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Abstract

We propose a deep learning system to automatically detect four explainable emphysema

signs on frontal and lateral chest radiographs. Frontal and lateral chest radiographs from

3000 studies were retrospectively collected. Two radiologists annotated these with 4

radiological signs of pulmonary emphysema identified from the literature. A patient with

�2 of these signs present is considered emphysema positive. Using separate deep learn-

ing systems for frontal and lateral images we predict the presence of each of the four

visual signs and use these to determine emphysema positivity. The ROC and AUC results

on a set of 422 held-out cases, labeled by both radiologists, are reported. Comparison

with a black-box model which predicts emphysema without the use of explainable visual

features is made on the annotations from both radiologists, as well as the subset that they

agreed on. DeLong’s test is used to compare with the black-box model ROC and McNe-

mar’s test to compare with radiologist performance. In 422 test cases, emphysema posi-

tivity was predicted with AUCs of 0.924 and 0.946 using the reference standard from

each radiologist separately. Setting model sensitivity equivalent to that of the second radi-

ologist, our model has a comparable specificity (p = 0.880 and p = 0.143 for each radiolo-

gist respectively). Our method is comparable with the black-box model with AUCs of

0.915 (p = 0.407) and 0.935 (p = 0.291), respectively. On the 370 cases where both radi-

ologists agreed (53 positives), our model achieves an AUC of 0.981, again comparable to

the black-box model AUC of 0.972 (p = 0.289). Our proposed method can predict emphy-

sema positivity on chest radiographs as well as a radiologist or a comparable black-

box method. It additionally produces labels for four visual signs to ensure the explainabil-

ity of the result. The dataset is publicly available at https://doi.org/10.5281/zenodo.

6373392.

Introduction

Emphysema is a leading form of Chronic Obstructive Pulmonary Disease (COPD), which

affects approximately 4.6% of the US population [1]. Chest radiograph (CXR) is typically

the first and most common imaging examination for patients presenting with respiratory

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267539 July 28, 2022 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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symptoms. Especially with patients of COVID-19, emphysema detection is crucial in

patient management, because it significantly increases the intensive care unit admission

rates, increased respiratory support requirements and higher invasive mechanical ventila-

tion frequencies [2]. This indicates the importance of detecting signs of emphysema in

CXRs.

The automated diagnosis of emphysema on CXR has received relatively little attention to

date. Coppini et al. (2007) [3], Coppini et al. (2013) [4], and Miniati et al. [5] used lung shapes

to detect emphysema claiming performances of 0.90 accuracy, 0.954 area under the receiver

operating curve (AUC), and 0.955 AUC respectively. These three studies use handcrafted fea-

tures with neural networks on small datasets. More recently, in a small patient group of 80,

Wanchaitanawong et al. (2021) [6] proposed that AI-based emphysema scores from CXRs

could be used for patients who cannot perform spirometry and achieve similar results in diag-

nosing COPD.

Campo et al. (2018) [7] created chest radiograph projections from CT and achieved 0.907

AUC in predicting CT-based emphysema scores from these. Some studies used different

modalities that look similar to a CXR or a derivative of the CXR to detect emphysema. For

example, scout images taken as a part of the CT scanning process were used to evaluate

emphysema severity in [8]. This study has shown that a deep learning method can predict the

emphysema severity from scout images with results consistent with CT quantification. Dark-

field radiographs were also used to predict emphysema in [9], using CT based scores as the ref-

erence standard. In that study an AUC of 0.79 was obtained in detecting mild emphysema in a

study involving 83 patients.

There are up to 31 deep learning based studies using the ChestXray14 dataset [10], poten-

tially providing an emphysema label among 13 others [11]. However, most of these studies

use automatically extracted labels, which are noisy and unsuited to evaluation [12], includ-

ing subcutaneous emphysema under the emphysema label for example [13]. The most

recent such work [14] proposes an attention based extension of DenseNet121 [15] and

achieves a 0.933 AUC in detecting emphysema, however the known issues with emphysema

labeling in that dataset [13] makes this result difficult to interpret. Few studies collect radiol-

ogist annotations for various diseases and evaluate model performances on this data. Li

et al. (2021) [16] uses annotations from 3 radiologists on 10,738 CXRs from hospital

archives and reports an AUC of 0.942 on predicting emphysema as a part of the ChestX-

ray14 disease labels. Lin et al. (2020) [17] collects localized features based on the ChestX-

ray14 disease labels as well as 4 viral pneumonia labels for 310 CXRs, however does not

report model performance on individual diseases.

In this work, we describe a deep learning system that is trained and evaluated on radiologist

labeled frontal and lateral CXRs. It is designed to provide an explainable emphysema score

including the prediction of four visual signs of emphysema defined in the literature [18]. Suti-

nen et al. [18] proposed that the flattening of the diaphragms in frontal and lateral CXR, irreg-

ular radiolucency on the frontal CXR, and an abnormally large retrosternal space in the lateral

CXR are key signs for detecting emphysema. This was confirmed by Miniati et al. [19] using a

group of 458 patients and 5 readers, achieving 90% sensitivity and 98% specificity. Images

depicting these 4 visual signs are provided in Fig 1.

In addition to being accurate and reliable, a clinically relevant deep learning method needs

to produce explainable results in order to gain trust and acceptance from end users. Although

many studies provide visual cues on which pixels or locations are contributing most for a pre-

diction [20–23], this information may not be aligned with the expertise of the radiologist [24,

25] and can potentially lead to confusing explanations, hindering acceptance of the method.

Recently some studies have worked to create links between radiologically understood concepts
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and what a deep learning model predicts [26, 27]. In this work, we use labels from an estab-

lished radiological protocol to predict emphysema, ensuring that end users can connect the

outcome with their expert domain knowledge.

To build and evaluate our explainable deep learning system, we collected frontal and lateral

chest radiographs for 3000 studies. These were annotated by two radiologists for the existence

of each of the 4 described visual signs. The descriptions provided to the radiologists are

included in Table 1. This annotated data was used to train and evaluate deep learning models

for the prediction of each visual sign and a final emphysema score. Performance was compared

with each of the two experienced radiologists and additionally with a black-box method which

provides an emphysema label without explainable visual signs. We show that neither the radi-

ologists nor the black-box method outperform the proposed explainable model in detecting

emphysema. With 3000 studies, this is the largest study to date using the four visual signs to

detect emphysema on CXR, and the first to use deep-learning for this task, providing radiolog-

ically explainable results.

Fig 1. The 4 radiological signs. The top row shows the radiological signs on frontal chest radiographs. The left frontal

chest radiograph shows the flattening of the diaphragm, and the right shows irregular radiolucency. The bottom two

chest radiographs show the radiological signs on the lateral chest radiograph. The left lateral chest radiograph clearly

shows the flattening of the diaphragmatic contours while the right demonstrates an abnormal retrosternal space.

https://doi.org/10.1371/journal.pone.0267539.g001
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Materials and methods

Data acquisition

This study was approved by the Institutional Review Board of Radboud University Medical

Center (Nijmegen, The Netherlands) (Case number: 2017–3952 Case code: 5PCL). Informed

written consent was waived, and data collection and storage were carried out in accordance

with local guidelines. The data is made publicly available at https://doi.org/10.5281/zenodo.

6373392.

For this retrospective study, we collected 281,000 CXR studies from our hospital archive

(2006 to 2019). Only those with a frontal (posteroanterior) and a lateral CXR were retained,

resulting in 97,000 studies. Studies where the radiology report mentioned ‘emphysema’ with-

out the words ‘interstitial’ or ‘subcutaneous’ (16,000) were selected for potential inclusion. The

dataset was obtained by a random selection of 2000 studies from the potential emphysema

studies and 1000 studies from the remaining 81,000 studies. This process is illustrated in Fig 2

and patient statistics are provided.

Data labeling. We created two random groups of 1750 studies with 500 studies common

to both. Each of these groups was annotated by a chest radiologist, one with over 30 years of

experience (ETS) (R1) and the other with over 7 (SS) (R2). Fig 2 illustrates the division of the

dataset, with the 500 studies annotated by both radiologists as the test set.

Reader studies on grand-challenge.org [28] were used to annotate images. The radiologists

were asked to indicate (yes/no) whether the visual signs of emphysema described by Sutinen

Table 1. The four signs of emphysema as described by Sutinen et al. [18].

Sign Description

Frontal—Flattening of the

diaphragm

Depression and flattening of the diaphragm with blunting of costophrenic angles.

The actual level of the diaphragm is not as significant as the contour. The body build

of the individual should also be considered. For example, in a short, stocky

individual, emphysema might be diagnosable even if the diaphragm were at the level

of the tenth rib posteriorly.

Frontal—Irregular

radiolucency

Irregular radiolucency of the lung fields. This manifestation is the result of the

irregularity in distribution of the emphysematous tissue destruction. It is sometimes

more clearly recognizable in laminagrams.

Lateral—Flattening of the

diaphragm

Flattening or even concavity of diaphragmatic contour. A useful index of this change

is the presence of a 90-degree or larger sternodiaphragmic angle. In most patients

with emphysema, this junction is more readily seen than in subjects with normal

chests.

Lateral—Abnormal

retrosternal space

Abnormal retrosternal space. This is defined as a space showing increased

radiolucency and measuring 2.5 cm. Or more from the sternum to the most anterior

margin of the ascending aorta.

Additional Information Emphysema is considered to be present if the chest radiolgraphs reveal any two or

more of the above criteria. Sometimes it may not be clear not a particular

diaphragmic contour is flat. A useful way of resolving this in the posteroanterior

radiograph is to determine the straight line from costophrenic junction to the

vertebrophrenic junction on each side. If the highest level of the diaphragmic

contour is <1.5 cm above this line, the diaphragm may be recorded as flat. The same

dimension can be used in the lateral radiograph, measuring from a line connecting

the costophrenic junction posteriorly to the sternophrenic junction anteriorly.

Flattening of the diaphragmic contours with blunting of costophrenic and

sternophrenic angles are seldom, if ever, seen under conditions of acute lung

hyperinflation. In addition, areas of irregular radiolucency of the lung fields are

absent in such conditions.

Four signs of Emphysema exactly as described by Sutinen et al. [18]. If the patient has 2 or more of those signs,

Sutinen et al. [18] consider this patient as emphysema positive.

https://doi.org/10.1371/journal.pone.0267539.t001
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et al. [18] were present on the images they viewed. The descriptions of these four signs pro-

vided to them are reproduced in Table 1. They worked independently, scored frontals and lat-

erals separately, and could not link the frontal and lateral image of a subject with each other.

Line drawing and measurement tools were provided, as well as a free-text comment box.

Subjects who had�2 of the 4 visual signs indicated present by the radiologist were consid-

ered emphysema positive as proposed by Sutinen et al. [18].

Fig 2. Data acquisition diagram.

https://doi.org/10.1371/journal.pone.0267539.g002
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For the cases that were annotated by both radiologists (test set), we report the number of

positives and negatives for each as well as the Cohen’s Kappa and the confusion matrices. For

the remaining cases (training set), annotated by either radiologist we report the number of

positives and negatives.

Emphysema sign detection models

To detect the four visual emphysema signs, we trained two ResNet-18 [29] models, one for the

frontal and one for the lateral CXRs. ResNet-18 was chosen for this study because it is one of

the most frequently used models for deep-learning in CXR [11] and as a relatively shallow

model it is suitable for training with a smaller dataset. Each model outputs 2 probabilities indi-

cating scores for the two visual signs of emphysema in the input image. To calculate a final

emphysema score for the subject, we average the four probabilities from the two models. The

construction and combination of these “sign” models are visualized in Fig 3.

Preprocessing and data augmentation. The preprocessing and data augmentation steps

are provided in the Supporting Information—see S1 Table in S1 File. Steps 1 to 4 are applied

to all images as preprocessing. The data augmentation steps (5–10) are repeated with randomi-

zation every time an image is loaded for training (and omitted during validation and testing).

The final steps of histogram equalization and resizing (11–12) are applied to all images loaded.

These steps were selected heuristically based on initial experimentation with validation data.

Training. The training settings of the two sign models are provided in Supporting Infor-

mation—see S2 Table in S1 File. These were selected heuristically based on experimentation

with validation data. We used a multi-stage training procedure, reducing learning rates at each

stage and training until the stopping condition was met. At each stage, we loaded the best

model from the previous stage, reduced the learning rate, and commenced retraining. The

final models are those that achieved the best validation set losses among all stages. The valida-

tion set consisting of 256 samples is randomly selected with an equal distribution across labels

and annotators and not used for training.

Ensembling. Each model is trained 30 times and the resulting probabilities are ensembled

using the geometric mean. To increase the variance between models, we used a different held-

out validation dataset for each model in the ensemble.

Black-box model

We trained an ensemble of models that predict emphysema from a frontal and lateral CXR

pair without the use of the four visual signs. Similar to the sign models we used the ResNet-18

Fig 3. Illustration of how the emphysema score is created from the sign models. For each view, we train a separate

model predicting the two relevant sign probabilities. In the end, we average these probabilities to calculate a combined

emphysema score. The indicated scores are calculated using the CXRs shown in the figure for this specific subject.

https://doi.org/10.1371/journal.pone.0267539.g003
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architecture with the same training settings and ensembling process described previously. The

frontal and lateral CXR models were combined by concatenating the features from the last fea-

ture layers to predict emphysema as shown in Fig 4.

Model comparison to radiologists

We evaluate the performance of our models using each radiologist separately as the reference

standard. Model performances are additionally evaluated on the subset of cases where both

radiologists agree (both indicate<2 signs present or both indicate�2 signs present for emphy-

sema positivity).

Using the annotations of a single radiologist as the reference standard, the sensitivity

and specificity of the other radiologist is calculated. This calculation is repeated for each

sign and for emphysema detection by the sign models and by the black-box model. To com-

pare the performance of the radiologist with the models, each model was fixed at the sensi-

tivity of the compared radiologist and the McNemar test [30] was applied to determine a p-

value for the performance difference. Statistical significance is inferred if p < 0.05. ROC

curves with 95% confidence intervals and radiologist sensitivity specificity point with error

bars are used for comparison.

This analysis is repeated using the second radiologist as the reference standard, in order to

illustrate any model biases that may have been introduced during the annotation and training

processes.

Model comparison to black-box model

We use DeLong’s test [31] to evaluate the significance of the performance difference between

the black-box model and the emphysema signs model for detecting emphysema. The ROC

curves 95% confidence intervals, obtained using bootstrapping, are also provided for compari-

son. We report the significance of the performance difference for each experiment. As previ-

ously, results are provided using each radiologist separately as the reference standard, as well

as using only the cases where both radiologists agreed (both indicate <2 signs present or both

indicate�2 signs present for emphysema positivity).

Fig 4. Illustration of the black-box model. For each view, we define a model with 512 outputs. The outputs from the

two models are concatenated and the probability of emphysema is predicted from this final layer. The indicated score

is calculated using the CXRs shown in the figure for this specific subject.

https://doi.org/10.1371/journal.pone.0267539.g004
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Results

Data acquisition

Statistics about the 3000 studies are provided in Table 2. During the annotation process, 12

studies were removed because (one of) the DICOM files did not contain valid images, 96 were

removed because either the frontal or the lateral were excluded by a radiologist. Exclusion rea-

sons included issues that preclude assessment of the four emphysema signs, such as the dia-

phragmatic contours not being captured in the chest radiograph, or conditions that hide the

signs, such as pleural fluid blocking the view of diaphragmatic contours, or major anatomical

changes such as lobectomy.

After exclusions, 2882 studies remained, of which 2418 were annotated by one of the two

radiologists (training set), and the remaining 464 (test set) were annotated by both radiologists.

Of these 464 studies, 42 were removed to ensure that there was no patient overlap between the

training and test datasets, leaving 422 studies that were set aside as the held-out test set.

The number of positive and negative annotations per dataset is provided in Table 3. There

were 370 cases (53 positive, 317 negative) in the test set where the radiologists agreed on the

emphysema label (both indicate <2 signs present or both indicate�2 signs present).

Cohen’s kappa scores and confusion matrices for the radiologist agreement on the test data-

set are provided in Table 4. All kappa values are within the range of 0.503 and 0.672, indicating

that the radiologists had moderate to substantial agreement on all tasks.

Model performance

The performance of the four individual signs models is presented in terms of AUC in Table 5

and ROC curves are provided in S3-S5 Fig in S1 File. For brevity, the remaining text in this

section discusses only the performance of the combined signs model and the black-box model.

Model comparison to radiologists. In Fig 5 the ROC curves for the combined signs

model and the black-box model are shown using the reference standard from individual radi-

ologists and on the subset of data for which both radiologists agreed. The signs model achieves

an AUC of 0.924 or 0.945 depending on the radiologist chosen as the reference standard, or

0.981 on the cases where radiologists agree. Similarly the black-box model has AUCs of 0.915

and 0.935 against the reference standard from single radiologists, or 0.972 on the agreement

cases. The performance for these models is also provided in Table 5 along with p-values for

accurate comparison. In the comparison with second-reader radiologist we find that neither

the signs model nor the black-box model has a performance that is significantly different to an

expert radiological reader (Table 5). R2 achieves a sensitivity of 0.779 and specificity of 0.895

(with R1 as the reference standard), while the signs model and the black-box model at the

same sensitivity have specificities of 0.901 (p = 0.88) and 0.870 (p = 0.262) respectively. Simi-

larly, using R2 as the reference standard, R1 obtains sensitivity of 0.589 with a specificity of

0.955. At this sensitivity level the signs and black-box model have specificities of 0.985

(p = 0.143) and 0.979 (0.291) respectively.

Model comparison to black-box model. For direct comparison of the signs model and

the black-box model the ROC curves with 95% confidence intervals are shown in Fig 5 with

Table 2. Patient statistics of the dataset of 3,000 initially selected studies.

Gender Patient count Patient age Age range

Female 1268 65.45 ± 12.58 [22, 99]

Male 1732 65.53 ± 12.23 [20, 96]

https://doi.org/10.1371/journal.pone.0267539.t002
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AUC values. DeLong’s p-values are calculated to compare these. When R1 annotations are

taken as the reference standard, there is no significant difference in the AUC values of the

signs model and the black box model (AUCs 0.924 and 0.915 respectively) with p = 0.408. Sim-

ilarly, when R2 annotations are considered as the reference standard, there is no significant

performance difference (AUC 0.946 for the signs model and AUC of 0.935 for the black

box model) with a p-value of 0.345. Performance on the subset of cases where the radiologists

agreed also shows no difference between the emphysema sign model (0.981 AUC) and the

black-box emphysema model (0.972 AUC) with p = 0.289.

Table 3. Annotation results for the training and test datasets.

Training dataset

Patient statistics

Male Female

Count 1384 1032

Age 65.7 ± 12.6 65.7 ± 12.2

Age range [24, 99] [20, 95]

Annotation results

Positive Negative

Frontal—Flattening of the diaphragm 329 2089

Frontal—Irregular radiolucency 318 2100

Lateral—Flattening of the diaphragm 506 1912

Lateral—Abnormal retrosternal space 485 1933

Emphysema (�2 signs) 425 1993

Test dataset

Patient statistics

Male Female

Count 260 162

Age 64.4 ± 12.6 64.5 ± 12.0

Age range [26, 96] [37, 93]

Test dataset—R1

Annotation results

Positive Negative

Frontal—Flattening of the diaphragm 40 382

Frontal—Irregular radiolucency 50 372

Lateral—Flattening of the diaphragm 75 347

Lateral—Abnormal retrosternal space 92 330

Emphysema (�2 signs) 68 354

Test dataset—R2

Annotation results

Positive Negative

Frontal—Flattening of the diaphragm 75 347

Frontal—Irregular radiolucency 63 359

Lateral—Flattening of the diaphragm 88 334

Lateral—Abnormal retrosternal space 95 327

Emphysema (�2 signs) 90 332

Note that the test set was annotated by both radiologists independently while the training set was split between them.

https://doi.org/10.1371/journal.pone.0267539.t003
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Discussion

In this retrospective study, we used deep learning on frontal and lateral chest radiographs to

detect emphysema using 4 explainable visual signs. Our proposed method, based on these 4

signs of emphysema, performs at the same level as a radiologist (p = 0.880 against R2 and

p = 0.143 against R1) in detecting emphysema on CXRs and achieves an AUC of 0.924 or

0.946 against R1 or R2 respectively, or 0.981 on the subset of cases where R1 and R2 agree. We

additionally compared our method to a black-box model that did not use explainable visual

signs to detect emphysema. Against R1 and R2 this model achieved AUCs of 0.915 and 0.935,

while an AUC of 0.972 was obtained on cases where the radiologists agreed. No significant dif-

ference was found between the performance of the black-box model and our signs model

which has the substantial advantage of providing explainable radiological information.

Emphysema is a condition associated with COPD, which affects 4.6% of the US population

[1]. It is relatively difficult to diagnose emphysema conclusively on CXR imaging as evidenced

by the moderate kappa scores of the two expert observers involved in this work (Cohen’s

kappa = 0.596 for�2 signs present). Previous studies have shown varying sensitivities for the

detection of emphysema on CXR. Sanders et al. [32] show a 0.80 sensitivity while Thurlbeck

and Simon [33] show sensitivity as low as 0.24. In this work, radiologist R2 had a sensitivity of

0.779 compared to R1. Despite the difficulty of the task, the radiologist is frequently required

to identify signs of emphysema on CXR for subjects with suggestive symptoms and history. It

is therefore important to be able to consistently and accurately identify such signs to direct

patient care appropriately. To our knowledge, this work presents the first deep-learning system

focused on emphysema detection in CXR, and is one of very few deep learning systems focus-

ing on explainability of findings in medical image analysis tasks.

The automated diagnosis of emphysema on CXR has received relatively little attention to

date. In early work, Coppini et al. [3] used lung boundaries drawn by a physician and specified

hand-crafted shape features of these lung boundaries on frontal and lateral CXR. They fed

these descriptors into various shallow neural networks to detect emphysema and used the 4

Table 4. Inter-observer variability.

Sign and kappa Confusion matrix

Frontal—Flattening of the diaphragm R2 Neg R2 Pos

R1 Neg 340 42

Kappa: 0.503 R1 Pos 7 33

Frontal—Irregular radiolucency R2 Neg R2 Pos

R1 Neg 343 29

Kappa: 0.558 R1 Pos 16 34

Lateral—Flattening of the diaphragm R2 Neg R2 Pos

R1 Neg 316 31

Kappa: 0.654 R1 Pos 18 57

Lateral—Abnormal retrosternal space R2 Neg R2 Pos

R1 Neg 305 25

Kappa: 0.672 R1 Pos 22 70

Emphysema Positive > = 2 positive signs R2 Neg R2 Pos

R1 Neg 317 37

Kappa: 0.596 R1 Pos 15 53

Inter-observer variability and confusion matrices of the radiologist annotations for the 4 signs and the emphysema

positive result (�2 positive signs) on 422 cases.

https://doi.org/10.1371/journal.pone.0267539.t004
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Table 5. Comparison of the radiologists and the models.

Task R sens. R spec. Model spec. at R sens. p-value Model AUC

Reference Standard R1 Compared to R2

Models

Frontal—Irregular radiolucency 0.680 0.922 0.830 <0.001 0.855

Frontal—Flattening of the diaphragm 0.825 0.890 0.939 0.004 0.949

Lateral—Abnormal retrosternal space 0.760 0.924 0.845 0.001 0.893

Lateral—Flattening of the diaphragm 0.760 0.910 0.927 0.470 0.948

Sign Models Emphysema Positive 0.779 0.895 0.901 0.880 0.924

Black-box Emphysema Positive 0.779 0.895 0.870 0.262 0.915

Reference Standard R2 Compared to R1

Models

Frontal—Irregular radiolucency 0.540 0.955 0.894 0.006 0.818

Frontal—Flattening of the diaphragm 0.440 0.980 0.983 1.000 0.955

Lateral—Abnormal retrosternal space 0.737 0.933 0.917 0.635 0.923

Lateral—Flattening of the diaphragm 0.648 0.946 0.955 0.761 0.931

Sign Models Emphysema Positive 0.589 0.955 0.985 0.143 0.946

Black-box Emphysema Positive 0.589 0.955 0.979 0.291 0.935

Cases for which R1 and R2 agree

Models

Frontal—Irregular radiolucency 0.894

Frontal—Flattening of the diaphragm 0.987

Lateral—Abnormal retrosternal space 0.941

Lateral—Flattening of the diaphragm 0.975

Sign Models Emphysema Positive 0.981

Black-box Emphysema Positive 0.972

Each radiologist is taken as the reference standard, and the performance of the other radiologist and of the model are evaluated. The p-values are obtained using

McNemar test [30]. Radiologist sensitivity (R sens.), Radiologist specificity (R spec.), the model specificity at Radiologist sensitivity (Model spec. at R sens.) and the

Model AUC are provided. Bold p-values indicate p< 0.05, and bold specificity values indicate significantly higher specificity in the given comparison. The last section of

the table provides AUC values for the models evaluated on the subset of cases where R1 and R2 agreed on emphysema positivity.

https://doi.org/10.1371/journal.pone.0267539.t005

Fig 5. ROC curve comparison of the combined emphysema signs model for detecting emphysema with at least 2 signs, the

black-box emphysema model, and a radiologists sensitivity specificity point. ROC curves are drawn for 2 different reference

standards. R1 as reference standard (left)and R2 as reference standard (centre), and finally for only those cases where the

radiologists agreed on the emphysema label (right). The 95% confidence intervals and error bars are calculated by bootstrapping.

https://doi.org/10.1371/journal.pone.0267539.g005
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signs from Sutinen et al. [18] to label their dataset. Their study used a dataset of just 320 studies

with 60 emphysema positives and obtained 0.90 accuracies using 10 fold cross-validation. In

their follow-up work, Miniati et al. [5] similarly collected frontal and lateral lung segmenta-

tions of 225 studies from a physician. They had 92 emphysema subjects and split their dataset

into training (118) and validation (107) sets. This work used CT confirmed emphysema labels

and again, hand-crafted features that describe the lung shapes. Using a shallow neural network

to obtain an emphysema classification, they achieved an AUC of 0.955. In another follow-up

study, Coppini et al. [4] automated the segmentation of lung boundaries and achieved 0.954

AUC for the same task on the same dataset. These works use small datasets and appear to opti-

mize their experimental results on the test sets, meaning that they are unlikely to generalize to

large unseen datasets. More recently, Campo et al. [7] simulated chest radiographs from CT

scans. From these CT scans, they automatically generated the percentage of low-attenuation

lung areas (%LLA, Müller et al. [34]) to determine the ratio of emphysematous tissue volume.

Using this reference standard, they experiment with various %LLA thresholds to define

emphysema and train CNNs consisting of 11 layers (4 convolutional). Using a 10%LLA thresh-

old, on a dataset of 2666 training and 4671 test samples, they achieved 0.907 AUC in classifying

emphysema in simulated CXRs. This work demonstrates the potential to detect emphysema

automatically on CXR but does not use any real CXR images and the results cannot be consid-

ered generalizable to that domain. Li et al. [16] annotated 10,738 studies by 3 radiologists for

14 disease labels of ChestXray14 and reported 0.943 AUC in predicting emphysema. One

drawback of this approach is that the agreement of 3 radiologists is likely to be favoring more

severe cases of emphysema as positive.

Many studies use the ChestXray14 dataset [10], which contains the emphysema label

obtained by automatically parsing radiology reports. One recent example Wang et al. (2021)

[14] proposed an extension of DenseNet121 [15] using various attention modules and

achieved 0.933 AUC in detecting emphysema, which is comparable to our method. However,

we note that the emphysema labels in this dataset are unreliable, having seen in our previous

work [12], that 39 of 90 randomly selected emphysema samples had incorrect labels. Oakden-

Rayner [13] demonstrated the same issue, finding that 86% of visually examined emphysema

cases from that dataset were, in fact, cases of subcutaneous emphysema rather than pulmonary

emphysema. This issue casts doubt on the emphysema classification performance of the many

similar studies that use the ChestXray14 dataset labels for evaluation [11] and so we omit any

direct comparison with these works.

The work of Miniati et al. [19] demonstrated that the number of positive signs on the CXR

image correlated with the severity of emphysema on CT. While we are unable to demonstrate

such a finding without reference standard severity scores, it seems likely that the number of

positive signs, or indeed the scores assigned by the deep learning systems would correlate with

disease severity. This is an interesting avenue for future research.

One limitation of this work is the lack of reference standard for the emphysema label based

on CT imaging or confirmed emphysema diagnosis. The models presented here are trained

only to emulate the performance of a radiologist identifying emphysema on a chest X-Ray, and

are evaluated in that context also. This does not provide any indication of how well CXR-

based analysis compares with more accurate reference standards such as quantitative CT and/

or clinical diagnosis. Future studies should endeavor to obtain such data for a more accurate

analysis of performance. The inclusion of additional expert reader opinions and data from a

different institution would also improve the analysis in future work. Finally, a more systematic

search of the parameter space may identify improved settings for the deep learning systems

used in this work.
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Conclusion

This work presents the first fully automatic and explainable deep-learning system for the

detection of emphysema on CXR. Using a large and manually-labeled dataset with held-out

test data from 422 studies, we demonstrate that the proposed method has a performance equiv-

alent to an expert radiologist and to a black-box system that provides no explainable features.

This work demonstrates the feasibility of providing explainable features through deep-learning

systems as well as a potentially useful tool for emphysema detection.
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26. Sogancioglu E, Murphy K, Çallı E, Scholten ET, Schalekamp S, van Ginneken B. Cardiomegaly Detec-

tion on Chest Radiographs: Segmentation Versus Classification. IEEE Access. 2020; 8:94631–94642.

https://doi.org/10.1109/ACCESS.2020.2995567

PLOS ONE Explainable emphysema detection on chest radiographs with deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267539 July 28, 2022 14 / 15

https://doi.org/10.1002/mp.15019
https://doi.org/10.1002/mp.15019
http://www.ncbi.nlm.nih.gov/pubmed/34077564
http://www.ncbi.nlm.nih.gov/pubmed/35014904
https://doi.org/10.1016/j.media.2021.102125
https://doi.org/10.1016/j.media.2021.102125
http://www.ncbi.nlm.nih.gov/pubmed/34171622
https://doi.org/10.1016/j.acra.2019.10.006
http://www.ncbi.nlm.nih.gov/pubmed/31706792
https://doi.org/10.1016/j.media.2020.101846
https://doi.org/10.1016/j.media.2020.101846
http://www.ncbi.nlm.nih.gov/pubmed/33129145
https://doi.org/10.1016/j.crad.2020.08.027
https://doi.org/10.1016/j.crad.2020.08.027
http://www.ncbi.nlm.nih.gov/pubmed/33077154
https://doi.org/10.1164/arrd.1965.91.1.69
http://www.ncbi.nlm.nih.gov/pubmed/14260002
https://doi.org/10.1183/09031936.00095607
http://www.ncbi.nlm.nih.gov/pubmed/18057056
https://doi.org/10.1038/s41598-019-42557-4
https://doi.org/10.1038/s41598-019-42557-4
http://www.ncbi.nlm.nih.gov/pubmed/31000728
https://doi.org/10.1109/ACCESS.2020.2995567
https://doi.org/10.1371/journal.pone.0267539


27. Lee MS, Kim YS, Kim M, Usman M, Byon SS, Kim SH, et al. Evaluation of the feasibility of explainable

computer-aided detection of cardiomegaly on chest radiographs using deep learning. Scientific

Reports. 2021; 11(1):16885. https://doi.org/10.1038/s41598-021-96433-1 PMID: 34413405

28. Meakin J, van Zeeland H, Koek M, Gerke PK, de Dobbelaer B, Pinckaers H, et al. Grand Challenge.org;

2019.

29. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: IEEE Conference on

Computer Vision and Pattern Recognition; 2016. p. 770–778.

30. McNemar Q. Note on the sampling error of the difference between correlated proportions or percent-

ages. Psychometrika. 1947; 12(2):153–157. https://doi.org/10.1007/BF02295996 PMID: 20254758

31. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated

receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44(3):837–845.

https://doi.org/10.2307/2531595 PMID: 3203132

32. Sanders C. The radiographic diagnosis of emphysema. Radiolic Clinics of North America. 1991; 29

(5):1019–1030. PMID: 1871252

33. Thurlbeck W, Simon G. Radiographic appearance of the chest in emphysema. American Journal of

Roentgenology. 1978; 130(3):429–440. https://doi.org/10.2214/ajr.130.3.429 PMID: 415543

34. Müller NL, Staples CA, Miller RR, Abboud RT. “Density mask”. An objective method to quantitate

emphysema using computed tomography. Chest. 1988; 94(4):782–787. PMID: 3168574

PLOS ONE Explainable emphysema detection on chest radiographs with deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267539 July 28, 2022 15 / 15

https://doi.org/10.1038/s41598-021-96433-1
http://www.ncbi.nlm.nih.gov/pubmed/34413405
https://doi.org/10.1007/BF02295996
http://www.ncbi.nlm.nih.gov/pubmed/20254758
https://doi.org/10.2307/2531595
http://www.ncbi.nlm.nih.gov/pubmed/3203132
http://www.ncbi.nlm.nih.gov/pubmed/1871252
https://doi.org/10.2214/ajr.130.3.429
http://www.ncbi.nlm.nih.gov/pubmed/415543
http://www.ncbi.nlm.nih.gov/pubmed/3168574
https://doi.org/10.1371/journal.pone.0267539

