
RESEARCH ARTICLE

Endogenous production of hyaluronan, PRG4,

and cytokines is sensitive to cyclic loading in

synoviocytes

Meghana PendyalaID
1,2, Paige S. Woods3, Douglas K. Brubaker4,5, Elizabeth

A. BlaberID
1,2,6, Tannin A. Schmidt3, Deva D. ChanID

1,2,4*

1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of

America, 2 Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy,

New York, United States of America, 3 Department of Biomedical Engineering, University of Connecticut

Health Center, Farmington, Connecticut, United States of America, 4 Weldon School of Biomedical

Engineering, Purdue University, West Lafayette, Indiana, United States of America, 5 Regenstrief Center for

Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America, 6 Blue

Marble Space Institute of Science at NASA Ames Research Center, Moffett Field, California, United States of

America

* chand@purdue.edu

Abstract

Synovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which

work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan

and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and

pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibro-

blasts within the synovium are responsible for contributing to synovial fluid and can be tar-

geted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine

profile. We cyclically loaded SW982 synoviocytes to 0%, 5%, 10%, or 20% strain for three

hours at 1 Hz. To assess the impact of substrate stiffness, we compared the 0% strain

group to cells grown on tissue culture plastic. We measured the expression of hyaluronan

turnover genes, hyaluronan localization within the cell layer, hyaluronan concentration,

PRG4 concentration, and the cytokine profile within the media. Our results show that the

addition of cyclic loading increased HAS3 expression, but not in a magnitude-dependent

response. Hyaluronidase expression was impacted by strain magnitude, which is exempli-

fied by the decrease in hyaluronan concentration due to cyclic loading. We also show that

PRG4 concentration is increased at 5% strain, while higher strain magnitude decreases

overall PRG4 concentration. Finally, 10% and 20% strain show a distinct, more pro-inflam-

matory cytokine profile when compared to the unloaded group. Multivariate analysis showed

distinct separation between certain strain groups in being able to predict strain group, hya-

luronan concentration, and PRG4 concentration from gene expression or cytokine concen-

tration data, highlighting the complexity of the system. Overall, this study shows that cyclic

loading can be used tool to modulate the endogenous production of hyaluronan, PRG4, and

cytokines from synovial fibroblasts.
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Introduction

Intraarticular synovial fluid is a viscous solution that works to reduce friction between the

articulating surfaces of the joint. Synovial fluid also is a pool for nutrient transport and regula-

tory cytokines [1]. The synovial membrane that surrounds the joint consists of synovial fibro-

blasts (or synoviocytes), which contribute to synovial fluid, and macrophages/monocytes

within a collagenous extracellular matrix [2]. Synovial fluid contains plasma proteins [3, 4],

but its lubricating ability is due largely to hyaluronan, secreted by synoviocytes, and PRG4,

secreted by both chondrocytes and synoviocytes [5, 6]. While in synovial fluid in healthy joints

is composed of high molecular weight hyaluronan and high concentrations of PRG4 [7, 8],

osteoarthritic (OA) synovial fluid has decreased hyaluronan molecular weight and may affect

PRG4 concentrations within the synovial fluid, increased hyaluronan fragments and cytokine

concentrations [7, 9–11]. Increasing hyaluronan concentrations in synovial fluid exogenously

have been used as treatments for deteriorating joint health, but the benefits are short-lived

[12].

Hyaluronan concentration and molecular weight is regulated by a balance of synthesis and

degradative activity. Hyaluronan is synthesized by three membrane-bound proteins (HAS1,

-2, -3), each of which produce hyaluronan of different molecular weight distributions and

localization and are active under different contexts. HAS3 produces hyaluronan of a smaller

size (between 1 × 105 and 1 × 106 kDa) than HAS1 or HAS2 (between 2 × 105 and 2 × 106 kDa)

[13]. While HAS2 produces the majority of hyaluronan in healthy joints, HAS1 has been

shown to be more involved in synovitis during OA [14]. Conversely, degradation enzymes,

like hyaluronidases, break down hyaluronan chains into fragments. Expression of hyaluroni-

dase 2 increased during OA, promoting breakdown of hyaluronan and shifting the molecular

weight distribution lower [15]. Increasing expression of HAS2 has been shown to increase hya-

luronan concentrations [16, 17], which makes targeting endogenous hyaluronan production

an ideal mechanism for a long-term solution for OA.

Likewise, PRG4 production is reduced with OA, highlighting the need to preserve both

functional components of the synovial fluid. PRG4 works in a dose-dependent manner to

lower friction within the joint [18, 19]. PRG4 deficiency has been shown to diminish the lubri-

cating ability of synovial fluid, while PRG4 supplementation has been shown to improve the

boundary lubrication function of synovial fluid [9, 20].

Synoviocytes also modulate the inflammatory environment of the synovium. Acting as

effector cells, they produce pro-inflammatory cytokines, proteases, and affect synovial macro-

phage phenotype [21, 22]. The resulting cytokine concentrations within the synovial fluid can

act as biomarkers to determine OA severity [23]. IL-6, VEGF, MMP-1, eotaxin, CCL3, and

CCL2 levels have been shown to be higher in synovial fluid from patients with OA when com-

pared to healthy controls [11, 24, 25]. Conversely, a reduction in pro-inflammatory cytokines,

such as TNFα or IL-1β, via targeted therapies has been shown to alleviate pain in patients with

OA [26].

Despite observations of changes to hyaluronan, PRG4, and cytokine content within the

synovium with disease, it remains unclear how to modulate these synoviocyte products within

a mechanically active joint. While studies that observe the effect of mechanical stimulation on

synovial fluid components are limited, cyclic strain has been shown to be a promising mecha-

nism by which hyaluronan and PRG4 synthesis can be increased. Exercise has been shown to

improve proteoglycan and collagen content in cartilage [27–29] and decrease the severity of

OA [30]. Cyclic compression has been shown to alter the expression of hyaluronan synthases

in synoviocytes embedded within a collagen gel [31] and to alter the expression of inflamma-

tory and matrix molecules [32–35], supporting the protective potential of mechanical stimulus
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on other tissues in the joint. These studies, however, have not measured changes in hyaluronan

degradation or production of other components of synovial fluid, like PRG4. Mechanical stim-

ulation of tissues also affects cytokine regulation, such as in dermal fibroblasts [36], alveolar

epithelial cells [37] and synovial fibroblasts [38, 39]. Determining how mechanical stimulation

can promote hyaluronan and PRG4 production and modulate cytokine production from syno-

vial fibroblasts will enhance understanding of the role the synovium plays in maintaining a

healthy joint environment.

Therefore, the objective of this study was to determine the extent to which short-term

mechanical stimulation affects endogenous hyaluronan, PRG4, and cytokine production in

synovial fibroblasts, across a range of strain magnitudes. We hypothesized that synoviocytes

will increase production of hyaluronan and PRG4 and reduce pro-inflammatory cytokine pro-

duction with higher strain magnitudes.

Methods

Cell culture

Human synovial sarcoma fibroblasts (SW982, ATCC, Manassas, VA, Cat: HTB-93™) were

maintained in complete medium: high glucose (4.5 g/L) Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum, 1% 100-units/mL penicillin, 1% 10-μg/

mL streptomycin, 110 mg/L sodium pyruvate, and 1% 2-mM L-glutamine. All cell culture

media and supplements were sourced from VWR (Randor, PA).

Cyclic loading regimen

SW982 cells were seeded on silicone membranes (BioFlex plates, Flexcell International Corp,

Burlington, NC) at a density of 3–4 × 104 cells/cm2 (optimized during pilot experiments to

minimize cell detachment while preserving adequate total RNA yield) and were allowed to

attach for 24 hours in 1 mL complete medium. Cells were confined to the central area of the

membrane by using plastic molds (BioFlex Cell Seeders, Flexcell International Corp) under-

neath each well and applying vacuum pressure, creating a designated area for cell seeding.

Cells were subjected to cyclic equibiaxial strain to a peak magnitude of 0%, 5%, 10%, and 20%

(n = 4) and a frequency of 1 Hz (sinusoidal waveform) using the FX6000T Tension System

(Flexcell International Corp). Load was applied for three hours by stretching the flexible mem-

brane over loading posts using a controlled vacuum (Fig 1A). Cells were also cultured on tissue

culture plastic (TCP) as a control. To evaluate the early gene expression changes in response to

loading, media was removed from 3 wells and cell layers were lysed and pooled for RNA isola-

tion as described below, four hours after the end of loading. Prior work has demonstrated that

changes to hyaluronan synthase expression can occur as early as immediately after external

stimulation [40, 41]. 24h after the end of loading, media was collected from the remaining

wells and stored at -80˚C in aliquots (Fig 1B). Cell layers were fixed for immunofluorescence

staining.

Gene expression

RNA was isolated from cell layers using the PureLink RNA Mini Kit (Invitrogen, Waltham,

MA) following manufacturer’s instructions. Cell layers were washed with PBS after media

removal and lysed using the provided lysis buffer and were homogenized using a 23g needle,

passing through a 1 mL syringe 8–10 times, and deposited into an RNase free microcentrifuge

tube. An equal volume of 70% ethanol was added to the tube and the contents were vortexed

and transferred into a spin column for washes. RNA was eluted out using 30 uL of RNase free
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water and quality was checked using the Synergy H4 Hybrid Micropate Reader with a Take 3

cartridge (BioTek). cDNA was synthesized using SuperScript IV, and qPCR (3 technical rep-

licates) was performed using manufacturer validated TaqMan1 primers (Invitrogen, listed

in S1 Table) to measure HAS1 (hyaluronan synthase 1), HAS2 (hyaluronan synthase 2),

HAS3 (hyaluronan synthase 3), HYAL1 (hyaluronidase 1), HYAL2 (hyaluronidase 2), CEMIP
(cell migration inducing hyaluronidase), and TMEM (cell surface hyaluronidase). GAPDH,

which showed minimal variation in Cq values among all groups (S2 Table), was used as the

housekeeping gene. Relative transcript abundance was calculated as 2-ΔCq, where ΔCq is the

difference between Cq of the gene of interest and Cq of GAPDH. To assess the extent to

which synoviocyte response was due to change in substrate stiffness, relative transcript abun-

dance was compared between the TCP and 0% strain groups. Fold difference was then calcu-

lated for Flexcell-seeded groups as 2-ΔΔCq, where ΔΔCq is the difference between ΔCq of the

experimental group and ΔCq of 0% strain, to evaluate the strain-magnitude dependent

response.

Hyaluronan concentration quantification

We determined hyaluronan concentration in the media samples at 4 and 24 hours after load-

ing using a previously published method [42]. 1 mL of media was dialyzed against 0.1 M NaCl

overnight at room temperature using the 3.5kDa Diaeasy Dialyzer tubes (ThermoFisher Scien-

tific, Waltham, MA). Protein in the samples were digested using 25 μL of 19-mg/mL proteinase

K in 10 mM Tris at 60˚C overnight. Proteinase activity was stopped by heating samples to

100˚C for 15 min. Samples were then dialyzed against deionized water overnight at room tem-

perature before measuring hyaluronan content in triplicates with a commercially available

competitive ELISA-like assay (#K-1200, Echelon Biosciences, Salt Lake City, UT) read using a

multiplate reader (Biotek Synergy H4). A standard curve was generated using a four-parameter

curve following manufacturer’s protocol to extrapolate the hyaluronan concentration of sam-

ple. Percent difference was calculated against the 0% strain group.

Fig 1. Experimental set-up of Flexcell loading system. A) Vacuum-controlled pressure is used to stretch the silicone membrane evenly across the

loading post. B) Synoviocytes were seeded for 24 hours and loaded for 3 hours before measuring outcomes at specific timepoints.

https://doi.org/10.1371/journal.pone.0267921.g001
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Immunofluorescence

Immunofluorescence staining was used 24 hours after the end of the loading to localize hyalur-

onan within the cell layers. Cell monolayers were fixed with ice cold methanol for 10 minutes

and washed with PBS. Cells were stained for hyaluronan following a previously published

method [43]. Cells were incubated with 5 mg/mL biotinylated hyaluronan binding protein

(Sigma Aldrich, St. Louis, MO) at 4˚C for 16 hours. After washing, the cells were incubated

with streptavidin Alexa Fluor 488 (Jackson ImmunoResearch Laboratories, West Grove, PA)

at a 1:500 dilution for 1 hour at room temperature. After another wash, cells were blocked for

non-specific binding using 1% BSA in PBS on ice for 15 minutes and then incubated with

0.2% Triton-X 100 on ice for 15 minutes. Cells were incubated with Phalloidin Atto 565 (Milli-

pore Sigma) to stain for F-Actin for 40 minutes at room temperature After a final wash, the sil-

icon membrane of the plates was cut out and mounted onto glass slides with coverslips using

Vectashield with DAPI (Vector Laboratories, Burlingame, CA).

Slides were imaged on a Zeiss LSM 800 (Zeiss Microscopy, Jena, Germany) confocal micro-

scope using the Zeiss Sen Blue Edition imaging software. Z-stacks were acquired at three sepa-

rate locations on each slide and maximum intensities were projects from each stack. The

resulting files were processed using FIJI/ImageJ [44, 45] to obtain fluorescent intensities of

hyaluronan and actin staining [46]. Hyaluronan fluorescent intensity was normalized to

F-Actin fluorescent intensity, using integrated densities of each stain subtracted by the back-

ground fluorescence after a rolling ball background subtraction at a 50.0-pixel radius.

PRG4 quantification

Conditioned media samples from 24 hours after the completion of loading were analyzed for

PRG4 concentration using the AlphaLISA platform (PerkenElmer), as described previously

[47]. Briefly, streptavidin modified donor beads were bound to biotin-labeled recombinant

human PRG4 (Lubris BioPharma, Naples, FL) [48], and anti-PRG4 mAb 94D6 was bound to

acceptor beads. Competitive inhibition of the rhPRG4 –mAb 4D6 interaction by free unla-

beled PRG4 in solution was used for PRG4 quantification. Percent difference was calculated

against the 0% strain group.

Cytokine quantification

Conditioned media samples were probed for cytokine concentrations using the Bio-Plex Pro

Human Cytokine 27-plex Assay (Bio-Rad Laboratories, Hercules, CA) following manufactur-

er’s protocol. Absorbance values were read using a BioPlex 3D Luminex system (Bio-Rad Lab-

oratories). Standard curves were generated for each cytokine using 5-parameter logistic

curves, which were used to determine concentrations for each sample replicate. Out of range

concentrations were below the lower limit or above the upper limit of the standard curve.

Cytokines whose concentrations fell below the lower limit for all samples and were excluded

from analyses. Percent difference for loaded groups was calculated against the 0% strain

group.

Statistical analysis

Statistical testing was performed using R [49] in RStudio [50], with statistical significance

defined at α = 0.05 for all hypothesis tests. Shapiro-Wilk’s test was used to confirm normality

for each experimental outcome. Levene’s and Bartlett’s tests were used to compare sample vari-

ances in normal or non-normal datasets, respectively. The effect of strain magnitude (0%, 5%,

10%, and 20% strain) was tested using one-way analysis of variance (ANOVA) or a Kruskal-
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Wallis test for non-normal datasets. Any significant effects were tested for differences among

groups using a Tukey’s honest significant post-hoc or a Dunn’s test. Differences between the

TCP and 0% strain were probed using an unpaired student’s t test (normal datasets with equal

variances), unpaired Welch’s t test (normal datasets with unequal variances), or a Mann-Whit-

ney rank test (non-normal datasets). Many groups had a non-normal distribution for ΔCq and

ΔΔCq data, so all gene expression data was evaluated with non-parametric tests. Multivariate

analysis was performed using R (mixOmics package [51]). Sparse principal component analy-

sis (sPCA) and sparse partial least squares (sPLS) was performed to predict strain group, hya-

luronan concentration, and PRG4 concentration from gene expression and cytokine

concentration. Sparse analysis uses a regularization procedure to subset data into tighter clus-

ters with redundant variables removed.

Results

To assess the synoviocyte response to a change in substrate stiffness and 5%, 10%, and 20%

cyclic strain at 1 Hz, we used qPCR to measure changes in expression of hyaluronan synthesis

and breakdown genes, ELISAs to measure hyaluronan and PRG4 concentrations, and a multi-

plex panel to measure cytokine concentrations in media.

Effect of change in substrate stiffness on gene expression

HAS1, HAS2, and HAS3 gene expression was not significantly affected by substrate stiffness

(Fig 2, S3 Table). However, HYAL1 (p = 0.029, effective fold difference vs. TCP: -5.00 ± 0.045)

expression was significantly reduced with culture on silicone membranes, while HYAL2
CEMIP, and TMEM were not significantly impacted by the difference in substrate.

Fig 2. Change in material stiffness affects hyaluronidase gene expression, but not synthase expression. Relative transcript expression was calculated from

ΔCq values, with GAPDH as a housekeeping gene, as 2-ΔCq. Dots represent individual samples and significant differences (�, p< 0.05) between groups are

shown with brackets.

https://doi.org/10.1371/journal.pone.0267921.g002
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Effect of different strain magnitudes on gene expression

HAS1 and HAS2 expression was not significantly different among the 0%, 5%, 10%, and 20%

strain groups (Fig 3, S1 Fig, S3 Table). HAS3 expression was significantly different among

groups (p = 0.041). All loaded groups showed decreased expression of HAS3. Compared

against 0% strain expression levels, 10% strain had a significantly higher fold difference of

HAS3 than 20% strain (p = 0.043, effective fold difference vs. 0% strain: -1.235 ± 0.212). Cells

strained to 5% strain (p = 0.050, effective fold difference vs. 0% strain: -1.957 ± 0.189) and 20%

strain (p = 0.045, effective fold difference vs. 0% strain: -1.822 ± 0.096) strain showed a signifi-

cantly lower in HYAL1 expression than the 0% strain group. Similar trends are seen in TMEM
expression, with 5% strain (p = 0.008, effective fold difference vs. 0% strain: -2.075 ± 0.100)

and 20% strain (p = 0.030, effective fold difference vs. 0% strain: -2.370 ± 0.068) groups having

lower expression than 0% strain. 10% strain had a higher TMEM fold difference than 20%

strain (p = 0.024, fold difference vs. 0% strain: -1.433 ± 0.040).

To determine the largest source of variation within gene expression and cytokine concen-

tration data, we used sPCA and identified the Principal Components (PCs) that captured the

largest axes of variance within the data. sPCA of gene expression values revealed that PC1 and

Fig 3. Changes in strain magnitude have limited effects on hyaluronan turnover genes compared to 0%-strain conditions. A) Mean fold difference in

gene expression of loaded samples was calculated with respect to 0% strain group. Dots represent replicates and significant difference (�, p< 0.05) between

groups are shown with brackets. B) sparse PCA of gene expression clustered by strain group, with associated loadings plots. sPCA is shown as a scatter plot

in the X-Y representative space of the gene expression data along PC1 and PC2, which explain over 99% of the variation in the data.

https://doi.org/10.1371/journal.pone.0267921.g003
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PC2 explained 99% of the variability within the data). HAS1 provided the greatest weight for

PC1, while HAS3, TMEM, HYAL2, and HYAL1 influenced PC2 the greatest (Fig 3B). When

clustering by strain group, gene expression data organizes well with distinct clusters for each

strain group. The clusters vary along the PC2 axis.

Hyaluronan quantification and localization

All loading groups had a lower hyaluronan concentration than of the unloaded (0% strain)

group (Fig 4A). 10% strain resulted in the highest concentration among loaded groups. Immu-

nofluorescence imaging of the cell layers revealed that all stained hyaluronan was localized

intracellularly (Fig 4C), with no staining within the pericellular or extracellular matrices.

Quantification of fluorescent staining of hyaluronan showed no significant differences

between groups (Fig 4B).

PRG4 analysis

PRG4 content was measured from media obtained 24 hours after the end of loading. 5% strain

resulted in a significantly higher percent difference of PRG4 concentration compared to the

10% strain and 20% strain groups. Interestingly, 5% strain was the only group that resulted in

an increase in PRG4 concentration compared to the unloaded controls, while 10% strain and

20% strain reduced the amount of PRG4. 5% strain resulted in a 26.3% ± 0.37 increase in

PRG4 concentration compared to 0% strain. 10% strain resulted in a 64.3% ± 0.20 decrease

compared to 0% strain and 20% strain resulted in a 38.2% ± 0.10 decrease compared to 0%

strain. 0% strain had a higher PRG4 concentration (p> 0.05) than the TCP group (S2 Fig).

Cytokine profile

Synoviocytes cultured on silicone membranes produced significantly higher cytokine concen-

trations when compared to media from the TCP group (Fig 5A, S3 Fig, S4 Table). The cyto-

kines VEGF, IL-1ra, IL-1B, IL-10, IL-12, IL-13, IL-15, IL-17, and IL-2 were excluded from

analysis due to concentrations falling outside of the standard curve. Percent difference in cyto-

kine concentrations between loaded groups and 0% strain show distinct patterns between

strain magnitudes (Fig 5B). 5% strain had a significantly higher GM-CSF concentration than

0% strain (p = 0.007, +110.56%) and a significantly lower CCL5 concentration than 10%

(p = 0.029, -62.04%) and 20% strain (p = 0.017, -64.27%). 5% strain had a lower eotaxin con-

centration compared to 10% (p = 0.010, -40.32%) and 20% strain (p = 0.041, -33.77%) and a

lower IP-10 concentration compared to 10% strain (p = 0.030, -64.65%) and 20% strain

(p = 0.005, -72.62%). 10% strain did not significantly change cytokines compared to 0% strain.

20% strain increased GM-CSF (p = 0.001, +160.29%) and IP-10 (p = 0.0383, +135.28%) con-

centrations compared to 0% strain (S3 Fig).

sPCA of cytokine concentration also revealed that PC1 and PC2 explained 99% of the vari-

ance within the data. PC1 was most heavily influenced by IL-8 while IL-6 contributed to PC2

the most (Fig 5C). Cytokine concentration did not create distinct clusters amongst strain

groups, with 0% strain and 20% strain having the most distinction along PC2.

Multivariate analysis

Characterizing cellular responses of synoviocytes to physical strain is challenging due to the

correlation between biomolecules. To deconvolute the contribution of mechanical strain to

these complex cellular responses, we employed multivariate data-driven modeling to charac-

terize the relationship between mechanical perturbation and the holistic response of synovial
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cell gene expression and cytokine production. Cyclic strain impacts hyaluronan gene expres-

sion and ultimately hyaluronan concentration, while also affecting cytokine concentration.

We used sparse Partial Least Squares discriminant analysis (sPLSDA) and regression

(sPLSR) to explore the relationships between mechanical strain, cytokine production, and

gene expression. We trained 6 PLS models in total, predicting mechanical strain (sPLSDA),

Fig 4. Hyaluronan content is sensitive to changes to cyclic strain. A) Overall hyaluronan concentration (ng/mL). B)

Integrated density of hyaluronan staining (green, Alexa Fluor-488) normalized to fluorescent intensity of actin staining

(red, Phalloidin-565). C) Representative immunofluorescent images of DAPI, hyaluronan, and F-actin stains and a

composite image of all strain groups. Dots represent individual samples and significant differences between groups are

shown with brackets. Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0267921.g004
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hyaluronan concentration and PRG4 concentration (sPLSR) from either cytokine concentra-

tion (3 models) or hyaluronan gene expression (3 models) data.

When predicting strain group from gene expression data, we found that component 1 dis-

tinguishes between strain groups well (Fig 6A, S4A Fig). Component 1 is most influenced by

TMEM and HYAL2. We found that gene expression separated hyaluronan concentration data

between 0% strain and 5% strain along Component (Fig 6B, S5A Fig). Component 1 was most

influenced by CEMIP and HAS1. Gene expression latent variables also separated 0% strain and

5% strain in our model of PRG4 concentration (Fig 6C, S5B Fig). Component 1 was influenced

by HAS1 HYAL1, and CEMIP and component 2 was contributed by HAS3, TMEM, and

HYAL2.

In contrast to the gene expression data, we find overall stronger relationships between cyto-

kine production, PRG4 concentration, hyaluronan concentration, and mechanical strain.

Clusters when projecting cytokine concentration on strain group were across both component

Fig 5. Substrate stiffness and strain magnitude display distinct cytokine concentration profiles in conditioned media. A) Values shown are mean

percent difference cytokine concentrations of loaded media samples compared to the TCP group. B) Values shown are mean percent difference

cytokine concentrations of loaded media samples compared to the 0% strain group (blue indicates a percent decrease, red indicates a percent increase).

C) Sparse PCA of cytokine concentration with each sample grouped by strain group, along with corresponding loadings plots. sPCA is shown as a

scatter plot in the X-Y representative space of the gene expression data along PC1 and PC2, which explain over 99% of the variation in the data.

https://doi.org/10.1371/journal.pone.0267921.g005
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1 and 2. Component 2 separated out 5% strain, while component 1 separated out 0% strain

and 10% strain well (Fig 7A, S4B Fig). Component 1 was influenced by eotaxin, CCL5, and IL-

9, while component 2 was influenced by GM-CSF, IL-10, and CCL2. When projecting cyto-

kine concentration onto hyaluronan concentration, there are distinct clusters amongst the 0%

strain and 5% strain groups along component 1 (Fig 7B, S5C Fig). Component 1 was most

heavily influenced by GM-CSF and CCL2. When projecting cytokine concentration on PRG4

concentration, component 1 separated 5% strain and 10% strain and component 2 separated

5% and 20% strain (Fig 7C, S5D Fig). CCL4 and eotaxin weighed heavily for component 1,

while FGF and CCL2 influenced component 2 the most.

Discussion

Our goal was to determine how varying cyclic strain magnitudes will affect synoviocyte pro-

duction of hyaluronan, PRG4, and cytokines. We performed these experiments in SW982

cells, a synoviocyte cell line that has been used as in vitro inflammatory cell models for OA

studies [52, 53], and evaluated how sensitive hyaluronan and PRG4 production is to both

changes in substrate and different levels of cyclic tensile strains in synovial fibroblasts.

Our results did not show a linear magnitude-dependent relationship with strain. We

expected that higher strain magnitudes would increase production of hyaluronan and PRG4

and decrease production of pro-inflammatory cytokines; however, we rejected this hypothesis

Fig 6. Sparse partial least squares (sPLS) analysis of hyaluronan-related gene expression to predict strain group, hyaluronan concentration, and PRG4

concentration show distinct clusters between 0% and 5% strain. A) sPLS-DA to predict strain group from gene expression data, along with corresponding

loadings plots, showing the contributions of each gene for each component. B) sPLSR to predict hyaluronan concentration group from gene expression data,

along with corresponding loadings plots, showing the contributions of each gene for each component. C) sPLSR to predict PRG4 concentration from gene

expression data, along with corresponding loadings plots, showing the contributions of each gene for each component. sPLS plots are shown in the X

representative space of data along 2 components.

https://doi.org/10.1371/journal.pone.0267921.g006
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based on the results. While hyaluronan synthase and hyaluronidase gene expression in syno-

viocytes were sensitive to cyclic strain, overall hyaluronan concentration present in the media

did not reflect the change in expression–cyclic stretch reduced overall hyaluronan content

within the conditioned media. Low, but not high, strain magnitudes increase PRG4 concentra-

tion and have a more anti-inflammatory cytokine profile in the media compared to an

unloaded control.

We saw no significant changes to HAS gene expression with a change in substrate stiffness.

Others have found that static stretch of synovial fibroblasts resulted in minimal change to

HAS2 and HAS3 expression [40]. Static stretch effectively increases the stiffness of a substrate,

our observations with substrate stiffness are consistent with this prior work in static stretch.

Although the effect of changes to substrate stiffness on hyaluronan production has not been

thoroughly studied, especially with synovial fibroblasts, chondrocytes have been shown to pro-

duce more aggrecan, collagen, and proteoglycans when seeded onto softer substrates [54, 55].

Fig 7. sPLS analysis of cytokine concentration to predict strain group, hyaluronan concentration, and PRG4 concentration shows distinct clustering

between strain groups. A) sPLS-DA to predict strain group from cytokine concentration data, along with corresponding loadings plots, showing the

contributions of each cytokine for each component. B) sPLSR to predict hyaluronan concentration group from cytokine concentration data, along with

corresponding loadings plots, showing the contributions of each cytokine for each component. C) sPLSR to predict PRG4 concentration from cytokine

concentration data, along with corresponding loadings plots, showing the contributions of each cytokine for each component. sPLS plots are shown in the

X representative space of data along 2 components.

https://doi.org/10.1371/journal.pone.0267921.g007
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While the addition of mechanical stimulation showed significant differences in HAS3
expression, there were no significant differences among strain magnitudes. In this study, 5%

and 20% strain of synoviocytes resulted in lower HAS3 expression, unlike static stretch, indi-

cating that synoviocytes may be more responsive to cyclic stimulation as opposed to static

stretch or a change in substrate stiffness. Our results on synoviocytes under cyclic loading are

supported by prior work showing that cyclic compression of synoviocytes upregulates expres-

sion of HAS2 and HAS3 [31]. Together, this study in tension and others in compression sug-

gest that hyaluronan turnover by synoviocytes is responsive to cyclic mechanical stimulation.

Our data suggest that 5% and 20% strain increase the production of lower molecular weight

hyaluronan, due to an increase in HAS3 expression, and increase hyaluronan breakdown, due

to an increase in hyaluronidase expression, indicating that the molecular weight distribution

may be shifted downward. HYAL1, HYAL2, and TMEM expression was upregulated in a strain

magnitude-dependent manner. This is the first report of the strain-sensitivity of hyaluronidase

expression. Although there was no significant difference among media from loaded groups,

overall hyaluronan was less than that of the unloaded control. This is supported by the local-

ized intracellular hyaluronan found in immunofluorescence imaging. Synthesized hyaluronan

from synoviocytes are released into the synovial fluid [56], which supports our findings of the

absence of pericellular or extracellular hyaluronan staining found in our images. Intracellular

hyaluronan is indicative of hyaluronan reuptake and breakdown [57] and as a marker for

endoplasmic reticulum stress [58], coinciding with the upregulation of hyaluronidase expres-

sion in our loaded groups. Future studies that inhibit hyaluronan synthases or hyaluronidases

to determine what pathway is most influential on final hyaluronan concentration would give

more insight on mechanotransduction of hyaluronan in synoviocytes.

Additionally, a low strain magnitude improved production of PRG4, while high strain mag-

nitudes decreased PRG4 production. PRG4 secretion has been shown to increase in the pres-

ence of dynamic shear of cartilage tissue [59] and in cyclic compression [60, 61]. Cyclic tensile

strain has also been shown to upregulate PRG4 expression in chondrocytes. Reduction of high

molecular weight hyaluronan inhibits the boundary lubrication ability of synovial fluid, but

addition of PRG4 to a hyaluronan solution can reduce friction [62]. This suggests that low

strain mechanical stimulation of synovial fibroblasts could also be a good target to improve

PRG4 synthesis to alleviate changes to synovial fluid lubrication.

We used multivariate analysis to better understand the relationship between gene expres-

sion and hyaluronan concentration, PRG4 concentration, and strain group. Through sPCA

analysis, we saw strain group clusters along PC2, which is heavily influenced by HAS1. This

implies that HAS1 expression may lead to distinct expression clusters between strain groups,

which is interesting because univariate statistical testing did not identify significant differences

between groups with HAS1 expression. Although univariate statistical testing also did not

identify any significant differences between hyaluronan concentrations, sPLSR analysis sug-

gested that HAS1 and CEMIP expression contributed the most to distinct changes in hyaluro-

nan concentrations between 0% and 5% strain. sPLSR analysis also showed that HAS3 and

TMEM may have influenced the separation between 0% and 5% strain. Overall, sPLS analysis

show clear distinction between 0% and 5% strain group when using gene expression to predict

other variables in this study, highlighting the addition of cyclic strain, specifically low magni-

tude, affects hyaluronan and PRG4 concentration.

We show that 5% strain seems to decrease the concentration of cytokines and chemokines

that are typically elevated in pathological joints, while higher strain magnitudes seem to

increase pro-inflammatory cytokines.5% strain reduced concentrations of pro-inflammatory

markers such as IFN-γ, IL-6, and TNF-α, while 10% and 20% strain increased concentrations

of these cytokines. IL-6, IL-8, TNF-α levels have been shown to be elevated in synovial fluid of
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patients with OA and RA and in post-injury joints, suggesting that high strain magnitudes are

pushing towards a more po-inflammatory environment [63–65]. IL-9, which has been shown

to stimulate pathologic T-cells within the joint [66], was also elevated in the media from cells

stretched to 10% and 20% strain. Macrophage inflammatory protein-1 beta (MIP-1β or CCL4)

[67] and CCL5 [68] have also been shown to be elevated in synovial fluid samples of patients

with OA. Here, we see reduced levels of CCL4 and CCL5 in the media from the 5% strain

group. Previous studies have seen that the effect of cyclic strain on cytokine production, specif-

ically in synovial cells, is dependent on the loading parameters. Short-term exposure (4h) to

loads result in an increase in IL-6 and TNF-α [38], while long-term exposure (24h) at a slower

strain rate also resulted in elevated IL-8 levels [69]. The variability in cytokine production

from different loading parameters highlights the sensitivity of synoviocytes to different loading

parameters.

We probed interdependency among hyaluronan concentration, PRG4 concentration, and

cytokine concentration using multivariate analysis. sPCA did not show distinct clusters or pat-

terns among cytokine concentration data when grouping by hyaluronan concentration, PRG4

concentration, or strain group. sPLS did show better organization when projecting cytokine

concentration on to strain group, hyaluronan concentration and PRG4 concentration. Since

sPCA is a method that is descriptive of the data, this indicates that while cytokine concentra-

tion data does not distinguish between groups itself, it can be used inferentially to project data.

Both strain group and the resulting hyaluronan concentration separated 0% and 5% strain in

cytokine concentration data. Cytokine concentration data organized PRG4 concentration data

well, with CCL4 and eotaxin separating out 5% and 10% strain and CCL2 and FGF separating

10% and 20% strain. sPLS analysis highlights our previous finding that stain magnitude results

in distinct cytokine profiles and more work needs to be done to elucidate the mechanism

between synovial mechanical stimulation and cytokine production.

Our study has several limitations. As noted above, we used a synoviocyte cell line. Primary

cells may behave differently, so there should be future efforts to evaluate the relationship

between cyclic loading and the production of synovial fluid components from both healthy

and diseased tissues. Second, we did not measure hyaluronan molecular weight distribution in

our study. Despite the changes in hyaluronan-related gene expression, we did not see changes

in overall hyaluronan concentrations–suggesting that hyaluronan molecular weight could be

affected. Future studies would benefit from assessing how cyclic tensile strain impacts hyaluro-

nan molecular weight. Finally, we subjected synoviocytes to short-term exposure of cyclic

strain. Thus, it is possible that our model is conservative and more substantial effects for hya-

luronan turnover and concentration would occur at longer exposure times.

In conclusion, we show that cyclic loading can be used to affect hyaluronan turnover,

PRG4, and cytokine concentration. Changes in substrate stiffness result in significant changes

in cytokine production from synoviocytes. While an increase in strain magnitude decreased

PRG4 concentration and altered production of cytokines, hyaluronan concentration was

unchanged by differences in magnitude. Our results show that mechanical activity of the syno-

vium could be a key regulator of the joint environment and understanding the relationship

between mechanics and joint health can help identify new therapeutic targets for pathology.
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