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Abstract

Unlike traditional time series, the action sequences of human decision making usually

involve many cognitive processes such as beliefs, desires, intentions, and theory of mind,

i.e., what others are thinking. This makes predicting human decision-making challenging to

be treated agnostically to the underlying psychological mechanisms. We propose here to

use a recurrent neural network architecture based on long short-term memory networks

(LSTM) to predict the time series of the actions taken by human subjects engaged in gaming

activity, the first application of such methods in this research domain. In this study, we col-

late the human data from 8 published literature of the Iterated Prisoner’s Dilemma compris-

ing 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of

9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10

different published studies of Iowa Gambling Task experiments with healthy human sub-

jects. We train our prediction networks on the behavioral data and demonstrate a clear

advantage over the state-of-the-art methods in predicting human decision-making trajecto-

ries in both the single-agent scenario of the Iowa Gambling Task and the multi-agent sce-

nario of the Iterated Prisoner’s Dilemma. Moreover, we observe that the weights of the

LSTM networks modeling the top performers tend to have a wider distribution compared to

poor performers, as well as a larger bias, which suggest possible interpretations for the dis-

tribution of strategies adopted by each group.

1 Introduction

Predictive modeling involves the use of statistics to predict outcomes of “unseen” data, i.e. not

used in model parameterization, in real world phenomena, with wide applications in econom-

ics, finance, healthcare, and science. In statistics, the model that closely approximates the data

generating process might not necessarily be the most successful method to predict real world
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outcomes [1, 2]. Yarkoni & Westfall [3] argue that the near-total focus of the field of psychol-

ogy on explaining the causes of behavior have little or unknown capability to predict future

human behaviors with any appreciable accuracy, despite the intricate theories of psychological

mechanism these research have endowed. Methods like regression and other mechanistic

models, even with high complexity, can still be outperformed by biased and psychologically

implausible models, due to overfitting. In this work, we aim to bridge this gap, by providing

machine learning methods to accurately predict game-based human behavior.

While useful for the researchers to breakdown neuropsychologically interpretable variables,

these analyses only provide very constrained predictive guidelines, and fall short to modeling

more complicated real-world decision making scenarios such as social dilemmas. As a popular

framework to expose tensions between cooperation and defection in a game-like manner, the

Iterated Prisoner’s Dilemma [4] has been studied by computer scientists, economists, and psy-

chologists with different approaches. Beyond cognitive modeling of the effects of game settings

and past experiences on the overall tendency to cooperate (or invest in the monetary games)

[5–7] proposed a logistic regression model to directly predict individual actions during the

Iterated Prisoner’s Dilemma. This logistic regression model is also the state-of-the-art in pre-

dicting action sequences in this task.

As another commonly used game-based task, albeit non-social, the Iowa Gambling Task [8]

is usually modeled as a synthesis of various psychological processes and cognitive elements [9,

10]. In the Iowa Gambling Task, the participant needs to choose one out of four card decks

(named A, B, C, and D), and can win or lose money with each card when choosing a deck to

draw from [8]. The challenge of this kind of game in computational modeling is that the

reward payoffs of each action arms are not necessarily Gaussian: all decks have a consistent

wins and variable losses where one of the popular schemes, the scheme 1 [11], has a more vari-

able losses for deck C than another one, the scheme 2 [12].

In both settings, one active line of research is to clone and simulate behavioral trajectories

with reinforcement learning models that incorporate learning-related parameters inspired by

the neurobiological priors of the human brain [13–16]. While offering discriminative and

interpretable features in characterizing the human decision making process, these reinforce-

ment learning models exhibit limited capability to predict the human action sequences in com-

plicated decision making scenarios such as the Iterated Prisoner’s Dilemma [17].

We propose in this paper to study decision-making based on the well-known long short-

term memory network (LSTM) to forecast the human behavior using experimental data from

game-like psychological tasks including the Iowa gambling task and the Iterated Prisoner’s

Dilemma, to then endeavor to interpret the resulting models, under the premise that good pre-

diction is a requisite to warrant interpretation. To the best of our knowledge, this is the first

study that applies recurrent neural networks to directly predict sequences of human decision

making process. We believe this work can facilitate the understanding of how human behave

in online game setting.

A preliminary version of this work was presented at the International Joint Conference on

Neural Networks [18].

2 Materials and methods

2.1 Long-short-term-memory networks

Recurrent neural networks are a class of artificial neural networks that captures a notion of

time. It has both conventional edges that map from input nodes to the recurrent nodes, and

recurrent edges that map recurrent nodes across adjacent time steps, including cycles of length
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one that are self-connections from a node to itself [19]. It can be formulated as:

ht ¼ sðWhxxt þWhhht� 1 þ bhÞ ð1Þ

where at time t, the recurrent layer receives input xt and computes the neurons’ hidden states

ht given the input xt, last hidden states ht−1 and the parameters including a kernel Whx, a recur-

rent kernel Whh and a bias term bh. The activation σ can be in different forms, with sigmoid

function to be a conventional choice. The dynamics of the recurrent network can be consid-

ered as a deep neural network by unfolding the computing graph into layers with shared

weights. Then we can train the unfolded network across many time steps with backpropaga-

tion with algorithm slike Backpropagation through time (BPTT) [20].

Long Short Term Memory (LSTM) was later introduced to overcome the vanishing gradi-

ent problem of recurrent networks [21]. The model resembles traditional recurrent neural net-

works, but introduces a series of gating mechanisms to adaptively keep a memory. It

introduces four additional variables, the input gate g, the input state i, the forget gate f, and the

output gate o. The full formulations are as follows:

gt ¼ �ðWgxxt þWghht� 1 þ bgÞ ð2Þ

it ¼ sðWixxt þWihht� 1 þ biÞ ð3Þ

f t ¼ sðWfxxt þWfhht� 1 þ bf Þ ð4Þ

ot ¼ sðWoxxt þWohht� 1 þ boÞ ð5Þ

st ¼ gt � it þ st� 1 � f t ð6Þ

ht ¼ �ðstÞ � ot ð7Þ

where the activation functions are either sigmoid σ or tanh ϕ, and� is pointwise mulitplica-

tion. A cell state st is computed based on the previous cell state st−1 the input gate g, the input

state i and the forget gate f. Then, the hidden state of the LSTM layer is computed by pointwise

multiplying the activated cell state with the output gate.

2.1.1 The Iterated Prisoner’s Dilemma (IPD). The Iterated Prisoner’s Dilemma (IPD)

can be defined as a matrix game G = [N, {Ai}i2N, {Ri}i2N], where N is the set of agents, Ai is the

set of actions available to agent i with A being the joint action space A1 × � � � × An, and Ri is the

reward function for agent i. A special case of this generic multi-agent Iterated Prisoner’s

Dilemma is the classical two-agent case (Table 1). In this game, each agent has two actions:

cooperate (C) and defect (D), and can receive one of the four possible rewards: R (Reward),

Table 1. Payoff codes of the Iterated Prisoner’s Dilemma.

Cooperate Defect

Cooperate (R, R) (S, T)

Defect (T, S) (P, P)

The rows and columns specify the action space of the agents as well as their corresponding payoff codes. At each

round, each agent has two actions: Cooperate and Defect. Given the actions taken by one agent (the first column)

and its opponent (the first row), they are each assigned one of the four possible rewards: R (Reward), P (Penalty), S

(Sucker), and T (Temptation). The reward tuple reads (reward to the agent itself, reward to the agent’s opponent).

https://doi.org/10.1371/journal.pone.0267907.t001
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P (Penalty), S (Sucker), and T (Temptation). In the multi-agent setting, if all agents Cooperates

(C), they all receive Reward (R); if all agents defects (D), they all receive Penalty (P); if some

agents Cooperate (C) and some Defect (D), cooperators receive Sucker (S) and defector receive

Temptation (T). The four payoffs satisfy the following inequalities: T> R> P> S and 2R>
T + S. The Prisoner’s Dilemma is a one round game, but is commonly studied in a manner

where the prior outcomes matter to understand the evolution of cooperative behaviour from

complex dynamics [22].

We collate human data comprising 168,386 individual decisions from many human sub-

jects experiments [5, 6, 23–28] that use real financial incentives and transparently convey the

rules of the game to the subjects. As a a standard procedure in experimental economics, sub-

jects anonymously interact with each other and their decisions to cooperate or defect at each

time period of each interaction are recorded. They receive payoffs proportional to the out-

comes in the same or similar payoff as the one we used in Table 1.

2.1.2 The Iowa Gambling Task (IGT). The original Iowa Gambling Task (IGT) studies

decision making where the participant needs to choose one out of four card decks (named A,

B, C, and D), and can win or lose money with each card when choosing a deck to draw from

[8], over around 100 actions. In each round, the participants receives feedback about the win

(the money he/she wins), the loss (the money he/she loses), and the combined gain (win

minus lose). In the Markov Decision Process setup, from initial state I, the player select one of

the four deck to go to state A, B, C, or D, and reveals positive reward r+ (the win), negative

reward r− (the loss) and combined reward r = r+ + r− simultaneously. Decks A and B by default

is set to have an expected payout (-25) lower than the better decks, C and D (+25). For base-

lines, the combined reward r is used to update the agents. There are two major payoff schemes

in IGT. In the traditional payoff scheme, the net outcome of every 10 cards from the bad decks

(i.e., decks A and B) is -250, and +250 in the case of the good decks (i.e., decks C and D). There

are two decks with frequent losses (decks A and C), and two decks with infrequent losses

(decks B and D). All decks have consistent wins (A and B to have +100, while C and D to have

+50) and variable losses (summarized in Table 2, where scheme 1 [11] has a more variable

losses for deck C than scheme 2 [12]).

The raw data and descriptions of Iowa Gambling Task can be downloaded at [29]. It con-

sists of the behavioral trajectories of 617 healthy human subjects performing the Iowa Gam-

bling Task. The data set consists of original experimental results from 10 different studies,

Table 2. Payoff schemes of the Iowa Gambling Task.

Decks win per card loss per card expected value scheme

A (bad) +100 Frequent: -150 (p = 0.1), -200 (p = 0.1), -250 (p = 0.1), -300 (p = 0.1), -350 (p = 0.1) -25 1

B (bad) +100 Infrequent: -1250 (p = 0.1) -25 1

C (good) +50 Frequent: -25 (p = 0.1), -75 (p = 0.1), -50 (p = 0.3) +25 1

D (good) +50 Infrequent: -250 (p = 0.1) +25 1

A (bad) +100 Frequent: -150 (p = 0.1), -200 (p = 0.1), -250 (p = 0.1), -300 (p = 0.1), -350 (p = 0.1) -25 2

B (bad) +100 Infrequent: -1250 (p = 0.1) -25 2

C (good) +50 Infrequent: -50 (p = 0.5) +25 2

D (good) +50 Infrequent: -250 (p = 0.1) +25 2

In this game, the subject needs to choose one out of four card decks (named A, B, C, and D), and can win or lose money with each card when choosing a deck for over

around 100 actions. In each round, the subject receives feedback about the win (the money he/she wins), the loss (the money he/she loses), and the combined gain (win

minus lose). Decks A and B by default is set to have an expected combined payout (-25) lower than the better decks, C and D (+25). All decks have consistent wins (A

and B to have +100, while C and D to have +50) and variable losses, with different variabilities in the two schemes.

https://doi.org/10.1371/journal.pone.0267907.t002
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administrated with different lengths of trials (95, 100 and 150 actions). We pool all subjects

together and truncate all 617 trajectories to have 95 actions each.

2.2 Prediction with recurrent networks

The prediction framework of the recurrent neural networks is illustrated in Fig 1: at each time

step, the historical action from the last time step is fed into the recurrent neural networks as

input, and the network outputs a predicted action for the following time step. In the single-

agent setting (i.e. the human subject makes his or her decision without interactions with other

players), the input and output of the recurrent neural networks both consist of the player’s

actions. In the multi-agent setting (i.e. the human subject makes his or her decision based on

not only his or her own prior actions and rewards, but also the actions performed by other par-

ticipants in the game), the input features consist of the actions performed by all parcipants in

the game in the last time step. In both scenarios, we code the actions into a multi-dimensional

one-hot representation before serving to the prediction network.

2.3 Network architecture and training procedures

We construct a neural network model that consist of multiple layers of LSTM networks with

bias terms, followed by a ReLU activation function and a fully connected layer to map from

the LSTM network output to a Softmax activation function, from which a prediction label is

collected with an argmax operation. We implement the model in the standard library of

PyTorch framework. We train the models for 200 and 400 epochs, respectively, for the Iterated

Prisoner’s Dilemma and the Iowa Gambling Task. We use the Adam [30] as the optimizer for

the model and set the learning rate to be 1e-3 and a L2 regularization weight to be 1e-5. The

Fig 1. Prediction framework with a recurrent network: At each time step t, the historical action from the last time step xt is fed into the recurrent

neural networks as input, and the network outputs a predicted action xt+1 for the following time step and updates its hidden state ht.

https://doi.org/10.1371/journal.pone.0267907.g001
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data and codes to reproduce the empirical results can be accessed and reproduced at https://

github.com/doerlbh/HumanLSTM.

2.4 Evaluation of the Iterated Prisoner’s Dilemma

Following the similar pre-processing steps as [7], we are able to construct a comprehensive col-

lection of game structures and individual decisions from the description of the experiments in

the published papers and the publicly available data sets. This dataset consists of behavioral tra-

jectories of different time horizons, ranging from 2 to 30 rounds, but most of these experimen-

tal data only host full historical information of at most past 9 actions. We further select only

those trajectories with these full historical information, which comprised 8,257 behavioral tra-

jectories of 9 actions each for both players.

We compare with two baselines. The first baseline is a logistic regression taking into

account a group of handcrafted features such as the game settings and historical actions [7]. It

is reported as the state-of-the-art in the task of predicting human decision making in the task

of Iterated Prisoner’s Dilemma. Similar to the Iowa Gambling Task prediction, we include the

standard vector autoregression model [31] as our second baseline. The order of the autoregres-

sion model is selected based on Akaike information criterion (AIC) [32]. Similar to the empiri-

cal evaluation in Iowa Gambling Task, here we still chose our prediction network to be a two-

layer LSTM network with 5 neurons at each layers for the Iterated Prisoner’s Dilemma predic-

tion. We randomly split the dataset by 80/20 as the training set and the test set, and evaluated

it with randomized cross-validation.

2.5 Evaluation of the Iowa Gambling Task

We compare our LSTM model with the standard vector autoregression model [31]. The order

of the autoregression model is selected based on Akaike information criterion (AIC) [32]. The

autocorrelation is trained on all available sequences in the training set. Same as our LSTM net-

work, autoregression model takes a multi-dimensional one-hot-based feature tensor (of the

previous time steps) as its observation window, and then outputs the next predicted action.

For empirical evaluation, we chose our prediction network to be a two-layer LSTM network

with 5 neurons at each layers. This is to showcase the effectiveness of our recurrent neural net-

works even if the parameter set is very small. We randomly split the dataset by 80/20 as the

training set and the test set, and evaluated it with randomized crossvalidation.

3 Results

3.1 Predictive modeling of the Iterated Prisoner’s Dilemma

We record the cooperation rate to evaluate how close the behavioral trajectory predicted by a

model captures the ground truth of the human decision making sequence. As shown in Fig

2A, the autoregression model overestimates the cooperation rate of human decision making

by a significant amount. The state-of-the-art model in this task, the logistic regression model

[7] performs a better job than the autoregression model, but still falls short at capturing the

subtle dynamics of human cooperation over time. Unlike the baselines, our LSTM model per-

fectly predicts the cooperation rate, although it is only trained to predict the individual actions

instead of the cooperation rate.

We report the mean squared error (MSE) between the predicted sequences and the ground

truth in order to understand the performance of the models in the individual sense. As shown

in Fig 2B, LSTM has a lower average MSE of 0.12 across all prediction time steps, beating the

two baselines, autoregression (0.18) and logistic regression (0.75), by a significant amount.
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3.2 Predictive modeling of the Iowa Gambling Task

We record this metric to evaluate how well the behavioral trajectory predicted by a model cap-

tures the ground truth of the human decision making sequence. As shown in Fig 3A, both the

LSTM and the autoregression model capture the learning dynamics of the human subjects well.

As shown in Fig 3C, the overall MSE drops as the observation window increases (i.e. the

model has seen more historical time series). The LSTM network predicts the individual trajec-

tories better, with the lowest average MSE of 0.011 across all prediction time steps, beating the

MSE by autoregression, 0.015, by a significant amount since the first few prediction time steps.

As shown in Fig 3B, the LSTM network learns to mimic the overall learning trend of the Iowa

Gambling Task in each decks.

3.3 Model complexity analysis

To investigate the effect of model complexity for the prediction tasks, we vary the number of

neurons from 5, 10, 50 to 100, and vary the number of the LSTM layers from 1, 2 to 3. We rep-

licate the aforementioned experiments on the Iterated Prisoner’s Dilemma and the Iowa Gam-

bling Task.

In the Iterated Prisoner’s Dilemma, we observe that, the LSTM networks ranging from 1

layer of 5 neurons to 3 layers of 100 layers all predict the human cooperation rate very well, as

shown in Fig 4.

Unlike the Iterated Prisoner’s Dilemma, as shown in Fig 5, the LSTM networks ranging

from 1 layer of 5 neurons to 3 layers of 100 layers vary in their similarity of the learning curve

in choosing the better actions to that of the human data. In a close look at the actual prediction

of each action dimension, we observe that across many models, there is a overall under-predic-

tion of deck A and over-prediction of deck B, the two bad decks, as in the Fig 6.

3.4 Comparison of good and bad performers

To further investigate the interpretability of the trained LSTM networks, we subset the human

subject data into two groups. The first group, which we call “top performers”, are the players

Fig 2. Results for predicting the Iterated Prisoner’s Dilemma: Shown here are the statistics computed from the prediction by a two-layer LSTM

networks of five neurons at each layer. The first time step is given as the prior, and we record the prediction of the next 8 time steps in a 9-step Iterated

Prisoner’s Dilemma game. (A) Cooperation Rate: The LSTM model characterizes human cooperation much better than the baselines in the Iterated

Prisoner’s Dilemma. (B) Individual Trajectories: The mean squared error of predicting indivdiual trajectories in the Iterated Prisoner’s Dilemma.

https://doi.org/10.1371/journal.pone.0267907.g002
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that yield the top 25 percent scores in the games. The second, group, which we call “bottom

performers”, are the players that yield the bottom 25 percent scores in the games. As in the pre-

vious investigations, we choose our prediction network to be a two-layer LSTM network with

5 neurons at each layers. We train the networks for 100 epochs and 50 epochs, respectively, for

the Iowa Gambling Task and the Iterated Prisoner’s Dilemma. For each experiment, we

trained a population of 100 randomly initialized instances of the LSTM networks and record

their network weights.

We perform the (one-sample or two-sample) Kolmogorov-Smirnov test for goodness of fit

[33] on the parameter weight distribution of the top and bottom performers.

In predicting the Iterated Prisoner’s Dilemma, we present the distribution of the weights in

the trained LSTM networks. We don’t observe such a difference, as shown in Fig 7. These

observation is supported by the Kolmogorov-Smirnov test: W1
ih (0.022, p = 0.041), W1

hh (0.009,

p = 0.070), b1
ih (0.023, p = 0.217), b1

ih (0.008, p = 1.000) for layer 1; and W1
ih (0.011, p = 0.013),

W1
hh (0.006, p = 0.424), b1

ih (0.024, p = 0.188), b1
hh (0.024, p = 0.188) for the layer 2.

In predicting the Iowa Gambling Task on the other hand, we observe that the weights of the

top performers tends to have a wider distribution, and a bigger bias in the LSTM networks

(Fig 8). These observation is supported by the Kolmogorov-Smirnov test: W1
ih (0.092,

p = 1.77e-59), W1
hh (0.069, p = 4.46e-82), b1

ih (0.134, p = 5.04e-32), b1
ih (0.131, p = 1.63e-30) for

layer 1; and W1
ih (0.078, p = 4.82e-107), W1

hh (0.059, p = 3.95e-60), b1
ih (0.082, p = 4.24e-12), b1

hh

(0.074, p = 4.69e-10) for the layer 2.

Fig 3. Results for predicting the Iowa Gambling Task: Shown here are the statistics computed from the prediction by a two-layer LSTM networks of

five neurons at each layer. The first time step is given as the prior, and we record the prediction of the next 94 time steps in a 95-step Iowa Gambling Task

game. (A) Learning Curve: Both the LSTM and autoregression model capture the learning dynamics of the human subjects in the Iowa Gambling Task as

measure by the evolution of the rate of selection of the better actions. (B) IGT Prediction of LSTM and autoregression. (C) Individual Trajectories: The

mean squared error of predicting individual actions in the Iowa Gambling Task.

https://doi.org/10.1371/journal.pone.0267907.g003
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Fig 4. Model complexity analysis in the Iterated Prisoner’s Dilemma: Shown here are the cooperation rates computed from the prediction by the

LSTM networks versus the real human data. The first time step is given as the prior, and we record the prediction of the next 8 time steps in a 9-step

Iterated Prisoner’s Dilemma game. The columns indicates the number of layers in the LSTM networks, ranging from 1, 2 and 3. The rows indicates the

number of neurons in each layer of the LSTM networks, ranging from 5, 10, 50 and 100.

https://doi.org/10.1371/journal.pone.0267907.g004
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4 Discussion

As far as we are aware, this is the first work to predict the behavioral trajectories of the Iowa

Gambling Task. In the Iterated Prisoner’s Dilemma prediction task, [7] is the state-of-the-art

with their logistic regression model. In our evaluations, our proposed LSTM model and

Fig 5. Model complexity analysis in the Iowa Gambling Task (learning): Shown here are the percentage of choosing the better decks (i.e. the learning

curves) computed from the prediction by the LSTM networks versus the real human data. The first time step is given as the prior, and we record the

prediction of the next 94 time steps in a 95-step Iowa Gambling Task game. The columns indicates the number of layers in the LSTM networks, ranging

from 1, 2 and 3. The rows indicates the number of neurons in each layer of the LSTM networks, ranging from 5, 10, 50 and 100.

https://doi.org/10.1371/journal.pone.0267907.g005
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Fig 6. Model complexity analysis in the Iowa Gambling Task (actions): Shown here are the percentage of choosing individual

action arms computed from the prediction by the LSTM networks versus the real human data. The first time step is given as the

prior, and we record the prediction of the next 94 time steps in a 95-step Iowa Gambling Task game. The columns indicates the number

of layers in the LSTM networks, ranging from 1, 2 and 3. The rows indicates the number of neurons in each layer of the LSTM networks,

ranging from 5, 10, 50 and 100.

https://doi.org/10.1371/journal.pone.0267907.g006
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autoregresssion baseline both significantly outperforms [7]. We discuss below the insights that

our modeling approach provides.

4.1 Iterated Prisoner’s Dilemma

The tendency to cooperation is an important subject of interest in Iterated Prisoner’s

Dilemma, because it characterizes the core trade-off between self-interest and social benefit.

The cooperation rate is also the metric used by the state-of-the-art paper in predicting Iterated

Prisoner’s Dilemma sequences [7]. The prediction error by the three models offers several sur-

prising observations: (a) Although the logistic regression model (the state-of-the-art) predicts

the population-wide cooperation rate, it performs poorly at predicting individual actions; (b)

Despite the significant overestimation of population cooperation rate, the autoregression

model maintained a relatively low prediction error with a similar trend as the best model, our

LSTM model; and (c) During the intermediate phase of iterations, the 4th or the 5th round,

the prediction error appears to be the largest for the logistic regression model, but the smallest

for the autoregression and LSTM models.

Fig 7. Learned representations and game performance in the Iterated Prisoner’s Dilemma: Shown here are the distribution of weights learned from

top 25% and bottom 25% performers selected based on the cumulative rewards in the historical records of human subjects playing the Iterated

Prisoner’s Dilemma.

https://doi.org/10.1371/journal.pone.0267907.g007

PLOS ONE Predicting human decision making in psychological tasks with recurrent neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0267907 May 31, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0267907.g007
https://doi.org/10.1371/journal.pone.0267907


4.2 Iowa Gambling Task

As shown in the payoff schemes from Table 2, there are two actions that are more preferable

(giving more rewards) than the other two. In the psychology and neuroscience literature the

percentage of choosing these two “better” actions is usually reported as a function of time, and

used to characterize the learning progress of the human subjects. The deck A has a reward dis-

tribution of a five-modal distribution which is very wide, while the deck B has a rare probabil-

ity of assigning a single large value which is very narrow. We suspect that the different

distributions of the reward functions might be a reason behind the wrong prediction in our

neural networks. This is further supported by the Fig 9, where the mean squared error (MSE)

of the predictions of individual actions are presented for all 12 model architectures. We

observe that smaller networks (narrower and shallower ones) predicts the action of choosing

decks C and D perfectly (the good decks), while having some wrong predictions in decks A

and B (the bad decks) better. We note that the reward distributions of the good decks are more

Gaussian than the bad decks, whose reward distributions are more extreme, with very large

values at very rare probabilities. In our case, the smaller networks can capture the Gaussian

priors of the good decks very well, but don’t have the expressive power to learn the more sto-

chastic bad decks well as bigger networks do.

Fig 8. Learned representations and game performance in the Iowa Gambling Task: Shown here are the distribution of weights learned from top 25%

and bottom 25% performers selected based on the cumulative rewards in the historical records of human subjects playing the Iowa Gambling Task.

https://doi.org/10.1371/journal.pone.0267907.g008
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4.3 Prediction of individual trajectories

In both cases, we observe that a model that predicts the cooperation rate well doesn’t guarantee

it captures the correct action strategies used by each individual trajectories. Despite a compara-

ble performance in predicting the overall trend of the learning progress, the capability of a

Fig 9. Model complexity analysis in the Iowa Gambling Task (prediction error): Shown here are the mean squared error of indivual action arms

between the prediction by the LSTM networks and the real human data. The first time step is given as the prior, and we record the prediction of the next

94 time steps in a 95-step Iowa Gambling Task game. The columns indicates the number of layers in the LSTM networks, ranging from 1, 2 and 3. The rows

indicates the number of neurons in each layer of the LSTM networks, ranging from 5, 10, 50 and 100.

https://doi.org/10.1371/journal.pone.0267907.g009
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prediction model to capture the action strategy during each individual game is a more chal-

lenging objective. For instance, it is possible for a bad prediction model to forecast every indi-

vidual trajectories incorrectly given their corresponding heterogeneous prior history, while

maintaining a perfect prediction for the composition of actions in the population sense. By

examining the prediction errors and their corresponding individual action dimension at each

time step, we can parse out more details about the strategies taken by different agents. For

instance, a closer investigate to the individual action dimension reveals a difference in predic-

tion strategies by the LSTM and the autoregression model in the Iterated Prisoner’s Dilemma,

but not in the Iowa Gambling Task. In the case of the Iterated Prisoner’s Dilemma, the LSTM

network not only predicts the overall cooperation rate better, but also effectively learns to

mimic the overall learning trend of the Iowa Gambling Task in each decks. If we compare the

Iowa Gambling Task with the Iterated Prisoner’s Dilemma, we observe that the information

asymmetry caused by the unknown human opponent complicates the prediction task in the

Iterated Prisoner’s Dilemma, such that the prediction error doesn’t follow a monotonic

decrease when the observation window increases, as we observe in the Iowa Gambling Task. A

possible explanation is that predicting the Iterated Prisoner’s Dilemma is a much more diffi-

cult task than predicting the Iowa Gambling Task due to its additional complications from the

multi-agent and social dilemma settings. The clear advantage of the LSTM model over the

baseline in this task, demonstrated the merit that the recurrent neural network better captures

realistic human decision making and offers reliable prediction of individualized human

behaviors.

4.4 Model complexity analysis

The results suggest that, despite being a multi-agent game, Iterated Prisoner’s Dilemma has a

much simpler strategy to learn from. Unlike the Iterated Prisoner’s Dilemma, we observe that

in the Iowa Gambling Task, the LSTM networks ranging from 1 layer of 5 neurons to 3 layers

of 100 layers differ in their similarity of the learning curve in choosing the better actions to

those of the corresponding human data. More specifically, we observe that the human data

usually have a dip in the early rounds before catcH2ng up, wH2le the wider and deeper net-

works tend to adopt a simpler learning curve with a smaller dip.

4.5 Weight distribution in good and bad performers

We notice that the wider distribution of weights, significant for the Iowa Gambling Task and

marginal but pointing in the same direction for the Iterated Prisoner’s Dilemma, is suggestive

of possible interpretations. One interesting possibility is that the better performers represent a

larger number of alternative solutions wH2ch may be encompassed witH2n the expressivity of

the LSTM; tH2s hypothesis is of course speculative for the moment, but we believe it may be

eventually tested with further experimentation. Moreover, our analysis of LSTM’s biases and

weights points to possible ways for describing alternative solution strategies leading to signifi-

cantly different outcomes.

4.6 Potential implications

Good predictors of human decision-making trajectories can help government develop better

resource allocation programs, help companies develop better recommendation systems, and

help clinicians develop intervention plans for mental health treatments. As a comparison, rein-

forcement learning models are good at mechanistically capturing the psychological activities.

Our prior work [17] provides a negative result for using reinforcement learning models to pre-

dict human decision making, wH2ch suggests the necessity of an additional behavioral
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predictor model is in demand, and can serve useful purposes in many real-world application

that involves predictive modeling. We observe in tH2s predictive modeling investigation a pos-

sibility that these behavioral predictors might capture characteristics of human decision mak-

ing process that are missed in reward-driven models, partially because in behavioral

experimental settings, the reward representations, usually monetary, can be an over-simplifica-

tion of the complex underlying mechanisms of human minds.

As the first attempt to utilize the recurrent neural networks to directly predict human action

sequences in these behavioral tasks, our approach matches existing baselines in predicting

both the population trends and the individual strategies, in the Iowa Gambling task, and then

significantly outperforms the state-of-the-art in the Iterated Prisoner’s Dilemma task. We find

the latter particularly noteworthy given that Iterated Prisoner’s Dilemma is a cognitively more

complex task, as it involves multiple agents trying to predict each other’s behavior. Next steps

include extending our evaluations to human behavioral trajectories in other sequential deci-

sion making environments with more complicated and mixed incentive structure, such as

Diplomacy, Poker and chess playing, as well as efforts to implement alternative recurrent mod-

els more readily amenable to interpretation from the neuroscientific and psychological

perspectives.
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