noise. The central

limit theorem (CLT) will give the following approximations,

p ot;mnUt; rt
� �

YM

m¼1
p ot;mnUt; rt ¼ 1
� �

� H1

YM

m¼1
p ot;mnUt; rt ¼ 0
� �

� H0

ð21Þ

8
<

:

Consequently, all observations from the data center can also be seen as Gaussian distribu-

tion with mean and variance respectively,

φ otnUt; rtð Þ ¼
XM

m¼1

φ ot;mnUt; rt
� �

W otnUt; rtð Þ ¼
XM

m¼1

W ot;mnUt; rt
� �

2.1.5. Drone’s states prediction. As known, in the Bayesian approach [32,34], we analyse

the unknown quantity, as a random variable. We recursively estimate the conditional posterior

distribution.

Pt-1(rt-1\o1,t-1) at time t-1. In our case the trajectory of the drone‘s emission states at tth dis-

crete time is define by r = {r0, r1, . . ., rt}. Bayesian method is an effective mechanism to analyze

and estimates hidden states. The prediction and updates of the posterior distribution of the

hidden states rt can be computed based on Bayes filter,

Ptnt� 1 rt� 1no1:t� 1ð Þ ¼

Z

ptnt� 1 rt� 1nr1:t� 1ð Þpt� 1nt� 1 rt� 1no1:t� 1ð Þdrt� 1 ð22Þ
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Ptnt rtno1:tð Þ ¼
pt otnrtð Þptnt� 1 rtno1:t� 1ð Þ

R
pt otnrtð Þptnt� 1 rtno1:t� 1ð Þdrt

ð23Þ

Where Eqs (22) and (23) represent the prediction and update respectively, and function.

Pt\t-1(rt-1\o1:t-1) and Pt\t(rt\o1:t) represent the transitional density and likelihood function

respectively. With the above assumption, the joint density can be estimated recursively. The

ordinary estimation process for the sensing may become weak or raise concerns of imperfec-

tion due to drone’s constant changing position. It can be noticed that, the dynamic distance

from Eq (20) may disappear completely by observing from the data center, when a drone goes

off (i.e., H0 or rt = r0). In analysing a Bayesian inference for an unknown position, the related

likelihood involving the drone and radar distances may become unavailable, making the track-

ing of the drone’s dynamic position difficult to analyze. Another important aspect is that, with-

out a clear drone’s positioning, the estimation of the drone states will be inaccurate. This is

because of the imprecise result of the reception, especially for Energy Detection (ED) sensing

method.

2.2. Random finite state

A Random Finite State (RFS) is a random variable that takes values as unordered finites sets

[35]. The Effect of drone’s signal appearing or disappearing can possibly be treated as another

aspect of random states [36–38]. In this present study, for a deeper analyses for dynamic

behaviors of the drone, the two hidden states are studied like one combined random process

called random finite state, represented as F [39].

The cardinality of a RFS F (i.e number of elements) is random and analyzed according to a

discrete distribution ρ(g) = P{|F| = g}, where g 2 N0 and g = |F| is the cardinality of RFS F. A

RFS F is characterized by its cardinality and a group of symmetric joint distribution [35,40] ρ
(F1, . . .Fg), F1, . . .Fg 2 Rg.

According to the current drone sensing, |Ft| 2 {0.1} which means a binary threshold γt
need to be taken into consideration, which stand for γt = 1 (i.e.,H1) when drone emitted a sig-

nal at time t, otherwise γt = 0 (i.e.,H0). Consequently, it was noticed that the random variable

γt and the cardinality distribution ρ(g) are Bernoulli RFS. The Bernoulli RFS can either be

empty (with probability 1 − q) or have one element (with probability q). According to Mahler’s

theorem [39,40], the probability density function (PDF) of the finite set statistics (FISST) for

such Bernoulli RFS can be described as,

r gð Þ ¼
1 � q if � Ft ¼ ; or gt ¼ 0

q if � Ft ¼ Utf g or gt ¼ 1
ð24Þ

(

The probability density function (PDF) p(Ft) can farther be developed as a normal random

variable [40] as,

p Ft ¼ F1; . . . ;Fg

n o� �
¼ g!r gð Þp F1; . . . ;Fg

� �

Applying the set integral, we will have,

Z

p Ftð ÞdF ¼ p ;ð Þ þ
X1

tþ1

1

t!

Z

p F1; . . . ;Fg

� �
dF1; . . . ; dFg � 1 ð25Þ

It is clear to see that p(Ft) integrate to one as it is should be for a PDF.
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Thus said, it can further be seen that, the presence of a moving drone during the sensing

can be represented as |Ft| = 1, which correspond to the dynamic position Ut.

Based on cardinality distribution ρ(g) and states distribution PDF p(Ut), the FISST can be

redefined as,

r Ftð Þ ¼
1 � q if � Ft ¼ ; or gt ¼ 0

q : p ζð Þ if � Ft ¼ Utf g or gt ¼ 1
ð26Þ

(

For some cases where the cardinality g is greater than 1, then p(Ft) = 0.

2.3. Dynamic transition agent

According to the actual system, the dynamic transitional model of the Bernoulli RSF Ft shall

also follow Markov process. Thus said, the Eqs (8) and (12) can then be represented as,

ptnt� 1 Ftn Utf gð Þ ¼
1 � p tð Þ if � Ft ¼ ;

p tð Þptnt� 1 UtnUt� 1ð Þ if � Ft ¼ gtf g
ð27Þ

(

And

ptnt� 1 Ftn;ð Þ ¼
1 � p0 tð Þ if � Ft ¼ ;

p0 tð Þbtnt� 1Ut if � Ft ¼ Utf g
ð28Þ

(

Where bt\t−1 represent the birth and initial density when the drone is re-detected or re-emit-

ting its signal. And πt\t-1 (Ut\Ut-1) is the dynamic survival transitional density of the drone’s

location, which can be represented by [41]:

ptnt� 1 UtnUt� 1ð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2psv

p exp

jjUt � Ut� 1
jj2 � vt� 1

� �2

2s2
v

( )

�
1

2s2
y

exp �
jtan� 1

yt � yt� 1

xt � xt� 1

� �

� yt� 1j

s2
y

2

6
6
4

3

7
7
5

ð29Þ

Where tan-1(.) is the angular vector movement.

2.3.1. Path loss. Current studies based on radio communications affected by large scale

free space propagation model has proposed several path loss method [21,42]. In this current

work, a single carrier frequency of 3.55Ghz has been adopted. Where more focus has been put

on distance dependency. The Close-in free space reference (CI) path loss models can be

expressed as [42],

PLCI d; fð Þ ¼ PLFS;ref fð Þ þ 10nCI log10
dð Þ þ xs;CI ð30Þ

Where 10nCI log10(d) is the logarithmic distance dependency behavior with nCI path loss expo-

nential (PLE). ξσ,CI represent the shadow fading in decibel and follows Gaussian distribution

with zero mean with standard deviation σ. PLFS,ref (f) represent the carrier frequency and it is

calculated by applying Friis’s law for free space propagation:

PLFS;ref fð Þ ¼ 20 log
10
ð
4pf
c
Þ ð31Þ
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Where c is the speed of the light. And the doppler angular frequency,

fD ¼
2nrf
c

ð32Þ

Where vr is the radial speed of the target.

2.4. Bernoulli filtering and control

This is very similar with Bayesian prediction and update, where the two posterior densities pt\t
(Ft\o1:t) and ƒt\t (Ft) will be propagated recursively. On the prediction stage, the first predic-

tion densities of the two terms qt\t-1 and ft/t-1(Ut) can be derived as follows,

ptnt� 1 Ftno1:t� 1ð Þ ¼

Z

Ptnt� 1 FtnFt� 1ð Þpt� 1nt� 1 Ft� 1no1:t� 1ð ÞdFt� 1

¼ Ptnt� 1 Ftn;ð Þpt� 1nt� 1 ;no1:t� 1ð Þ þ

Z

Ptnt� 1 FtnUt� 1ð Þpt� 1nt� 1 Ut� 1no1:t� 1ð ÞdUt� 1 ð33Þ

Now we are solving Ft = ; (when the drone is off) with pt\t-1 (; \o1:t-1) = 1-qt\t-1 and Ft =

{Ut} (when the drone went on) with pt\t-1 (Ut\o1:t-1) = qt\t-1 ƒt\t-1 (Ut). And since the predicted

FISST PDF is in the form of Eq (26), we will have:

qtnt� 1 ¼ 1 � 1 � pbð Þ 1 � qt� 1nt� 1

� �
þ 1 � psð Þqt� 1nt� 1

h i

¼ pb 1 � qt� 1nt� 1

� �
þ psqt� 1nt� 1 ð34Þ

Similarly, when the drone went on,

f tnt� 1 Utð Þ ¼
pb 1 � qt� 1nt� 1

� �
btnt� 1 Utð Þ

qtnt� 1

þ

psqt� 1nt� 1

R
pt� 1nt� 1 UtnUt� 1ð Þft� 1nt� 1 Ut� 1ð ÞdUt� 1

qtnt� 1

ð35Þ

It is worthy to note from the above two equations the predicted density (qt-1\t-1) and spatial

density (ƒt\t-1 (Ut) may involve two important elements, the birth element of a new drone

appearing and a survival element of an already existing drone. The first birth is defined as the

disappearance of the drone (e.g., pb); and the second one which is the survival is define by a

continuing appearance of the drone (ps). The above two equations fully specify the step of Ber-

noulli filter.

3. Numerical results

The results presented in this section are generated from Matlab Simulation and Simulink.

These are more suitable for Dynamic and complex analysis because more parameters can be

added. A dynamic radar detection of a targeted element (Drone), can just penetrate the zone

of detection with its trajectory as shown in 2-D grid Fig 2. The first step was to generate a

radar detection of a moving drone with straight legs of 20km and a turn radius of 2km. The

altitude of the trajectory is 1km, which is defined as –1km by default North-East-Down coor-

dination structure used in this scenario. The radar is mounted on a tower of 5m length, 5m

width, and 30m of height. It is defined as spectrum origin [0,0,0]. A summary of notations pre-

sented in this paper can be found in Table 1.
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A monostatic scanning radar sensor has been executed with the step size of update rate

5.5Hz in scene of 0.4 sec. Mounting location [0 0–15], field of view [4 45] and mechanical azi-

muth [–60–60]. The radar coverage zone with its scanning angle can be seen in Fig 3.

Secondly, another radar sensor has been added to the tower to amplify the detection in case

of a huge intrusion of rogue drones in the protected area. It is added with an update rate

5.5Hz. And its performance is very high, as seen from its bleu scanning angle in Fig 4.

In the third approach, there was an intrusion of a second drone in the safety zone, and this

was quickly detected by the two radars as observed in Fig 5. The second drone flew from south-

west to northeast at a height of 1.5km with a time of arrival [0 80]. All the reporting frames of

the radars were sent back to the data center through inertial navigation system (INS). We

noticed that, the second drone was equipped with a sensor which is able to inject anything to

the safety zone. This leads to the next step, which is the destabilization of the drone or making

it to turn back. A Proportional-Integral-Derivative (PID) control was applied for this scenario

with parameters R(.),V(.),θ(.),U(.),O(.). The Euler initial position is defined by (0,0,0), with

Fig 2. Target drone racetrack path with straight legs of 20 km and a turn radius of 2 km.

https://doi.org/10.1371/journal.pone.0268834.g002

Table 1. Massive MIMO radar parameters for test environment.

Parameters Values

Radar & Drone Communication RF Band

Radar Antenna Tx/Rx

Iterations

3550–3650 MHz

4/2

1000

Carrier Frequency

Update rate

Turn Radius

Radial Velocity

Speed of Light

3.55 GHZ

5.5 Hz

2 Km

1000 m/s

3x108 m/s

Target point

Spectral efficiency(bits/sec/Hz)

Sample Time

Gravity

20 Km

1

0.02

9.8

Doppler angular frequency 4vrf/c
Path loss PLCI(d, f)

https://doi.org/10.1371/journal.pone.0268834.t001
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gravity (0,0, -9.8). As shown in Fig 6, the drone can be controlled following the radar position

on a square model, Fig 6A and 6D and by doing so, a significant signal power of approximately

5 MHZ can be straight pointed to the target. However, the drone can progressively start losing

its control as seen in Fig 6C and 6D. Fig 7 demonstrates the signal wideband propagation in a

free space environment. The center frequency is 3 GHz and the frequencies of the three tones

are 750 kHz, 1 GHz, and 1.5 GHz, respectively. The system model applies range-dependent

time delay, gain adjustment, and phase shift to the input signal. Additionally, the model esti-

mates the Doppler shift when the drone is moving. The free-space environment is a boundary-

free medium with a speed of signal propagation independent of position and direction. The

signal is propagated along a straight line from the source to its destination. Therefore, the

model shows the two-way propagation of the signal from the radar to the targets. For this

wideband signal, it was observed that the magnitude of the Doppler shift increased with fre-

quency. In case of narrowband signals, the Doppler shift is assumed to remain constant over

Fig 3. Plot of radar coverage mounted on 30m tower and signal detection of a moving drone.

https://doi.org/10.1371/journal.pone.0268834.g003

Fig 4. Second radar mounted on the tower. With it scanning detection angle and field of view of (4,45).

https://doi.org/10.1371/journal.pone.0268834.g004
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the band. Lasty, the system model performance has been tested as a series of states spaces

model, to validate the model with real world. Based on time invariant, the simulate states and

observations were estimated. As shown in Fig 8, the true state and simulated states of the target

Fig 5. (a) Intrusion of second drone into the safety zone. Flying from southwest to northeast at a height of 1.5 km with a time of arrival [0 80]; (b) The second drone

remain trackable. As its moves, its detection moves as well.

https://doi.org/10.1371/journal.pone.0268834.g005

Fig 6. (a) Drone controlled followed square motion; (b) Drone controlled followed near radar on square motion; (c)

Drone losing control as it received signal power of over 2.5 MHZ; (d) A drone that completely loses control after

receiving a significant jamming power.

https://doi.org/10.1371/journal.pone.0268834.g006
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were compared to the observed responses and simulated responses from the radar at a series of

200 observations. It was shown that, the true states values of the target aligned to 90% with the

observed values.

4. Discussion

The development of wireless and control system has accelerated the use of unmanned aerial

vehicles (UAVs) or drones. However, public safety as well as privacy has become a general con-

cern. In this study, we analyzed spectrum access for massive MIMO radar covering a safety

zone for rogue drones’ intrusion, by considering numerous numbers of drones. Here, the

MIMO radar and UAV (drone) shared interferences on the same spectral band zone. We pres-

ent here a novel technique in detecting and tracking the targeted drones until their

Fig 7. Plot of Wideband propagation signal for the spectrum of original signal and the Doppler-shifted signal

with central frequency, 3Ghz.

https://doi.org/10.1371/journal.pone.0268834.g007

Fig 8. Plot of true state values and simulated states alongside with observed responses and simulated responses at

a series of 200 observations.

https://doi.org/10.1371/journal.pone.0268834.g008
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destabilization. This was made possible with a deep analyses of drone’s localization tracking,

where the emission states of the drone is estimated. This is followed by dynamic Bayesian filter

approach algorithm, based on massive MIMO radar and drone spectrum sensing. The particu-

larity of this new approach is that, the unknown emission state of the drone is analysed like

another hidden state that needs to be estimated, instead of the changing locations. Considering

the limited information available in spectrum access, we used received signal strength to esti-

mate recursively the two hidden states. Meanwhile, this technique is also very useful in scenar-

ios of spectrum access between MIMO radar, 5G Communication base station system, and

drone localization. A joint distribution algorithm based Bernoulli Random Finite Set (BRFS)

has been developed, where the emission state of the drone and the associate state such as its

unknown locations was analysed. We estimated recursively drone’s existence state and its

dynamic positioning, in which most times it’s difficult to be analysed in reality in real live.

This will enhance the tracking scenario of the drone when it appear and disappear from the

scene. Corresponding to Algorithm summary flow, there were two main parts involved in this

work:

1. By using Observation tracking trajectory O1t, and relying on recursive Bayesian Filter pre-

diction and update, we estimated the posterior density ƒt\t-1(Ut),

2. Tracking of detection uncertainty with length rt-1 = R0 as J, where 0< j< J and the next

step of state is define as rt-J-1 = R1. Therefore, drone goes collapsing in stage
YM

m¼1
p ot;mnUt; rt ¼ 0
� �

� H0 at time t−J, and its prediction estimation is subsequently t–J

+ m,(where m = 1,2,M). If the drone continues its move in stage
YM

m¼1
p ot;mnUt; rt ¼ 1
� �

� H1 at time t, a complete likelihood of the birth density is

estimated,

btnt� 1 Xtnt� 1

� �
� fv vtnJð Þ:fy ytnJð Þ ð36Þ

Algorithm Scenario

Iterate
Observation Information Collection,

ot,m =
XN

n¼1
wt

2 nð Þ, Eq (19)

Estimate Dynamic transitional model RSF Φt
pt\t-1 (Φt\{Ut}) Eq (27) and pt\t-1 (Φt\;) Eq (28)
Confirm Drone’s survival density: πt\t-1 (UtUt-1}
Prepare Bernoulli Filters for prediction
pt\t-1 (Φt\o1:t-1) Eq (33)
For if i = 1: M
Compute recursive Bayesian Filter prediction
qt\t-1 Eq (34)
Update: ft\t-1(Ut) Eq (35)
Forward Eqs (34) and (35) to track

detection uncertainty with length rt-1 = R0,
where 0 < j < J and next step rt-J-1 = R1
End for
Learn Drone’s collapsing stage,
YM

m¼1

p ot;mnUt; rt ¼ 0
� �

� H0

imin ¼ arg max
1�i�M

YM

m¼1
p ot;mnUt; rt ¼ 0
� �

� H0
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If not, estimate the survival stage
QM

m¼1

p ot;mnUt; rt ¼ 1
� �

� H1

By completing the birth density likelihood,

btnt� 1 Xtnt� 1

� �
� fv vtnJð Þ:fy ytnJð Þ Eq (36)

End

It is demonstrated by an extensive numerical experimentation that the system is not only

efficient but also potentially accurate in estimating the drone’s location and detection. The

uncertainty of reception can be measured, therefore, the system can constantly be optimized.

5. Conclusions

As unmanned aerial vehicles are been used in our daily lives, a greater concent are been placed

on human environment, privacy and public lives.

In this paper, a new approach base on spectrum sensing to realize drone’s tracking, detec-

tion, and destabilization for a safety zone and Cognitive Radio Applications has been pro-

posed. A System model has been established to thoroughly characterize the dynamic

movement of the unknown states of the drone and its moving locations. We get the advantage

of Bernoulli random finite set algorithm to track the drone’s moving positions and detecting

its random emission states. Hence, MIMO radar jointly makes an optimal decision on the

mobility and power control to the targeted drone. Experimentation results demonstrate the

performance and effectiveness of the proposed method, to intercept and destabilize the rogue

drones. Additionally, by taking full consideration of the sensing and dynamic localization, we

can observe and well detect the unknown emission states of the drone even when it is still

moving.

Future investigations are needed for different emission signals of new drones technology, as

5G has brought brand-new cooperative environment of spectrum sensing.
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