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Abstract

Background

Chromogranin A (CgA) and its fragment vasostatin I (VS-I) are secreted in the blood by

endocrine/neuroendocrine cells and regulate stress responses. Their involvement in Coro-

navirus 2019 disease (COVID-19) has not been investigated.

Methods

CgA and VS-I plasma concentrations were measured at hospital admission from March to

May 2020 in 190 patients. 40 age- and sex-matched healthy volunteers served as controls.

CgA and VS-I levels relationship with demographics, comorbidities and disease severity

was assessed through Mann Whitney U test or Spearman correlation test. Cox regression

analysis and Kaplan Meier survival curves were performed to investigate the impact of the

CgA and VS-I levels on in-hospital mortality.

Results

Median CgA and VS-I levels were higher in patients than in healthy controls (CgA: 0.558 nM

[interquartile range, IQR 0.358–1.046] vs 0.368 nM [IQR 0.288–0.490] respectively, p =

0.0017; VS-I: 0.357 nM [IQR 0.196–0.465] vs 0.144 nM [0.144–0.156] respectively,

p<0.0001). Concentration of CgA, but not of VS-I, significantly increased in patients who

died (n = 47) than in survivors (n = 143) (median 0.948 nM [IQR 0.514–1.754] vs 0.507 nM

[IQR 0.343–0.785], p = 0.00026). Levels of CgA were independent predictors of in-hospital

mortality (hazard ratio 1.28 [95% confidence interval 1.077–1.522], p = 0.005) when

adjusted for age, number of comorbidities, respiratory insufficiency degree, C-reactive pro-

tein levels and time from symptom onset to sampling. Kaplan Meier curves revealed a

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267235 April 25, 2022 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: De Lorenzo R, Sciorati C, Ramirez GA,

Colombo B, Lorè NI, Capobianco A, et al. (2022)

Chromogranin A plasma levels predict mortality in

COVID-19. PLoS ONE 17(4): e0267235. https://doi.

org/10.1371/journal.pone.0267235

Editor: Tai-Heng Chen, Kaohsuing Medical

University Hospital, TAIWAN

Received: January 5, 2022

Accepted: April 4, 2022

Published: April 25, 2022

Copyright: © 2022 De Lorenzo et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The study was supported by the Italian

Ministero della Salute (COVID-2020-12371617)

and by COVID-19 donations. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: NO authors have competing

interests.

https://orcid.org/0000-0002-2889-366X
https://orcid.org/0000-0001-7711-5621
https://orcid.org/0000-0001-6415-1535
https://doi.org/10.1371/journal.pone.0267235
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267235&domain=pdf&date_stamp=2022-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267235&domain=pdf&date_stamp=2022-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267235&domain=pdf&date_stamp=2022-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267235&domain=pdf&date_stamp=2022-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267235&domain=pdf&date_stamp=2022-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267235&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1371/journal.pone.0267235
https://doi.org/10.1371/journal.pone.0267235
http://creativecommons.org/licenses/by/4.0/


significantly increased mortality rate in patients with CgA levels above 0.558 nM (median

value, log rank test, p = 0.001).

Conclusion

Plasma CgA levels increase in COVID-19 patients and represent an early independent pre-

dictor of mortality.

Introduction

Chromogranin A (CgA) is a 439-residue-long protein member of the secretogranin family [1].

It is expressed and secreted by various normal and neoplastic endocrine/neuroendocrine cells

and expressed by myocardial cells and immune cells [2–4]. Within the cells, CgA has a role in

the regulation of calcium homeostasis and granule biogenesis [5]. Intracellular and secreted

CgA is cleaved by proteases, including prohormone convertases, furin, cathepsin, plasmin and

thrombin, to generate biologically active fragments [6] such as Vasostatin I (VS-I) [7], a 76-res-

idue long polypeptide that regulates vascular homeostasis and heart function [8].

High plasma levels of CgA have been first described in patients with neuroendocrine

tumors [9], but have been also found in patients affected by heart failure, arterial hypertension

(HTN), renal failure, rheumatoid arthritis, giant cell arteritis, diabetes mellitus (DM), inflam-

matory bowel diseases and sepsis [10, 11]. Elevated CgA plasma levels are associated with mor-

tality risk in patients with myocardial infarction, acute coronary syndrome and heart failure

[12]. High levels of CgA and VS-1 have been also described in fatal cases of systemic inflamma-

tory response syndrome [13, 14]. The secreted CgA fragments contributes to the host defense

and are part of the acute phase response [15], yielding upon proteolytic processing moieties

that have anti-microbial proprieties [16], activate neutrophils [17] regulate macrophage polari-

zation [18] and monocyte chemotaxis [19].

Coronavirus disease 2019 (COVID-19) presents with various degrees of severity. Most

patients are asymptomatic or experience symptoms that reflect upper or lower airway involve-

ment. In other patients, a less effective innate immune response fails to limit viral replication,

eventually resulting in acute respiratory distress syndrome, metabolic derangements and mul-

tiorgan failure [20–22]. Age and pre-existing comorbidities including cardiovascular and

respiratory diseases, diabetes mellitus (DM) and hypertension (HTN) are risk factors for

severe COVID-19 [23]. In turn, COVID-19 cardiovascular, neurological, renal, and vascular

complications are associated with mortality [24, 25].

The aims of this study were to assess whether the release of CgA and VS-I in circulation is

part of the early host response in COVID-19 and whether these molecules, measured at disease

onset, might predict adverse outcomes.

Methods

Patients and study design

This retrospective and prospective study included one hundred ninety patients. The inclusion

criteria were: age�18 years, confirmed SARS-CoV-2 infection, clinical and/or radiological

signs of COVID-19 pneumonia, admission to the Emergency Department of San Raffaele Uni-

versity Hospital, Milan, from March 18 to May 5, 2020, blood sampling at hospital admission.

No exclusion criteria were applied [26]. COVID-19 was diagnosed based on a positive real-
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time reverse-transcriptase polymerase chain reaction (RT-PCR) from a nasopharyngeal swab

in the presence of clinical and/or radiologic findings of COVID-19 pneumonia. Blood samples

were collected at hospital admission and stored in a dedicated institutional biobank [27].

Detailed demographic, laboratory and clinical data from all patients were recorded in a specific

electronic case record form. Patients were prospectively followed until hospital discharge or

death. All patients signed an informed consent. The study is compliant with the declaration of

Helsinki, was approved by the Hospital Ethics Committee (protocol no. 34/int/2020) and reg-

istered on ClinicalTrials.gov (NCT04318366). Forty age- and sex-matched volunteers served

as healthy controls (HC).

CgA and VS-I measurement

Plasma-EDTA samples were obtained from venous blood by double centrifugation, according

with the Institutional Biobank procedures [27]. The samples were then immediately trans-

ferred at –80 ˚C and 24–72 hours later stored in liquid nitrogen until usage. Plasma were trans-

ferred to research laboratory the day of the analysis, thawed and inactivated using tri-(n-butyl)

phosphate and Triton X-100 (Sigma) (0.3% and 1% respectively) for 2 hours [28, 29]. CgA and

VS-I were measured by enzyme-linked immunosorbent assay as previously described [30].

Samples were diluted 1:10 for CgA assay and or 1:5 for VS-I assay.

Variables and outcome

The following variables were included: age, sex, selected pre-existing comorbidities (HTN, cor-

onary artery disease [CAD], DM, chronic obstructive pulmonary disease [COPD], chronic

kidney disease [CKD], active neoplasia), clinical and laboratory data at hospital admission (the

ratio of arterial oxygen partial pressure [PaO2] in mmHg to fractional inspired oxygen [FiO2]

expressed as a fraction [PaO2/FiO2], neutrophil to lymphocyte ratio [NLR], concentration of

C-reactive protein [CRP] and of lactate dehydrogenase [LDH]). Time from symptom onset to

blood sampling, rate of hospitalization, length of stay, therapy administered during hospital

stay, transfer to the intensive care unit (ICU) and death were recorded. In-hospital mortality

was used as primary outcome.

Statistical analysis

Absolute counts (percentage) and median (interquartile range [IQR]) were used to express cat-

egorical and continuous variables, respectively. The only exception was the number of comor-

bidities that was expressed as mean (standard deviation). Differences in categorical and

continuous variables between groups were assessed using Chi-squared or Fisher test, as appro-

priate and Mann-Whitney U test, respectively. Spearman’s correlation test was used to investi-

gate the relationships between continuous variables. Multivariable Cox regression analysis was

performed to investigate the impact of CgA on the primary outcome when adjusting for con-

founders. Variables that showed substantial redundancy with other variables (i.e. CRP vs.

NLR) were excluded from the multivariable regression analysis to prevent model overfitting.

Similarly, chronic proton pump inhibitor (PPI) therapy, which is associated with high levels of

CgA in plasma [31], was not included in the multivariable model. Statistical analyses were per-

formed using R statistical package (version 4.0.0. R Foundation for Statistical Computing,

Vienna, Austria), with a two-sided significance level set at p<0.05.
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Results

Patient characteristics

Demographic, clinical and laboratory characteristics of the patients (n = 190) are summarized

in Table 1. Blood samples were obtained at hospital admission (median [IQR] time from

admission to blood draw was 1 [0–1] days). 185 patients (97.3%) had not received any

COVID-19-related treatment prior to sample collection. 32 patients (17%) were on chronic

PPI therapy. Most patients were males (64%) and median (IQR) age was 61.5 (49.9–72.1)

years. More than half of patients had pre-existing comorbidities (52%), the most frequent

being HTN (41%). 152 patients (80%) were hospitalized for a median (IQR) time of 15 (9–29)

days. 41 (21%) patients were transferred to the intensive care unit (ICU) and 47 (25%) died.

Survival time in patients who died was 12 (5–21) days. As expected, patients who died were

older and with a higher burden of comorbidities. In addition, patients with a fatal outcome

had lower levels of PaO2/FiO2 and higher levels of CRP, NLR and LDH at hospital admission

(all p<0.001, Table 1). Steroids and LMWH were, as expected, administered more frequently

during hospital stay in non-survivors due to a more severe disease burden (both p<0.05).

Table 1. General and disease characteristics of COVID-19 patients.

Overall (n = 190) Dead (n = 47) Alive (n = 143) P value

Age (years) 61.5 (49.9–72.1) 72.6 (62.6–79.6) 57.7 (48.5–67.2) <0.0001

Male sex 122 (64) 30 (63) 92 (64) >0.99

Comorbidities

�1 comorbidity 98 (52) 35 (74) 63 (44) 0.00056

Number of comorbidities 0.9 (0.008) 1.5 (0.18) 0.7 (0.082) <0.0001

HTN 78 (41) 27 (57) 51 (36) 0.014

COPD 10 (5) 6 (13) 4 (3) 0.023

CAD 22 (11) 12 (25) 10 (7) 0.0015

DM 39 (20) 15 (32) 24 (17) 0.043

CKD 17 (9) 9 (19) 8 (6) 0.011

Active neoplasia 6 (3) 3 (6) 3 (2) 0.32

Time from symptom onset to sampling (days) 8 (4–11) 5 (2–8) 8 (5–11) <0.0001

At hospital admission
PaO2/FiO2 278.5 (190.5–334.6) 159.1 (79.2–266.6) 304.5 (238.1–348.0) <0.0001

NLR 5.3 (3.5–8.5) 9.9 (5.4–13.5) 4.8 (3.2–7.2) <0.0001

CRP (mg/dL) 78.8 (30.3–153.3) 151.1 (79.4–213.6) 68.7 (20.4–125.6) <0.0001

LDH (U/L) 383 (275–493.5) 440 (365–627) 354 (271.5–466.5) 0.00040

Hospitalization 152 (80) 46 (98) 106 (74) <0.0001

Length of stay (days)† 12 (4–22) 12 (3–24) 12 (3–24) 0.44

ICU transfer 41 (22) 22 (47) 19 (13) <0.0001

Death 47 (25) 47 (100) 0 -

Therapy during hospitalization
Steroids 43 (23) 22 (47) 21 (15) <0.0001

LMWH 86 (45) 25 (53) 61 (43) <0.020

Categorical variables were expressed as count (percentage), while continuous variables as median (interquartile range), with the exception of the number of

comorbidities which was expressed as mean (standard deviation).
† Calculated as the time from hospital admission to death or discharge.

Abbreviations: PaO2/FiO2, ratio of arterial oxygen partial pressure to fractional inspired oxygen; NLR, neutrophil to lymphocyte ratio; ICU, intensive care unit, LMWH,

low molecular weight heparin

https://doi.org/10.1371/journal.pone.0267235.t001

PLOS ONE Chromogranin A increases in fatal COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0267235 April 25, 2022 4 / 12

https://doi.org/10.1371/journal.pone.0267235.t001
https://doi.org/10.1371/journal.pone.0267235


CgA and VS-I plasma levels in COVID-19

Plasma levels of CgA were significantly higher in COVID-19 patients compared with HC

(0.558 nM [0.358–1.046] vs 0.368 nM [0.288–0.490] respectively, p = 0.0017, Fig 1, panel A).

Similarly, VS-I plasma levels were more elevated in patients than in HC (0.357 [0.196–0.465]

nM vs 0.144 [0.144–0.156] nM respectively, p<0.0001, Fig 1, panel A). The CgA and V76

plasma levels were similar in male and female patients (0.5190 [0.351–0.926] nM and 0.6705

[0.36975–1.439] nM for CgA and 0.3505 [0.185–0.45125] nM and 0.3660 [0.2505–0.492] nM

for V76). CgA levels at admission correlated with age (R 0.42, p<0.0001, Fig 2, panel A) and

were higher in patients with at least a single pre-existing comorbidity compared with non-

comorbid patients (0.778 [0.483–1.761] nM vs 0.419 [0.281–0.675] nM respectively, p<0.0001,

Fig 2, panel B). CgA or VS-I plasma levels did not differ between females and males (not
shown). CgA correlated with the degree of hypoxia, as quantified by PaO2/FiO2 (R -0.20,

p = 0.0057) and with CRP (R 0.30, p<0.0001), NLR (R 0.21. p = 0.0062) and LDH levels (R

0.17, p = 0.017). No significant correlation was observed between VS-I concentration and age,

comorbidities, CRP or LDH levels.

CgA and VS-I levels in survivors and non-survivors

Patients who died had higher plasma levels of CgA at admission than COVID-19 survivors

(0.948 [0.514–1.754] nM vs 0.507 [0.343–0.785] nM respectively, p = 0.00026) (Fig 1, panel B).

In contrast, VS-I plasma levels were similar in survivors and patients who died (p>0.05, Fig 1,

panel B). At multivariable cox regression analysis, CgA plasma levels at admission were inde-

pendent predictors of in-hospital mortality when adjusting for age, number of comorbidities,

degree of respiratory dysfunction (PaO2/FiO2), systemic inflammation as reflected by CRP lev-

els at admission and time from symptom onset to sampling (Table 2). Kaplan Meier survival

analysis confirmed that patients with levels of CgA above the median value (0.557 nM) at

admission had a higher risk of mortality (log rank test, p = 0.001, Fig 3).

Discussion

To our knowledge, this is the first report on CgA and VS-1 levels in COVID-19 and the associ-

ation of this event with clinical outcomes, as evidenced by in-hospital mortality. The host

Fig 1. Panel A: CgA and VS-I plasma levels in age- and sex-matched healthy controls (HC) and COVID-19 patients at

hospital admission. Panel B: CgA plasma levels in COVID-19 patients with favorable outcome (Alive) or who died

(Dead). Panel C: VS-I in Alive or Dead patients. �� p<0.001.

https://doi.org/10.1371/journal.pone.0267235.g001
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response to SARS-CoV-2 in patients is substantial, with inflammation, vascular activation and

coagulopathy playing major roles in the outcome. Neuroendocrine activation is less studied.

The observation that CgA accumulates in patients with COVID-19 and that this occurs prefer-

entially in those that eventually die offers a tool to disentangle the immune/neuroendocrine

connection in the host response to SARS-CoV-2.

Age and comorbidities are important risk factors for adverse outcome in COVID-19 [26,

32]. We found a correlation between plasma CgA levels and age, and observed that the concen-

tration of CgA was higher in comorbid patients. Nevertheless, CgA was a significant predictor

Fig 2. Panel A: Correlation of CgA plasma levels with age. Panel B: CgA plasma levels in patients with or without comorbidities. ��� <0.0001.

https://doi.org/10.1371/journal.pone.0267235.g002

Table 2. Multivariable Cox regression analysis predicting death.

HR 95% CI P value

CgA (nM) 1.23 1.02–1.47 0.025

Age (years) 1.02 0.99–1.05 0.20

Number of comorbidities 1.34 1.01–1.76 0.039

PaO2/FiO2 0.99 0.99–0.99 0.018

CRP (mg/dL) 1.00 0.99–1.01 0.19

Time from symptom onset to sampling (days) 0.88 0.81–0.95 0.002

Abbreviations: HR, hazard ratio; 95% CI, 95% confidence interval; CgA, chromogranin A; PaO2/FiO2, ratio of

arterial oxygen partial pressure to fractional inspired oxygen; CRP, C-reactive protein

https://doi.org/10.1371/journal.pone.0267235.t002
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of mortality independently of age and comorbidities. These results are consistent with the

association between CgA levels and outcomes in patients with systemic inflammatory response

syndrome [13]. Plasma levels of VS-I are increased in critically ill patients [14]. In contrast

VS-I plasma levels in COVID-19 patients, although higher than in HC, were similar in survi-

vors and non-survivors. However, CgA and VS-I exert different physiopathological roles, espe-

cially in the context of the cardiovascular and immune systems [33]. VS-1 is a product of CgA

N-terminal proteolytic processing. Several enzymes are involved, depending on the site of

action and on the pathophysiological conditions [5, 6]. We found that in COVID-19 patients

the extent of CgA release into the blood predicts clinical outcome. In contrast, the proteolytic

processing of CgA yielding VS-I did not change in patients with severe outcome, suggesting

that the molecular machinery involved in the generation of VS-I is similarly regulated in

COVID-19 patients regardless of disease progression.

CgA levels correlated with hypoxia and with systemic inflammation. Increased values of

CgA have been previously described in inflammatory and autoimmune disorders. CgA in turn

controls the response to cytokines of the endothelium [34]. CgA influences the vascular

remodeling in stress conditions, directly and through the generation of bioactive fragments

[35, 36]. In particular, full length CgA induces in endothelial cells the protease nexin-1, an

antiangiogenic protein [37, 38]. Nexin-1 is also an inhibitor of plasmin and thrombin [39].

This inhibition might prevent the cleavage of CgA by these enzymes, thereby preserving its

Fig 3. Kaplan-Meier survival curves in patients with CgA levels below (low) or above (high) the median value of 0.558 nM. Log rank test,

p = 0.001.

https://doi.org/10.1371/journal.pone.0267235.g003
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activity. SARS-CoV-2 infection and consequent inflammation induce endothelial damage,

platelet activation, thrombosis, microangiopathy and neo-angiogenesis in response to tissue

injury [40, 41]. Platelet derived microparticles [42] and high levels of angiopoietin-2, follistatin

and PAI-1, markers of endothelial injury, increase the risk of mortality [43], and signs of intus-

susceptive angiogenesis, a proposed mechanism for vessel generation in late stages of chronic

lung injury, have been found in lung biopsies of COVID-19 patients [44]. Thus, CgA accumu-

lation in patients with severe COVID-19 might affect the microvascular response to the

SARS-CoV-2 infection, possibly influencing the clinical outcome.

We did not identify the origin and mechanisms of CgA production in COVID-19 patients.

Potential mechanisms include an enhanced stress-induced sympathetic tone and neuroendo-

crine activation, leading to enhanced secretion of CgA. Several other mechanisms might con-

tribute to the size of the circulating pool of CgA, including reduced clearance of the molecule

itself, viral-induced changes in neurosecretory cells activity and injury, and, at least for those

patients under PPI treatment, drug-induced production of CgA by enterochromaffin-like cells

or damage of secretory cells [45].

We included 40 age- and sex-matched healthy controls. The relatively small size of samples

from healthy controls, which were collected prior to the pandemic outbreak, was forced by the

rapid spread of SARS-CoV-2 infection and the systematic vaccination against SARS-CoV-2,

events that may represent potential bias for data interpretation.

CgA plasma levels are not gender-dependent [46], but daily fluctuations in CgA levels may

occur [47]. Circulating CgA levels may be also altered by treatment with PPI [31, 48]. In our

cohort, a minority of patients were on chronic PPI therapy at the time of blood withdrawal.

Whether the observed increase in CgA levels in non-survivors is at least in part related to PPI

therapy remains uncertain. However, the finding of higher levels of CgA also in patients not

receiving PPI compared with HC and the relatively low prevalence of PPI therapy in the cohort

imply that additional mechanisms other than PPI therapy are responsible for CgA overexpres-

sion. Starting from 2020, several signals have been identified as players in the natural history of

the disease. Accordingly, potential biomarkers and predictors of clinical outcome have been

proposed (e.g. see [49–54]) with several characteristics of blood cells, inflammatory signals and

pathways, biomarkers of innate and acquired immunity, altered cell metabolism and coagula-

tion providing valuable information for dissecting patients heterogeneity [49]. Our results

demonstrate for the first time the involvement of CgA, a prototype member of the granin gly-

coprotein family produced and released by a wide range of different cells throughout the body

in the response to SARS-CoV-2 infection. Further studies are needed to identify the role

played by CgA and the possibility that the signal can be used for early stratification of patients

based on the risk of adverse outcome.

Conclusions

This study provides the first evidence of an elevation of CgA and its fragment VS-I in COVID-

19 patients suggesting a neuroendocrine activation in these patients. CgA levels (but not VS-I)

predicts the risk of death independently of other risk factors for adverse outcome. CgA plasma

level at hospital admission could therefore represent a tool for the early identification of

patients at increased risk of unfavorable disease evolution and therefore needing a more

intense management.
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