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Abstract

Posttraumatic Stress Disorder (PTSD) is a psychiatric condition affecting nearly a quarter of

the United States war veterans who return from war zones. Treatment for PTSD typically

consists of a combination of in-session therapy and medication. However; patients often

experience their most severe PTSD symptoms outside of therapy sessions. Mobile health

applications may address this gap, but their effectiveness is limited by the current gap in

continuous monitoring and detection capabilities enabling timely intervention. The goal of

this article is to develop a novel method to detect hyperarousal events using physiological

and activity-based machine learning algorithms. Physiological data including heart rate and

body acceleration as well as self-reported hyperarousal events were collected using a tool

developed for commercial off-the-shelf wearable devices from 99 United States veterans

diagnosed with PTSD over several days. The data were used to develop four machine learn-

ing algorithms: Random Forest, Support Vector Machine, Logistic Regression and

XGBoost. The XGBoost model had the best performance in detecting onset of PTSD symp-

toms with over 83% accuracy and an AUC of 0.70. Post-hoc SHapley Additive exPlanations

(SHAP) additive explanation analysis showed that algorithm predictions were correlated

with average heart rate, minimum heart rate and average body acceleration. Findings show

promise in detecting onset of PTSD symptoms which could be the basis for developing

remote and continuous monitoring systems for PTSD. Such systems may address a vital

gap in just-in-time interventions for PTSD self-management outside of scheduled clinical

appointments.

Introduction

PTSD is a psychiatric condition experienced by individuals after exposure to life-threatening

events, such as physical assault, sexual abuse, and combat exposure [1]. PTSD symptomology

includes avoidance, hyperarousal, and reexperiencing trauma through dreams and recollec-

tions [1]. Avoidance symptoms include circumventing activities or thoughts associated with

the traumatic event, decreased interest in daily life, and an overall feeling of detachment from
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one’s surroundings. Hyperarousal symptoms include hypervigilance, feelings of irritability,

and an exaggerated response following a startling event. Other symptoms of PTSD include

anxiety, insomnia, fatigue, anger, and aggression [2, 3].

Over 70% of the U.S. population will experience a traumatic event in their lifetime of whom

20% will subsequently develop Post-Traumatic Stress Disorder (PTSD) [4]. Combat veterans

are particularly prone to PTSD [5], with recent estimates of prevalence as high as 20% [4]. Vet-

erans with PTSD are also at a greater risk of suicide [6], and suicidal thoughts [7]—according

to a 2019 U.S. Department of Veteran Affairs annual report, an average of 20 veterans per day

commit suicide, with a majority of cases linked to PTSD [8]. Beyond personal costs, PTSD has

an enormous societal cost associated with healthcare service utilization. The costs of caring for

war veterans usually peaks 30–40 years following a major conflict. For example, for Iraq/

Afghanistan conflicts, it is estimated that costs of veterans’ care will peak around 2035 [9, 10].

This increased healthcare use is estimated to cost the United States over $60 billion each year

and the costs are also expected to increase due to secondary and tertiary comorbidities includ-

ing depression, substance abuse, smoking, heart disease, obesity, diabetes, chronic fatigue, and

increased dementia [9, 11].

PTSD is typically managed by a combination of therapeutic and pharmaceutical treatments,

although many cases go undiagnosed or untreated potentially due to mental illness stigma and

care shortages [12]. Therapeutic methods include eye movement desensitization and repro-

cessing; exposure therapy; cognitive therapy; cognitive restructuring therapy; cognitive pro-

cessing therapy; stress inoculation therapy as part of stress management therapy [13]; and the

trauma-focused cognitive behavioral therapy [14]. While these methods are effective [15, 16],

there are several barriers to care access including geographical, financial, and cultural con-

straints, and limited care delivery resources [17, 18]. In addition, most intense symptoms of

PTSD are often experienced outside clinical environments and in-between therapeutic ses-

sions [19]. Therefore, there is a critical need for tools and methods for real-time monitoring

and detection of PTSD signs and symptoms, as well as mechanisms to support self-manage-

ment of such symptoms. Recent advances in wearable physiological sensors and mobile health

(mHealth) technologies may provide a viable alternative to address this need.

Prior work has shown that PTSD is correlated with several physiological measures includ-

ing heart rate, heart rate variability, blood pressure, respiratory rate and skin conductance

[20]. Among these, heart rate has shown promise as a reliable correlate of PTSD [21]. Sadeghi

et al. [22] used the Autoregressive Integrated Moving Average (ARIMA) analysis to model vet-

erans’ heart rate patterns during PTSD hyperarousal events. Their results indicated strong cor-

relation between heart rate characteristics (e.g., autocorrelation and fluctuation) and

hyperarousal events. Recent efforts have utilized supervised machine learning tools to detect

perceived stress using heart rate, other physiological metrics, and self-reported measures with

reported accuracies ranging between 67%-92% [23–28], however, to our knowledge, only one

study [23] used machine learning algorithms to predict the onset of PTSD symptoms among

veterans based on heart rate data.

In their study, McDonald et al. [23] investigated self-reported periods of hyperarousal to

extract heart rate time-dependent features and developed five machine learning algorithms: a

Conventional Neural Network, Neural Network, Support Vector Machine (SVM), Random

Forest, and Decision Tree. Among these methods, the SVM showed the highest accuracy (over

70%). While this study provided preliminary evidence supporting the efficacy of using heart

rate to detect hyperarousal events, using heart data alone may be subject to significant noise

associated with movement or physical activity [29, 30]. In line with previous research [e.g., 25,

26, 31], McDonald et al. [23] suggested that body acceleration data might improve the accuracy

of machine learning algorithms and enable algorithms to distinguish between heart rate
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fluctuations due to physical activity and heart rate fluctuations due to mental stress. Therefore,

the objective of this article is to expand McDonald et al.’s [23] study to machine learning algo-

rithms that uses body acceleration and heart rate data to predict PTSD hyperarousal events in

veterans. In addition, in an effort to improve the interpretation of the algorithm, we further

analyze the developed model to investigate significant factors contributing to model’s detec-

tion output.

Materials and methods

Four machine learning algorithms were trained using self-reported data collected naturalisti-

cally from veterans to predict PTSD hyperarousal events: Random Forest, XGBoost, Logistic

Regression and non-linear SVM. Fig 1 provides an overview of the methods used in this study.

This study was approved by the Institutional Review Board (IRB) at Texas A&M University

(IRB2017-0210D) and all participants completed an informed consent prior to data collection.

Fig 1 provides an overview of the methods used in this study.

Participants

Participants were recruited from seven Project Hero’s United Healthcare Ride 2 Recovery

(R2R) challenges. Project Hero is a non-profit organization dedicated to help veterans and

first responders diagnosed with PTSD. In each challenge, veterans rode for an average of 7

days between key destinations in California, Washington DC, Minneapolis, Texas, and

Nevada. Each day of the challenge involved approximately 8 hours of biking with the remain-

ing time for resting and socializing. The research team joined a total of 5 rides in 2017, 2018

and 2019.

Data from 99 veteran participants (82 male; 17 female) were used in this study. Participants’

age ranged from 22 to 75 years old (M = 45.5, SD = 10). Majority of participants reported Vet-

erans Affairs disability rating of over 90% related to PTSD. Table 1 summarizes other relevant

demographics.

Data collection

The data collection application (app) for smart wearable devices utilized in [23] was used. Par-

ticipants were asked to wear smart watches (MOTO 360 Gen 1 or Gen 2, Apple Watch series 3

or 4) with the app installed on them for the duration of the study. The app ran continuously in

the background and connected to participants’ phones for the purpose of data transfer. The

app had the ability to continuously and remotely collect physiological data including heart rate

and acceleration from participants at the frequency of 1 Hz. The app included functionality

which allowed the user to report a hyperarousal event (symptomatic of PTSD) through a sim-

ple ‘double tap’ anywhere on the watch face which created a time-stamped self-reported event.

These events were used for training the machine learning algorithm.

Fig 1.

https://doi.org/10.1371/journal.pone.0267749.g001
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Data preprocessing

All data analysis including data preprocessing and machine learning were conducted in

Python 3.8.2 and R 3.6.2. The data preprocessing included four main steps: (1) imputation, (2)

windowing and labeling, (3) dividing the data into training and testing, and (4) resampling the

training dataset.

Further, four machine learning algorithms including Random Forest, XGBoost, Logistic

Regression and non-linear SVM were used to detect hyperarousal events. These four algo-

rithms have been used and shown promise for stress detection in previous research [32–40]

and have several strengths that makes them suitable for this specific research. For example,

Random Forest has been widely used for large physiological datasets due to its robustness in

dealing with missing values [41, 42]. In addition, Logistic Regression are computationally effi-

cient algorithms commonly used for predicating binary output [43]. Lastly, XGBoost was cho-

sen due to its efficiency, accuracy, interpretability, and ease of integration with mobile

applications [42].

Data imputation. Kalman filter imputation was used to impute missing acceleration and

heart rate data. Kalman filter imputation is an established method for timeseries data imputa-

tion [44], especially for heart rate data [45]. To determine the cut off range, we calculated the

average Mean Square Error (MSE) of the imputed data and corresponding actual values. A cut

off range of 15 MSE for estimating the randomly dropped values is suggested by Gui et al. [45].

Based on Kalman filter imputation analysis, we chose 5 as the maximum imputation range

because it was the greatest value among a set of successive values to have the highest MSE less

than 15 [23].

Windowing and labeling. To investigate the patterns of hyperarousal events, the data was

divided into 60-second sliding windows with 30 seconds overlap, chosen based on prior work

[24] to predict stress severity based on physiological reactions. Each window was assigned a

label based on the presence or absence of reported hyperarousal events. If a hyperarousal event

occurred anywhere in the window, it was labeled as hyperarousal event; otherwise, it was

labeled as non-hyperarousal event. All windows with over 80% missing values were dropped

from the dataset. The final dataset included 530 and 13,554 instances of hyperarousal and non-

hyperarousal events, respectively.

Training, testing, and upsampling. To validate the algorithm, the data was separated

into training (70%) and testing (30%) sets by participant. Participants were assigned to only

the testing or training set to ensure generalizability of the results. Table 2 shows the initial data-

set classifications. One of the challenges of training the algorithm to detect PTSD hyperarousal

events was the imbalanced dataset—96.2% of the windows were labeled non-hyperarousal

events. To address this issue, we upsampled the training data. Upsampling was used because it

Table 1. Participants’ demographics; the numbers show the number of veterans per each group.

Ethnicity Branch VA Disability Ratings for

PTSD

American Indian or Alaska Native 4 Air Force 5 40% 2

Asian 1 Army 68 50% 4

Black/African American 15 40% 2 70% 6

Hispanic/Latino 26 50% 4 80% 13

Native Hawaiian 1 70% 6 � 90% 74

White 44 80% 13

Other 8 � 90% 74

https://doi.org/10.1371/journal.pone.0267749.t001
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decreases the information lost in the quantification process, thereby reducing the noise and

increasing the resolution of the results [46, 47]. Upsampling has several advantages over down-

sampling. The main advantage of upsampling is its ability to use the entire information in the

data rather than omitting part of the data [48]. In addition, for noisy datasets, which is often

the case when collecting data in naturalistic settings, oversampling is more robust to the noise

in the data than undersampling and performs better for prediction [49]. Based on a sensitivity

analysis comparing different resampling ratio including 1–1, 2–1, 3–1, 3–2, and 4–3, a ratio of

4 (non-hyperarousal events) to 3 (hyperarousal events) windows was used for upsampling

(Table 2).

Feature generation and selection

Heart rate data. Previous research has shown that that time domain features of heart rate

are strongly correlated with PTSD [50]. We extracted time domain features of heart rate

including maximum heart rate (bpm), minimum heart rate (bpm), heart rate standard devia-

tion (bpm), heart rate range (max-min) (bpm), and average heart rate (bpm) from each win-

dow of time to use for PTSD hyperarousal prediction. Key features were extracted based on

recommendations from a review article on detecting psychological stress using bio signals

[51].

Acceleration data. Research on stress prediction have used scalars of body acceleration to

estimate body activity and to remove noise from the data [25, 51–53]. Garcia-Ceja et al. [52]

used time domain and frequency domain features of acceleration to predict stress in partici-

pants in real work environments. In line with these approaches, we calculated the vector of

body acceleration for each moment using the following widely used formula:

body acceleration ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
x þ a2

y þ a2
z

q

Where ax is the body acceleration in X direction, ay is body acceleration in Y direction, and az
is body acceleration in Z direction.

Further, based on previous research [e.g., 25, 52], time domain features of body acceleration

including average body acceleration (m/s2), maximum body acceleration (m/s2), minimum

body acceleration (m/s2), and range of body acceleration (m/s2) were extracted to feed

machine learning algorithms.

Model assessment. Four models including Random Forest (size of feature set = 10, num-

ber of trees = 50) XGBoost (Maximum depth = 37, number of trees = 50, learning rate = 0.3),

Logistic Regression (nLambda = 100) and non-linear SVM (degree = 3, C-Classification,

Radial Basis Function) were trained to predict hyperarousal events. We generated a confusion

matrix to assess the performance of each model. Model comparisons were conducted with a

5x2 cross validation test following the recommendations in Dietterich [54] to minimize the

type 1 error. This method uses p values and t statistics to compare the algorithms. The null

Table 2. Training and testing datasets after and before resampling.

Label Training set Test set

Training and testing datasets before resampling Non-hyperarousal events 9486 4068

Hyperarousal events 372 158

Training and testing datasets after resampling Non-hyperarousal events 9486 4068

Hyperarousal events 7114 158

https://doi.org/10.1371/journal.pone.0267749.t002
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hypothesis indicates that there is no significant difference between the algorithms in terms of

performance (average accuracy) where the alternative hypothesis shows that one algorithm is

more accurate than the others. Algorithms were further assessed with the Area Under the

receiver operating characteristic (ROC) Curve (AUC).

Feature importance and model interpretation. The complexity of black box machine

learning models and the need to make these models explainable necessitate an evaluation of

the influence of algorithm’s features on algorithm predictions. In this study, we used Shapley

Additive exPlanations (SHAP) to address this. SHAP uses game theoretic concepts to allocate

values to features in a model based on their importance in prediction [55]. SHAP values indi-

cate how much each feature contributes to the prediction of the machine learning algorithm.

SHAP value summary plots generate a feature importance list along with the distribution of

each feature and shows how each value affects the output of the model. This method is compu-

tationally efficient, consistence with human intuition, and interpretable for explaining class

differences [56]. Using SHAP values to interpret machine learning algorithms has several

advantages over using more traditional methods such as dependency plots [56]. For example,

dependence plots do not usually show features’ distributions, which may lead to misinterpret-

ing regions with significant missing data. Conversely, SHAP plots show feature distributions.

SHAP values also indicate how much a feature affects the output of the prediction by consider-

ing interaction effects, whereas partial dependence plots do not account for interactions

between features.

Results

Model performance and comparison

Fig 2 shows the ROC curves for each algorithm along with the AUC values. As shown in the

plots, XGBoost had the highest AUC (0.70). Random Forest, Logistic Regression, and non-lin-

ear Kernel SVM had AUC of 0.63, 0.62, and 0.61, respectively. Table 3 shows confusion matri-

ces for developed algorithms at three probability cutoffs. The first confusion matrix prioritizes

hyperarousal detection, the second confusion matrix balances the true positives and false posi-

tives rate, and the third matrix prioritizes minimizing false positive rates. The pairwise 5�2

cross validation test results showed that XGBoost significantly outperformed the Random For-

est (t = -13.25, p< 0.001), SVM (t = -13.02, p< 0.001), and Logistic Regression (t = -11.97,

Fig 2.

https://doi.org/10.1371/journal.pone.0267749.g002
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p< 0.001). Based on the results from Table 3, XGBoost showed the best performance in

detecting PTSD hyperarousal events.

Model interpretation

Fig 3 shows the SHAP summary plot for the XGBoost model. In Fig 3, the Y-axis shows the fea-

ture as well as the mean SHAP values ordered from top to bottom, the color shows the

Table 3. Confusion matrices for all models at different probability cut offs.

Design Performance Algorithm TP FN FP TN TPR FPR

Prioritize hyperarousal detection (TPR = 1) XGB 158 0 3821 247 1 0.94

RF 158 0 3853 205 1 0.95

GLM 158 0 4066 2 1 0.99

SVM 158 0 4065 3 1 0.99

Balanced priorities (TPR = 0.5) XGB 79 79 1064 3004 0.5 0.26

RF 88 70 1322 2746 0.55 0.33

GLM 79 79 1467 2601 0.5 0.36

SVM 79 79 1401 2667 0.5 0.34

Prioritize false positive minimization (FPR = 0.1) XGB 46 112 420 3648 0.29 0.1

RF 29 129 205 3863 0.18 0.1

GLM 38 120 410 3658 0.24 0.1

SVM 30 128 409 3659 0.19 0.1

https://doi.org/10.1371/journal.pone.0267749.t003

Fig 3.

https://doi.org/10.1371/journal.pone.0267749.g003
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significance of the feature’s value in predicting the output, and the X-axis indicates how the fea-

ture affects the output of the model (whether that feature with that specific value is contributing

to experiencing a hyperarousal event or not). The X axis further indicates log-odds of perceiving

a PTSD hyperarousal event. According to the SHAP analysis, the most important body accelera-

tion features are average body acceleration (linaccmean) and minimum body acceleration

(linaccmin). The most important heart rate time-domain features for predicting PTSD hyper-

arousal events are minimum heart rate (hrmin) and heart rate standard deviation (hrsd).

Fig 4 shows the SHAP dependence plots for the two most important acceleration and heart

rate features. SHAP dependence plots show contribution of a specific feature to a model based

on the feature’s distribution. In this plot each point shows an observation from the dataset, the

X-axis line shows the value of the feature in that row, and the Y-axis shows the SHAP value for

that feature that indicates the effect of that feature with that specific value on the prediction. The

unit of X-axis is the same as the unit of the feature (for instance for heart rate measures it is beats

per minute), and the unit of the Y-axis is log-odds of perceiving a PTSD hyperarousal event.

As shown in Fig 4, hyperarousal events are more likely to be observed with higher mini-

mum heart rate values over the window. When the minimum heart rate is over 140 the risk of

perceiving hyperarousal events increases. Also, as the average body acceleration and minimum

body acceleration increase, the odds of the detecting PTSD hyperarousal events decrease.

Finally, higher heart rate standard deviation, i.e. higher heart rate fluctuation, increases the

risk of hyperarousal events.

Discussion

This study developed, evaluated, and explicated machine learning algorithms to predict PTSD

hyperarousal events among veterans using smartwatch based naturalistic heart rate and

Fig 4.

https://doi.org/10.1371/journal.pone.0267749.g004
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accelerometer data. The ground truth was subjectively-reported PTSD hyperarousal events.

After preprocessing the data, we trained four different algorithms including Random Forest,

SVM, Logistic Regression and XGBoost. Among the developed algorithms, the XGBoost was

the most robust algorithm which yielded an AUC of 0.70 and over 81% accuracy. We sorted

the most important features in the prediction process. The top three body acceleration features

included average body acceleration, minimum body acceleration and range of body accelera-

tion. The top three heart rate time domain features were minimum heart rate, standard devia-

tion of heart rate and maximum heart rate. The initial analysis from the SHAP summary plot

and SHAP dependence plots show that heart rate and body acceleration features have nonlin-

ear relationships with PTSD episodes. A deeper look into SHAP plots indicate that as the body

acceleration increases, indicating more activity from the participant, the algorithm is less likely

to predict a PTSD hyperarousal events. This result is consistent with prior studies demonstrat-

ing a significant relationship between increased physical activity and a reduction in PTSD

hyperarousal events [57–59].

The SHAP dependence plot for the average heart rate data corroborates that when the heart

rate is between 60–70 bpm, PTSD hyperarousal events are more likely to happen (cf. [60]).

The SHAP summary plot indicates that heart rate standard deviation was one of the most

important features contributing to the odds that the algorithm will predict PTSD hyperarousal

event manifestation. In particular, our findings suggest that as the heart rate standard devia-

tion increases, i.e., as heart rate fluctuates more and in higher ranges, the odds of detecting a

PTSD hyperarousal event increases. This result supports previous findings [22, 61, 62] which

showed that during PTSD hyperarousal events, participants experience increased heart rate

acceleration and fluctuation.

While previous research on objective assessment of PTSD exists, most of such research has

been conducted in controlled lab settings by inducing external stimuli or so-called triggers

(e.g., [62–64]). Naturalistic studies investigating common internally generated stimuli such as

thoughts or flashbacks [65] are largely absent. In addition, while several studies have attempted

to detect stress using physiological data, most of these studies have used Heart Rate Variability

(HRV) features (e.g., [24, 34, 66, 67]). Given the availability and non-intrusiveness of heart

rate (or pulse rate) sensors, it is timely to investigate the efficacy of using heart rate features to

monitor or predict stress and more specifically PTSD hyperarousal. However, to our knowl-

edge, only one study [23] has used heart rate features to predict PTSD hyperarousal events

using data collected in naturalistic settings.

This study builds on a prior study conducted by McDonald et al. [23] but there are several

key differences that both enhance the algorithm and improve our understanding of algorithm

performance. First, we expanded McDonald et al.’s dataset by conducting two additional field

studies. Second, McDonald et al. indicated that one of the main limitations of their work is uti-

lizing downsampling for data preprocessing. We addressed this limitation by using an upsam-

pling method for preprocessing the data. Third, McDonald et al. used frequency domain

features of heart rate such as coefficients of Fourier decomposition of heart rate. In our analysis

we used time domain features of heart rate which may provide more tangible and interpretable

results for this specific context [50, 68]. This change may be beneficial for integrating the

detection algorithm into a treatment device because explaining predictions to veterans based

on time domain features (e.g., standard deviation of heart rate) will be more understandable

than frequency domain features (e.g., the phase of the 5th Fourier component). Fourth, in our

analysis we added body acceleration features to decrease the noise in data by differentiating

heart rate changes due to physical activity versus fluctuations due to stress (similar to [27]) and

used a new XGBoost algorithms to train the machine learning model. We believe these

changes have contributed to the significant improvement in the machine learning algorithm

PLOS ONE PTSD detection using smartwatch physiological and activity data
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performance compared to the findings from McDonald et al. (81% in this study compared to

70% in [23]). Finally, McDonald et al. explain that one of their study limitations is the limited

insight into the performance-shaping factors for the algorithm predictions. We addressed this

issue by adding feature importance and SHAP analysis to improve the interpretability of the

results.

Several limitations of this study should be addressed in future work. First, stress and PTSD

hyperarousal events are highly idiosyncratic. A stimulus that triggers one individual may or

may not trigger someone else. Because of the subjective and sustained characteristics of stress,

defining the start, end, duration, and intensity of a hyperarousal event is an uncertain task

[69]. As a result, it is significantly complex and difficult to define and measure a ground truth

for stress. Hyperarousal events might have been over or under reported due to the subjectivity

of the perceived events. Individual differences such as gender, age, lifestyle and other factors

can affect PTSD hyperarousal events; therefore, personalizing machine learning algorithms

might boost their performance. Another issue in this study was the high number of heart rate

missing values due to the naturalistic nature of the study. While non-intrusiveness of smart

watches makes them suitable for naturalistic data collection, like most wrist-based sensors,

smart watches use optical technology the accuracy of which is affected by skin tone and prox-

imity to skin [70]. Future work may validate the findings presented here using more accurate

sensors such as chest straps that use electrical pulse. Lastly, although machine learning algo-

rithms work in theory, external validation of these algorithms in naturalistic settings are neces-

sary to evaluate the accuracy and applicability of these algorithms in the real world settings.

This article provides preliminary evidence of efficacy for data-driven real-time PTSD

hyperarousal detection tools that can be used beyond clinic walls to remotely and continuously

monitor veterans suffering from PTSD. In addition to the promise shown by the machine

learning algorithm, in this article we utilized analytical techniques to which identifies most

important features contributing to such detection, hence, improving the interpretation of the

outcomes and moving towards explainable ML tools for PTSD monitoring. Although other

machine learning algorithms exist to detect stress, to the best of our knowledge, the algorithm

documented in this paper is one of very few algorithms that is specific to PTSD. The work is in

progress to validate this algorithm in longitudinal home studies using smart watches and

smart phones.
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