
RESEARCH ARTICLE

Solving pickup and drop-off problem using

hybrid pointer networks with deep

reinforcement learning

Majed G. Alharbi1, Ahmed StohyID
2*, Mohammed Elhenawy3, Mahmoud Masoud3,

Hamiden Abd El-Wahed Khalifa4,5

1 Department of Mathematics, College of Science and Arts, Qassim University, Al Mithnab, Saudi Arabia,

2 Department of Electrical Engineering, School of Engineering and Technology, Badr University in Cairo

(BUC), Cairo, Egypt, 3 Centre for Accident Research and Road Safety, Queensland University of

Technology, Brisbane, Australia, 4 Department of Mathematics, College of Science and Arts, Qassim

University, Al-Badaya, Saudi Arabia, 5 Department of Operations Research, Faculty of Graduate Studies for

Statistical Research, Cairo University, Giza, Egypt

* ahmedstohy6@gmail.com

Abstract

In this study, we propose a general method for tackling the Pickup and Drop-off Problem

(PDP) using Hybrid Pointer Networks (HPNs) and Deep Reinforcement Learning (DRL).

Our aim is to reduce the overall tour length traveled by an agent while remaining within the

truck’s capacity restrictions and adhering to the node-to-node relationship. In such

instances, the agent does not allow any drop-off points to be serviced if the truck is empty;

conversely, if the vehicle is full, the agent does not allow any products to be picked up from

pickup points. In our approach, this challenge is solved using machine learning-based mod-

els. Using HPNs as our primary model allows us to gain insight and tackle more complicated

node interactions, which simplified our objective to obtaining state-of-art outcomes. Our

experimental results demonstrate the effectiveness of the proposed neural network, as we

achieve the state-of-art results for this problem as compared with the existing models. We

deal with two types of demand patterns in a single type commodity problem. In the first pat-

tern, all demands are assumed to sum up to zero (i.e., we have an equal number of backup

and drop-off items). In the second pattern, we have an unequal number of backup and drop-

off items, which is close to practical application, such as bike sharing system rebalancing.

Our data, models, and code are publicly available at Solving Pickup and Dropoff Problem

Using Hybrid Pointer Networks with Deep Reinforcement Learning.

I. Introduction

The problem of pick-up and drop-off is generally considered to be one of the most essential

vehicle routing problems in our everyday lives; in fact, it is a key issue in both the Intelligent

Transportation Systems and Operations Research disciplines, with widespread applications in

industries such as harbor [1], airport [2], and warehousing [3]. Products must be picked up at

an origin and delivered to a destination in numerous physical distribution situations. Relevant

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alharbi MG, Stohy A, Elhenawy M,

Masoud M, Khalifa HAE-W (2022) Solving pickup

and drop-off problem using hybrid pointer

networks with deep reinforcement learning. PLoS

ONE 17(5): e0267199. https://doi.org/10.1371/

journal.pone.0267199

Editor: Sathishkumar V. E., Hanyang University,

REPUBLIC OF KOREA

Received: February 10, 2022

Accepted: April 5, 2022

Published: May 26, 2022

Copyright: © 2022 Alharbi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data files

are publicly available from the Github database

(https://github.com/AhmedStohy/Solving-Pickup-

and-Dropoff-Problem-Using-Hybrid-Pointer-

Networks-with-Deep-Reinforcement-Learning).

Funding: This research was funded by Qassim

University grant number [10300-cos-2020-1-3-1].

The financial support for this research under the

number (10300- cos-2020-1-3-1) during the

academic year 1442AH/2020AD.

https://orcid.org/0000-0003-0078-1719
https://github.com/AhmedStohy/Solving-Pickup-and-Dropoff-Problem-Using-Hybrid-Pointer-Networks-with-Deep-Reinforcement-Learning
https://github.com/AhmedStohy/Solving-Pickup-and-Dropoff-Problem-Using-Hybrid-Pointer-Networks-with-Deep-Reinforcement-Learning
https://doi.org/10.1371/journal.pone.0267199
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267199&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267199&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267199&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267199&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267199&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267199&domain=pdf&date_stamp=2022-05-26
https://doi.org/10.1371/journal.pone.0267199
https://doi.org/10.1371/journal.pone.0267199
http://creativecommons.org/licenses/by/4.0/
https://github.com/AhmedStohy/Solving-Pickup-and-Dropoff-Problem-Using-Hybrid-Pointer-Networks-with-Deep-Reinforcement-Learning
https://github.com/AhmedStohy/Solving-Pickup-and-Dropoff-Problem-Using-Hybrid-Pointer-Networks-with-Deep-Reinforcement-Learning
https://github.com/AhmedStohy/Solving-Pickup-and-Dropoff-Problem-Using-Hybrid-Pointer-Networks-with-Deep-Reinforcement-Learning

examples include transportation of disabled people, pick-up and delivery of rapid courier, deliv-

ery of various medical supplies, and so forth. Of note, however, the problem of pick-up and

drop-off differs from traditional transportation challenges, as, in the former, it is obligatory to

deal with issues such as priority limitations among the clients to be visited, sharing a depot with

all customers; in fact, in vehicle routing problems (VRPs), a client may always have his or her

own delivery site, as in intra-city express service [4] and ridesharing [5]. All these applications

may readily characterize route planning as a pickup and delivery problem (PDP), which is a

common kind of VRPs. Pairing and precedence connections distinguish PDPs in which a pickup

point should come before the partnering delivery point. Despite extensive previous research,

standard techniques, including exact and heuristic algorithms, have thus far failed to optimally

solve PDPs within a short computation time because of its NP-hard nature [6].

At present, deep reinforcement learning (DRL) is being used to instantaneously master the

basics in traditional heuristic approaches to solve combinatorial problems such as the Travel-

ing Salesman Problem (TSP) and Capacitated VRP (CVRP), resulting in more alluring solu-

tions characterized by significantly faster computing times. Inspired by previous research in

these areas [7–9], in the present study, we developed a deep reinforcement learning-based

model to tackle PDP. Despite some success, most DRL-based systems can manage only stan-

dard VRP with a shared delivery point. The masking method employed in previous DRL mod-

els might be intuitively extended to represent such relationships in PDP, with delivery points

always masked until the pickup locations are visited. However, there remain the following two

concerns that need to be considered:

1. The masking approach only affects the policy network’s output layer, and a more desired

solution would enable the model to be implicitly aware of precedence relationship among

nodes.

2. In contrast to a normal VRP, nodes in PDP serve many functions, such as pickup point,

delivery point, and depot. Due to their intricate interplay, the decision on the next node

may be more challenging.

To address these challenges, in the present study, we propose using a deep reinforcement

learning-based strategy to solve PDP that integrates with Hybrid Pointer Networks [10]. The

DRL’s policy network includes an encoder-decoder structure and learns to design a solution

by iteratively selecting a pickup or delivery point at each time step. This approach is used in

combination with a masking mechanism that adaptively filters out invalid points to guarantee

feasibility and compliance with PDP constraints.

Contributions

The contributions of the present study can be summarized as follows:

� To address PDP, we propose a novel technique that relies on coordinate features and its con-

straints to enable end-to-end training for the problems with a constraint like PDP without

any hand-crafted features.

�We numerically demonstrate how such a simple approach can handle challenging problems

in OP, such pickup and drop-off problems.

�We conduct experiments on two different applications to demonstrate effectiveness of the

proposed technique.

�We conduct several ablation studies to investigate essential parameters that contribute to

high performance.

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 2 / 19

Competing interests: NO authors have competing

interests.

https://doi.org/10.1371/journal.pone.0267199

The remainder of the paper is structured as follows. Section II provides a brief overview of

traditional approaches and deep models for routing challenges. Section III presents an intro-

duction to the PDP through mathematical formulation. In Section IV, we reformulate the

problem in RL terms and present our DRL solution. Computational experiments and results

of our analyses are presented in Section V. Finally, the results are discussed and conclusions

are drawn in Section VI.

II. Related work

This section describes the tasks related to traditional PDP approaches and deep learning mod-

els of routing problems. In its simplest form, a pick-up and delivery problem (PDP) consists of

a fleet of vehicles and a list of customer requests. Each request provides a starting point and a

destination (i.e., a pick-up and drop-off location). Vehicles must travel in place to reach each

starting point in front of the appropriate destination. This basic structure is shared by all varia-

tions of the problem. PDP is a traveling salesman problem with a restricted (multiple) solution

(TSP). The PDP route is a TSP tour, and the starting point must be in front of the destination.

In addition, it is necessary to maintain capacity constraints so that not to exceed the capacity

of the truck. Consequently, the best TSP solution is expected to be adapted to solve the PDP.

Fig 1 summarizes the COP structure. As can be seen in the figure, pickup-and-delivery travel-

ing salesman problem (PDTSP) and traveling salesman problem with time window (TSPTW)

are TSP variations with extra constraints to the traditional TSP. For instance, in TSPTW, there

is another layer above the TSP formulation that sets time frames for each point, and so on.

However, while there are more problems categorized under COP, for consistency consider-

ations, we focus in the present study only on the COP that are related to our problem.

The most effective accurate TSP algorithms reported to date make extensive use of compre-

hensive understanding of the TSP polytope’s structure. For instance, in a previous study, a

2,392 city issue was effectively optimized using the branch-and-cut approach [11]. Further-

more, dynamic programming [12, 13], nonlinear integer programming [14, 15], and column

generation [16] were used to solve variants of the fundamental problem. In addition, several

heuristics were also investigated [17–19]. Many additional techniques were reviewed in Savels-

bergh and Sol’s published survey [20]. Several precise techniques, such as branch- and-bound

with additive bounding procedure and column generation system, were employed to handle

these variations. According to some conclusions Dynamic programming was reported to work

well in small-scale versions of the single-vehicle pickup and delivery problem [21]. Based on

three constraints—namely, subtour elimination and precedence constraints, extended order

constraints, and order matching constraints, Ruland and el. [22] proposed a branch-and-cut

approach for solving PDP. Furthermore, Padberg and Rinaldi [23] devised an innovative

branch-and-cut-and-price strategy to handle PDP by taking into consideration two pricing

sub-problems in column formation. Despite delivering optimum answers, due to exponential

complexity, appropriate procedures require a disproportionately long computation for large-

Fig 1. A subset of combinatorial optimization problems (COP) structure.

https://doi.org/10.1371/journal.pone.0267199.g001

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0267199.g001
https://doi.org/10.1371/journal.pone.0267199

scale problems. On the other hand, heuristic techniques for PDP and VRP can handle large-

scale cases with a relatively good processing efficiency [24–28]. To cope with large-scale PDP,

Li and Lim [29] proposed a tabu-embedded simulated annealing technique based on the shift,

exchange and devised rearrange operators. Furthermore, Ropke and Pisinger [30] proposed an

adaptable large neighborhood search heuristic methodology for dealing with PDP; this meth-

odology featured a regret insertion method and six removal techniques, such as Shaw removal

and cluster removal. In another relevant study, Ghilas et al. [31] proposed another adaptive big

neighborhood search strategy based on break and rebuild algorithms. Starting with a greedy

insertion heuristic’s initial solution, multiple efficient removal operators and insert principles

were used to progressively improve the results. In addition, a hybrid three-stage heuristic

approach to solve (PDTSP) was described by Hernández-Pérez, Rodrı́guez-Martı́n, and Sala-

zar-González [32] who, after constructing early solutions with a variety of local search opera-

tors, improved the solution by combining multi-start and variable neighborhood decent

heuristic techniques, as well as three shaking procedures to disturb solutions from the local

minimum. However, in traditional heuristic techniques, the optimum performance, or hand-

engineered rules, heavily relied on human talent and experience, which left much room for

future development in solution quality. To date, deep reinforcement learning (DRL) is being

increasingly used to solve several combinatorial optimization problems, such as TSP, TWTSP,

and VRPs [33]. Most models based on deep reinforcement learning are defined by the policy

network of the encoder and the decoder structures. Overall, an encoder projects a client (or

node) to a feature embedding to extract meaningful information from the data, while a

decoder solves the problem in the following two ways: either by building or improving

increment.

� In the former case, the decoder starts with an empty sequence and repeatedly selects nodes at

each step in order to build the complete solution.

� For the latter, the decoder starts with a complete initial solution, continuously selects either a

specific operation candidate node or heuristic operator at each step, and maintains the cur-

rent solution better than the previous solution until the termination criteria are met.

Masking strategies have always been used to obfuscate visited or invalid nodes so that each

customer is visited only once. Combined with attention mechanisms and graph neural net-

works, DRL models can provide a higher quality solution. Another alternative that has had tre-

mendous impact on solving COPs is Pointer Network, which solves TSP in a supervised style

[34] and then is extended to reinforcement learning framework [7]. The first deep underlying

architecture was developed to solve routing constraints. In addition, Pointer Network was

used to solve CVRP based on reinforcement learning in the conditions where customer infor-

mation is dynamic and route length is unpredictable [35]. In order to speed up the training

process, the recurrent neural network (RNN) structure of the encoder was removed, as the

sequence and location information is not useful for CVRP. Several previous studies (e.g., [8,

36]) presented a transformer-based architecture to provide higher quality solutions using self-

attention instead of the Seq2Seq structure in both the encoder and decoder (see also [37]). A

combination of local search and deep reinforcement learning were also proposed to solve both

VRP and VRPTW [38]. For instance, Khalil et al. [39] used a (DQN) Deep Q-Network to train

a vertices selection model that operated with a greedy search for solving TSP, where the states

were represented using a Graph Neural Network, in contrast to the Seq2Seq model. GNN was

also used to train supervised normalized embeddings employed to rebuild neighboring matrix

of TSP graph [40]. Furthermore, reinforcement learning was used to solve the problem of elec-

tric vehicle maneuvering, and a new architecture based on decentralized learning and

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 4 / 19

https://doi.org/10.1371/journal.pone.0267199

centralized decision making was presented [41]. To build these circuits, upon transforming

the online routing problem into the in-vehicle circuit generation problem, James, Yu, and Gu

[42] presented a deep reinforcement learning based solution based on the network of pointers

embedded in the structure diagram. Finally, Instead of mere learning the constructive heuristic

as in earlier approaches, Chen and Tian [43] and Wu et al. [44] were presented NeuRewriter

and the enhanced heuristic, respectively, to learn iteratively improving an initial yet full solu-

tion with local search.

III. Preliminary

A single vehicle and a set N of clients are used to represent the pickup and drop off problem

investigated in this study. The vehicle has a starting point. Each customer i has a pickup and a

drop off locations. The objective is to minimize the total distance traveled by the vehicle in ser-

vicing all customers.

PDP is defined through an undirected graph G = (V, E) where V is a set of nodes i = {0,

1,. . .,m} and E is a set of edges/links. V0 represents the depot node, and Vi6¼0 represents the i-
th customer node. The vehicle has capacity C>0 and each customer node Vi has a demand Di.

With negative demand representing pick up and positive demand representing drop off It is

assumed that the depot demand D0 = 0.

Each node Vi2R2 is defined as 2-dimensional coordinates (xi, yi). PDP specifies a strategy in

which a vehicle, originating at the depot, visits each pickup and delivery node precisely once to

complete the service before returning to the depot at the end of the tour, with the goal of

reducing overall travel distance. It’s worth noting that, in this example, PDP allows for conse-

cutive pickups or deliveries, or a combination of the two, as long as the precedence constraint

is fulfilled.

IV. Methodology

In this section, we reformulate the PDP as a reinforcement learning (RL) problem, which is

followed by the development of a model based on the encoder and decoder structure to learn

node selection process for solution construction empowered by Hybrid pointer networks

(HPN) [10].

A. Formalization of PDP as a reinforcement learning problem

The aim of reinforcement learning is to select the best-known action for each given state,

which means that the actions should be ranked and assigned corresponding values. Given that

such acts are state-dependent, in essence, we should assess the value of state-action pairs.

Then, in our task, a certain objective function should have been minimized. This objective

function was the total distance traveled by the agent without a violation of any specified

constraint.

The route-building process may be thought of as a set of decisions that can be naturally

expressed in the form of RL and solved. The route-building procedure was previously

described as a Markov Decision Process [45]. The state space, action space, transition rule, and

reward function in the MDP were formulated as follows:

State: State st = Mt reflected the partial solution built at time step t, where Mt included all

visited nodes up to step t, and M0 refers to the depot.

Action: Section at was represented as vj, i.e., picking node vj at step t from the subset of the

nodes allowed to visit (but not yet served).

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 5 / 19

https://doi.org/10.1371/journal.pone.0267199

Transition: The next state st+1 = Mt+1 = (Mt;) was derived from st by picking a node at step

t, where “;” denoted concatenation of the partial solution from the previous step with a newly

picked node.

Reward: The reward was defined as the negative of the entire tour length computed by add-

ing negative values of all step travel distances. As a result, the reward was denoted as shown in

Eq (1).

R ¼
PT

t¼0
dt ð1Þ

where dt is the negative value of the incremental travel distance between vi and vj selected at

step t and t+1, respectively. Of note, in DRL, we trained the network to learn the policy that

maximized the expected sum of rewards. Therefore, in this problem context, we trained the

network to learn the policy that minimized the total travel distance.

Policy: The stochastic policy pθ chose a node at each time step based on the precedence cri-

terion. This procedure was followed until all pickup-and-delivery services were completed.

The ultimate result of enacting the policy was a permutation of all nodes, which specified the

order of each node for the vehicle to visit, i.e., VðpÞ ¼ fvp1
; . . . ; vpTg. The probability of an

output solution was factorized using the chain rule as shown in Eq (2).

PðVðpÞjVÞ ¼
QT

t¼1
pyðvpt jV; vp1

; . . . ; vpt� 1
Þ; ð2Þ

where V is the set of nodes of the instance. Decision making about the node selection based on

the learnt policy pθ was then performed.

B. Policy Network based on Hybrid Pointer Networks (HPN)

� Policy’s encoder.

A routing problem’s action space is discrete and increases exponentially with an increase of

the problem size. The policy-based reinforcement technique, which consists of an actor net-

work and a critic network [46], is frequently used to address such problems. At each time step,

the actor network constructs a probability vector across all actions based on the current state

and then samples an action from the allowed action set; this is recursively repeated until the

termination condition is reached. The reward of the actor network is computed by accumulat-

ing the discounted reward at each step. To reduce variance, the critic network is used, as it crit-

icizes the actions made by the actor; said differently, the critic network acts as a judger of the

actor’s action, thus showing how effective (good or bad) its action was as a baseline of the actor

network and calculating the baseline reward. After obtaining the actor network’s reward and

the critic network’s baseline reward, the policy gradient approach [47] is used to update the

parameters of the two networks, with the actor network being taught to produce higher-quality

solutions.

In order to learn policy π, following several previous studies [10] where the HPN model

was built upon the pointer networks, we built a policy network with an encoder-decoder struc-

ture. Given the features of PDP, the HPN was expected to learn the link between the nodes of

various roles, allowing the precedence constraint to be captured intrinsically. As a result, the

parameters in this deep architecture also corresponded to those in π. We then rebuilt the archi-

tecture to make it more suitable for PDP.

Technically speaking, HPN works by passing the context through two different encoders

before combining the two contexts using the summing function. For instance, Stohy et al. used

a GNN for context encoding in the HPN model, as the graph can extract complex relationships

from a graph, and the other encoder is the transformer’s encoder [48] made up of several self-

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 6 / 19

https://doi.org/10.1371/journal.pone.0267199

attention layers. The LSTM [49] was used in the point encoder, which encodes the currently

selected point concatenated with the truck’s remaining capacity.

As can be seen in Fig 2, for the transformer’s encoder, there was the multi-head attention

sublayer where we left out the depot. For simplification, hl� 1
i ; i 2 V was taken to denote the

node embedding of attention layer L−1 (L 2 {1,. . .,N}), where i was the node index. We then

assumed dk, dv to be the query/key dimension and dv to be the value dimension, where

dk ¼ dv ¼
dh
Mand M = 8 was the number of heads. For the number of heads, we followed the

common and parameters used in the literature.

Given input sequence V, in our case, V was a sequence of the cities’ coordinates

concatenated with the cities’ demands. In order to improve feature extraction, the self-atten-

tion mechanism learns the relationships between sequence elements to construct a representa-

tion of the sequence. Based on input V, three vectors—namely, query, key, and value—were

constructed to capture the relationships (see Eq (3)–(7)).

Hl ¼ softmax
QlKlT

ffiffiffi
d
p

� �

Vall ð3Þ

Henc ¼ Hl¼Lenc
2 Rn�d ð4Þ

Ql ¼ Hl WL
Q ð5Þ

Kl ¼ Hl WL
K ð6Þ

Vall ¼ Hl WL
V ð7Þ

where WL
Q;W

L
K 2 Rdh X dk and WL

V 2 Rdh X dv are trainable parameter matrices, Henc is a matrix

Fig 2. Multi-headed attention.

https://doi.org/10.1371/journal.pone.0267199.g002

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 7 / 19

https://doi.org/10.1371/journal.pone.0267199.g002
https://doi.org/10.1371/journal.pone.0267199

containing the encoded nodes, Ql, Kl and Vall are a query, key, and value of the self-attention,

respectively, and l denotes the number of self-attention layers.

The graph encoder is the second. The context of the graph embedding layer was obtained

by directly encoding the context vector or feature vector. We then simplified the equation and

assumed that the graph was complete. As a result, the graph embedding layer could be written

as shown in Eq (8) [50]:

Vl ¼ g Vl� 1 Wg þ 1 � gð Þ φ
y

Xl� 1

jNðiÞj

� �

ð8Þ

where Vl 2 RN�dl ; and φ
y

: RN�dl� 1 ! RN�dl is the aggregation function, γ is a trainable param-

eter, Wg 2 Rdl� 1�dl is trainable weight matrix, and N(i) the adjacency set of node i. Next, l
denotes the number of layers used for the graph embedding.

For the point encoder encoding the currently selected city concatenated with the truck’s

remaining capacity, each city coordinates vi (i.e. (vi,1, vi,2)) concatenated with ct where ct were

taken to denote the truck’s remaining capacity at time stamp t the concatenated vector v̂ is

embedded into a higher dimensional vector v̂ 2 Rd, where d is the hidden dimension. An

LSTM then encoded the vector v̂ for the current city vi. The hidden variable v̂h
i of the LSTM

was passed to both the decoder of the current stamp and the encoder of the next time stamp.

� Policy’s decoder.

The decoder was built on a pointer network’s attention mechanism and outputs the pointer

vector ui, which was then sent through a Softmax layer to generate a distribution over the fol-

lowing candidate points. The formulation of the attention mechanism and the pointer vector

is shown in Eq (9).

uðjÞi ¼
AT:tanhðWrrj þWqqÞ if j 6¼ sðkÞ; 8k < j;

� 1 otherwise;
ð9Þ

(

where Softmax normalizes the vector ui to be the “attention” mask over the inputs, ui
(j) consid-

ered as the j-th element of the vector ui. A, Wr and Wq are trainable parameters, q is the query

vector from the hidden state of the LSTM, ri is a reference vector containing the contextual

information from all cities.

The distribution policy over all candidate cities is provided in Eq (10).

pyðvijsiÞ ¼ pi ¼ softmaxðuiÞ ð10Þ

We then predicted the next visited city by sampling or choosing greedily from policy πθ(vi|
si).To this end, we just reconstructed that architecture to meet the requirements of the problem

(see Fig 3). In our problem, we had four features x, y, d, and c, x and y were the 2-dimonational

coordinates for the points, d represented the points’ demand and finally c represented the

truck’s remaining capacity. As our context included x, y, and d, we passed these three features

through the hybrid encoder and obtained two contexts: one from the GNN and the other from

the transformer’s encoder. We then concatenated the truck’s remaining capacity with the cur-

rently selected point, taking the mean of the GNN context, the transformer context and pro-

jecting them into a high dimensional space. We then added both tensors together with the

concatenated one and passed them through the LSTM. The architecture of our model to tackle

PDP is shown in Fig 3.

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 8 / 19

https://doi.org/10.1371/journal.pone.0267199

C. Training algorithm

Algorithm 1 summarizes the training of the suggested policy for solving PDP where we used

the reinforcement learning approach with a roll-out baseline [8]. The policy gradient method

was characterized by the following two networks:

1. The actor network drove node determination actions by making a vector of probabilities

over those actions and inspected them as indicated by those probabilities to investigate the

action space.

2. In the self-critic network, which is a roll-out baseline with a topology similar to that of the

actor network, the reward was determined given the beginning state by selecting the node

with the best likelihood to eliminate variance. After obtaining the reward of actor network

R and the baseline reward of the critic network, the reinforcement learning technique used

the policy gradient approach to adjust parameters of two networks.

Furthermore, when the performance of the latter was considerably better according to the

results of a paired t-test on a specified number of batches, the parameters of the critic network

were substituted with those of the actor network. Policy P was trained to identify higher-qual-

ity solutions by upgrading the two networks.
Algorithm 1. REINFORCE with Rollout Baseline [8]
1: Input: number of epochs E, steps per epoch T, batch size B, signifi-
cance α
2: Init θ, θBL θ
3: For epoch = 1,. . .,E do
4: For step = 1,. . .,T do
5: si RandomInstance () 8i 2 {1,. . .,B}
6: πi SampleRollout (si, pθ) 8i 2 {1,. . .,B}
7: pBL

i GreedyRollout ðsi; pBL
y
Þ 8i 2 f1; . . . ;Bg

8: rL
PB

i¼1
LðpiÞ � LðpBL

i Þ ry log pyðpiÞ

9: θ Adam (θ, rL)
10: End for

Fig 3. Illustration for how features flow inside HPN. Feature vector consists of thee vectors: two city’s coordinates

and the cities’ demand. | means concatenate both currently selected points with the truck’s remaining capacity.

https://doi.org/10.1371/journal.pone.0267199.g003

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 9 / 19

https://doi.org/10.1371/journal.pone.0267199.g003
https://doi.org/10.1371/journal.pone.0267199

11: If OneSidedPairedTTest (pθ, pBL
y
) < α then

12: θBL θ
13: End if
14: End for

V. Experimentation and computation analysis

In this section, we report the results of simulations performed to validate the effective-

ness of the proposed model to address PDP. A truck left the warehouse and made

only one stop for each customer, i.e., the pickup location had to be visited before the

delivery one. The goal was to minimize the overall trip. Overall, PDP is an NP-hard

problem characterized by growing computation complexity with an increase of the

problem size.

Experimental settings

As mentioned above, PDP was defined through an undirected graph G = (V, E) where

node i = {0, 1,. . .,m} was re-presented by features ni. The index i = 0 represented the depot

node, and i > 0 represented the i-th customer node. The vehicle had capacity D > 0 and

each customer node i = {1,. . .,m} had a demand δI, 0 < δi < D. We assumed that the depot

demand δ0 = 0. Both depot and customer nodes were randomly generated inside the unit

square [0, 1] × [0, 1]. We generated 21 and 51 (the first node was the depot) for instances

with a size of m = 20 and 50; due to memory constrain, we did not go through size 100.

We used Kaggle’s Tesla P100 with 16 GB of memory. The corresponding vehicle capacities

were 30 and 40, respectively. The customer node demands were uniformly sampled from

{1,2,. . .,9}. We normalized the customer node demand to [0, 1] by the truck’s max capacity

through d
norm
i ¼

di
truck capcity The input, masks, and decoder context vectors for PDP were

adjusted as follows:

1. Input: Handling PDP needed only to expand the node feature ni to a four-dimensional

input n0i that included the normalized demand d
norm
i , node feature ni (nodes’ coordinates),

and the nodes’ Euclidian distance from depot (see Eq (11)).

n0i ¼ nijjd
norm
i jjEucdepot ð11Þ

where || represents concatenation.

2. Vehicle remaining capacity update: We masked out the customer nodes that were served,

so there was no need to update the needs of served customer nodes. The decoder selected

the customer node πt at timestep t, and the remaining capacity of the vehicle was repre-

sented by D0t . We assumed that the vehicle started at the depot when the decoding timestep

t = 1 and the vehicle was zero loaded (with the remaining vehicle capacity D0
1
¼ 0). The

remaining vehicle capacity was updated using Eq (12).

D0
1
¼

D0t� 1
� d

norm
pt

pt ¼ i; i 2 f1; . . . ;mg

zero pt ¼ 0
ð12Þ

(

3. Decoder context vector: The context vector ct of the decoder at timestep t 2 {1,� � �,m},

where m was the number of nodes without depot, of three components: hybrid embedding

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0267199

�x, embedding of node πt and vehicle remaining capacity D0t� 1
(see Eq (13)):

ct ¼
�xþWxðxpt� 1

jjD0t� 1
Þ t > 1

�xþWxðx0jjD0t� 1
Þ t ¼ 1

ð13Þ

(

where Wx is a trainable parameter.

4. Mask update mechanism: For PDP, our mask consisted of the following two parts: (1) the

customer node mask and (2) the depot node mask. For the customer node mask, we

masked out:

� Customer node that was served;

� Any pickup city if its demand plus the remaining capacity exceeded the truck’s limit (1);

�When the demand of a customer node exceeded the remaining capacity of the vehicle. That

is, customer node i’s attention coefficient ui,t = −1 when d
norm
i > D0t� 1

or

i 6¼ pt; 8t0 < t; i 2 f1; . . . ;mg.

� For the depot mask, as the depot would not be the next chosen node when the vehicle left the

depot, the depot node 0’s attention coefficients ui,t = −1 for t = 1 or πt−1 = 0

Next, in order to test our model capability and to generalize through different settings, we

then did the following two separate applications:

1. In the first application, considered for bike sharing system BBS, we assumed that all

demands summed to zero, and our goal was to satisfy the demands as much as we could,

and the truck would leave the depot with a zero capacity.

2. In the second application, we assumed more randomness in demands and randomized the

demands while balancing the number of the pickup points with the drop-off one.

The points of the stations and clients (pickup and drop-off) nodes were then arbitrarily and

freely created involving a 2-layered uniform circulation in the scope of 0 and 1, where the dis-

tance between two hubs was determined in view of Euclidean space. Hyperparameters used

during training are summarized in Table 1.

i. Bike Sharing Systems (BBS).

In order to ensure customer satisfaction and system effectiveness, it is essential to rebalance

BSS bike distribution [51]. In previous extensive research on redistribution, numerous efficient

methods that maintain an equilibrium of bikes at each station have been proposed.

The three forms of BSS rebalancing include static, dynamic, and incentivized rebalancing.

A fleet of trucks is frequently used to redistribute bikes in static and dynamic rebalancing

models. First, static rebalancing, alternatively referred to as SBRP, is usually performed at

night or during periods of low demand. This is so because SBRP assumes that the number of

bikes needed at each station remains constant or shows only light fluctuations. Second, the

Table 1. Hyperparameters used for training both experiments.

Parameter Value Parameter Value

Graph embedding layer 3 Learning rate 1 x 10−4

Transformer encoder layer 6 Batch size 512

Feed-forward dim 512 Training steps 2500

Optimizer Adam Tanh clipping 10

Epochs 100 Number of hidden unites for embedding 128

https://doi.org/10.1371/journal.pone.0267199.t001

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0267199.t001
https://doi.org/10.1371/journal.pone.0267199

rebalancing outcome in the Dynamic Bicycle Repositioning Problem (DBRP) is influenced by

bike movement, which has a substantial impact on bike demand at each station. Consequently,

solving DBRP requires accurate demand forecasting. Third, incentivized rebalancing promotes

users to participate in system rebalancing by advising modest changes to their intended itiner-

ary via control signals, which provides alternative routes that promote rebalancing, or even

paying users for returning bikes to a station. In recent years, BSSs have outgrown the need for

stations/docks, with users becoming able to deposit and pick up bikes anywhere within desig-

nated municipal boundaries. This sort of bike-sharing, also known as a free-floating bike-shar-

ing system (FFBSS), has several important advantages over traditional BSSs, such as cheaper

capital costs and lower risk of bike theft. The system’s efficient rebalancing is critical to its suc-

cess [52].

The results on BBS21 and BBS51 where the truck’s capacity will be 30 and 40, respectively,

are summarized in Table 2. As can be seen in the table, our model achieved a low tour length

as compared with the other two models with a large margin. For the sack of clarity and to dem-

onstrate effectiveness of our approach, we used previously proposed models [34, 50] that han-

dled the traveling salesman problem (TSP) with our settings.

Several representative instances for BBS21 and BBS51 are shown in Fig 4. As can be see

from the the line plot in Fig 4, at the end of the tour, the truck’s capacity returned to zero, and

the overall truck’s capacity during the tour did not exceed its limit (1). This results demon-

started feasibility of the proposed solution.

ii. PDP with random demands.

In our second application, we tested our methedology against more randomness in genera-

tion demands. To this end, we generated equal drop-off and pickup points; yet, we did not

ensure that their sum would be equal to zero. In order to esnure finding a feasible soluation for

each batch, we also assumed that the agent was allowed to visit the depot and refill half of the

truck during to gurantee. Our results on PDP21 and PDP 51 where the truck’s capacity was 30

and 40, respectively, are summarized in Table 3.

As can be seen in Table 3, our model had the lowest tour length with a large margin for

both sizes as compared to GPN and Pointer Network. Fig 5 shows some representative

instances for PDP21 and PDP51. As can be seen from the line spot in Fig 5, the truck’s capacity

did not execeed its limit, so the solution can be evaluated as feasible.

iii. Large instances.

Given that handling huge instances is a significant challenge, when dealing with real-world

applications, a high number of points is to be expected, whi is the criterion that makes one

model better than others. In our experiments, we sought to generalize our approach for large

instances. In order to achieve the best potential generalization from our model, we used a sim-

ple approach of diffusing the generalization capability throughout our model’s parameters. We

then trained our model on instances of size 50 and validated our training on instances of size

Table 2. Our result on BBS21 and BBS51, obj denotes for the total tour length and the Time denotes for the time

for evaluation the result averaged over 10k instances.

BBS21

Max Vehicle’s Capacity = 30

Initial load = zero

BBS51

Max Vehicle’s Capacity = 40

Initial load = zero

Method Obj Time Obj Time

Pointer Networks Greedy 4.642 1s 7.01 2s

GPN Greedy 4.625 1s 7.00 3s

HPN Greedy 4.22 1s 6.34 4s

https://doi.org/10.1371/journal.pone.0267199.t002

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 12 / 19

https://doi.org/10.1371/journal.pone.0267199.t002
https://doi.org/10.1371/journal.pone.0267199

500 to fine-tune the model’s parameters for bigger instances; our assumption was that the sum

of the demands would tend to be equal to zero. Upon setting the batch size of the trainig data

to 128 and the validation data to 64, we trained our model only for 4 epochs to avoid overfit-

ting. Finally, in order to avoid memroy limitation, we decreased the number of hidden unites

to 64. A summary of our training hyperparameters during training of large instances is pro-

vided in Table 4.

Fig 4. Sample instances for BBS21 and BBS51, with each point labeled with its demand and the vehicle remining capacity once the vehicle served this

point.

https://doi.org/10.1371/journal.pone.0267199.g004

Table 3. Results on PDP21 and PDP51.

PDP21 Max

Vehicle’s Capacity = 30

Initial load = zero

PDP51

Max Vehicle’s Capacity = 40

Initial load = zero

Method Obj Time Obj Time

Pointer Networks Greedy 4.863 1s 7.403 2s

GPN Greedy 4.856 1s 7.436 3s

HPN Greedy 4.30 1s 6.48 4s

https://doi.org/10.1371/journal.pone.0267199.t003

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 13 / 19

https://doi.org/10.1371/journal.pone.0267199.g004
https://doi.org/10.1371/journal.pone.0267199.t003
https://doi.org/10.1371/journal.pone.0267199

Table 5 shows the result of BBS101,BBS201,BBS301,BBS401,and BBS501. Our assumption

was that the truck’s max capacity for all of these instances was 40. Due to the memory con-

straint, we averaged only over 10k intances. Fig 6 illustrates several simple tours for BBS101,

BBS201,BBS301,BBS401, and BBS501.

Fig 5. Sample instances for PDP21 and PDP 51, with each point labeled with its demand and the vehicle remining capacity once the vehicle served this

point.

https://doi.org/10.1371/journal.pone.0267199.g005

Table 4. Hyperparameters used for training of large instances.

Parameter Value Parameter Value

Graph embedding layer 3 Learning rate 1 x 10−4

Transformer encoder layer 6 Batch size 512

Feed-forward dim 512 Training steps 2500

Optimizer Adam Tanh clipping 10

Epochs 4 Validation size 500

Number of hidden unites for embeddings 64 Validation Batch size 32

https://doi.org/10.1371/journal.pone.0267199.t004

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 14 / 19

https://doi.org/10.1371/journal.pone.0267199.g005
https://doi.org/10.1371/journal.pone.0267199.t004
https://doi.org/10.1371/journal.pone.0267199

VI. Ablation studies

In this section, we present the results of our ablation studies and explain our design decisions

in the light of recent literature.

a. Model choice

While a trade-off between speed and accuracy may be achieved by adjusting the model selec-

tion, we discovered that the HPN has a superior Encoder-Decoder combination to deal with

complicated input relations. Therefore we opted to tweak this model to deal with PDP.

b. Result analysis

The total demand for a standard bike-sharing system (BBS) tended to be zero. We drew both

the truckload and the point’s requests during the journey. Following intuition, for our process

to be correct, the truckload should have stayed inside its. Our findings revealed that exceeding

the truck limit was impossible, and the model attempted to balance loading during the route,

which resulted in a loading plot with a line that rarely exceeded 80% of the truck capacity.

Then, in order to see evaluate training stability, we increased the model’s burden and ran-

domly generated demands for both the pickup and drop-off points; however, to ensure visibil-

ity of the solution, we added a more relaxing option for the agent and let the agent return to

the depot and refill half of the truck capacity. The results showed that all model’s solutions

were feasible, including the condition with the capacity margin. Although we experienced dif-

ficulties when applying this approach to large-scale instances due to memory constraints,

using the validation trick during model training yielded good results with only 16G of RAM. It

can be speculated that increasing batch size during training large scale of instance would pro-

vide more stable training process and better results than those we obtained.

VII. Conclusion

In this study, we proposed a new approach to handle pickup and drop-off on a small and large

scale that combines a hybrid pointer network (HPN) with deep reinforcement learning.

Applying this technique to two separate types of PDP, we found that our technique can suc-

cessfully resolve these sorts of difficulties and reach state-of-the-art outcomes. While, for large

instances, our model was still struggling for an optimal solution, it demonstrated a better gen-

eralization capability as compared with GPN and pointer networks. Accordingly, considering

the challenge of determining the optimal solution for large points should be a primary empha-

sis in further research. In our future work, we will seek to establish a rigorous approach to

Table 5. Results of BBS101, BBS201, BBS301, BBS401, and BBS50.

BBS101

Max Vehicle’s

Capacity = 40

Initial

load = zero

BBS201

Max Vehicle’s

Capacity = 40

Initial load = zero

BBS301

Max Vehicle’s

Capacity = 40

Initial load = zero

BBS401

Max Vehicle’s

Capacity = 40

Initial load = zero

BBS501

Max Vehicle’s

Capacity = 40

Initial

load = zero

Method Obj Time Obj Time Obj Time Obj Time Obj Time

GPN

Greedy

11.02 24s 18.144 30s 25.058 40s 31.788 48s 38.35 55s

HPN Greedy 10.88 28s 17.12 38s 23.07 45s 29.29 50s 34.74 58s

Note. The results averaged over 10K instances.

https://doi.org/10.1371/journal.pone.0267199.t005

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 15 / 19

https://doi.org/10.1371/journal.pone.0267199.t005
https://doi.org/10.1371/journal.pone.0267199

Fig 6. Sample tour for BBS101, BBS201, BBS301, BBS401 and BBS501.

https://doi.org/10.1371/journal.pone.0267199.g006

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 16 / 19

https://doi.org/10.1371/journal.pone.0267199.g006
https://doi.org/10.1371/journal.pone.0267199

enhance the quality and speed of large-scale issue solutions, which would then lead to higher

model generalization.

Author Contributions

Conceptualization: Majed G. Alharbi, Ahmed Stohy, Mohammed Elhenawy, Mahmoud

Masoud, Hamiden Abd El-Wahed Khalifa.

Data curation: Majed G. Alharbi, Ahmed Stohy, Mohammed Elhenawy, Mahmoud Masoud,

Hamiden Abd El-Wahed Khalifa.

Formal analysis: Ahmed Stohy.

Funding acquisition: Majed G. Alharbi, Mohammed Elhenawy, Mahmoud Masoud, Hami-

den Abd El-Wahed Khalifa.

Methodology: Ahmed Stohy.

Project administration: Mohammed Elhenawy.

Software: Ahmed Stohy.

Supervision: Mohammed Elhenawy.

Validation: Mohammed Elhenawy, Mahmoud Masoud, Hamiden Abd El-Wahed Khalifa.

Visualization: Ahmed Stohy.

Writing – original draft: Majed G. Alharbi, Ahmed Stohy, Mohammed Elhenawy.

Writing – review & editing: Ahmed Stohy, Mohammed Elhenawy, Mahmoud Masoud,

Hamiden Abd El-Wahed Khalifa.

References
1. Agra A., et al., A maritime inventory routing problem with stochastic sailing and port times. 2015. 61: p.

18–30. https://doi.org/10.1016/j.cor.2015.01.008

2. Tang J., et al., An exact algorithm for the multi-trip vehicle routing and scheduling problem of pickup and

delivery of customers to the airport. 2015. 73: p. 114–132.

3. Anily S. and Federgruen A.J.M.s., One warehouse multiple retailer systems with vehicle routing costs.

1990. 36(1): p. 92–114.

4. Renaud J., et al., A heuristic for the pickup and delivery traveling salesman problem. 2000. 27(9): p.

905–916.

5. Agatz N., et al., Optimization for dynamic ride-sharing: A review. 2012. 223(2): p. 295–303.

6. Papadimitriou C.H.J.T.c.s., The Euclidean travelling salesman problem is NP-complete. 1977. 4(3): p.

237–244.

7. Bello I., et al., Neural combinatorial optimization with reinforcement learning. 2016.

8. Kool W., Van Hoof H., and Welling M.J.a.p.a., Attention, learn to solve routing problems! 2018.

9. Li J., et al., Heterogeneous Attentions for Solving Pickup and Delivery Problem via Deep Reinforcement

Learning. 2021.

10. Stohy A., et al., Hybrid pointer networks for traveling salesman problems optimization. PLOS ONE,

2021. 16(12): p. e0260995. https://doi.org/10.1371/journal.pone.0260995 PMID: 34905571

11. Padberg M. and Rinaldi G.J.S.r., A branch-and-cut algorithm for the resolution of large-scale symmetric

traveling salesman problems. 1991. 33(1): p. 60–100.

12. Bianco L., et al., Exact and heuristic procedures for the traveling salesman problem with precedence

constraints, based on dynamic programming. 1994. 32(1): p. 19–32.

13. Psaraftis H.N.J.T.s., An exact algorithm for the single vehicle many-to-many dial-a-ride problem with

time windows. 1983. 17(3): p. 351–357.

14. Sexton T.R. and Bodin L.D.J.T.S., Optimizing single vehicle many-to-many operations with desired

delivery times: II. Routing. 1985. 19(4): p. 411–435.

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 17 / 19

https://doi.org/10.1016/j.cor.2015.01.008
https://doi.org/10.1371/journal.pone.0260995
http://www.ncbi.nlm.nih.gov/pubmed/34905571
https://doi.org/10.1371/journal.pone.0267199

15. Sexton T.R. and Bodin L.D.J.T.S., Optimizing single vehicle many-to-many operations with desired

delivery times: I. Scheduling. 1985. 19(4): p. 378–410.

16. Dumas Y., Desrosiers J., and Soumis F.J.E.j.o.o.r., The pickup and delivery problem with time windows.

1991. 54(1): p. 7–22.

17. Jaw J.-J., et al., A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time

windows. 1986. 20(3): p. 243–257.

18. Psaraftis H.N.J.T.R.P.B.M., Analysis of an O (N2) heuristic for the single vehicle many-to-many Euclid-

ean dial-a-ride problem. 1983. 17(2): p. 133–145.

19. Psaraftis H.N.J.E.J.o.O.R., k-Interchange procedures for local search in a precedence-constrained

routing problem. 1983. 13(4): p. 391–402.

20. Savelsbergh M.W. and Sol M.J.T.s., The general pickup and delivery problem. 1995. 29(1): p. 17–29.

21. Kool W., et al., Deep policy dynamic programming for vehicle routing problems. 2021.

22. Ruland K., Rodin E.J.C., and m.w. applications, The pickup and delivery problem: Faces and branch-

and-cut algorithm. 1997. 33(12): p. 1–13.

23. Ropke S. and Cordeau J.-F.J.T.S., Branch and cut and price for the pickup and delivery problem with

time windows. 2009. 43(3): p. 267–286.

24. Ghorai C., Shakhari S., and Banerjee I.J.I.T.o.I.T.S., A SPEA-based multimetric routing protocol for

intelligent transportation systems. 2020.

25. Cao Z., et al., Using reinforcement learning to minimize the probability of delay occurrence in transporta-

tion. 2020. 69(3): p. 2424–2436.

26. Kim G., et al., Solving the dynamic vehicle routing problem under traffic congestion. 2016. 17(8): p.

2367–2380.

27. Cao Z., et al., Improving the efficiency of stochastic vehicle routing: A partial lagrange multiplier method.

2015. 65(6): p. 3993–4005.

28. Elhenawy M., et al., A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems. 2021. 13

(23): p. 13433.

29. Li H. and Lim A.J.I.J.o.A.I.T., A metaheuristic for the pickup and delivery problem with time windows.

2003. 12(02): p. 173–186.

30. Ropke S. and Pisinger D.J.E.J.o.O.R., A unified heuristic for a large class of vehicle routing problems

with backhauls. 2006. 171(3): p. 750–775.

31. Ghilas V., et al., An adaptive large neighborhood search heuristic for the pickup and delivery problem

with time windows and scheduled lines. 2016. 72: p. 12–30.

32. Hernández-Pérez H., Rodrı́guez-Martı́n I., and Salazar-González J.-J.J.E.J.o.O.R., A hybrid heuristic

approach for the multi-commodity pickup-and-delivery traveling salesman problem. 2016. 251(1): p.

44–52.

33. Alharbi M.G., et al., Solving Traveling Salesman Problem with Time Windows Using Hybrid Pointer Net-

works with Time Features. 2021. 13(22): p. 12906.

34. Vinyals O., Fortunato M., and Jaitly N.J.a.p.a., Pointer networks. 2015.

35. Nazari M., et al., Reinforcement learning for solving the vehicle routing problem. 2018.

36. Xin L., et al., Step-wise deep learning models for solving routing problems. 2020. 17(7): p. 4861–4871.

37. Zhao J., et al., A hybrid of deep reinforcement learning and local search for the vehicle routing problems.

2020.

38. Shi J., et al., Operating electric vehicle fleet for ride-hailing services with reinforcement learning. 2019.

21(11): p. 4822–4834.

39. Khalil E., et al., Learning combinatorial optimization algorithms over graphs. 2017. 30.

40. Nowak A., et al. A note on learning algorithms for quadratic assignment with graph neural networks. in

Proceeding of the 34th International Conference on Machine Learning (ICML). 2017.

41. Lin B., Ghaddar B., and Nathwani J.J.I.T.o.I.T.S., Deep reinforcement learning for the electric vehicle

routing problem with time windows. 2021.

42. James J., Yu W., and Gu J.J.I.T.o.I.T.S., Online vehicle routing with neural combinatorial optimization

and deep reinforcement learning. 2019. 20(10): p. 3806–3817.

43. Chen X. and Tian Y., Learning to perform local rewriting for combinatorial optimization. 2019.

44. Wu Y., et al., Learning Improvement Heuristics for Solving Routing Problems. 2021.

45. Bellman R., A Markovian Decision Process. Journal of Mathematics and Mechanics, 1957. 6(5): p.

679–684.

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 18 / 19

https://doi.org/10.1371/journal.pone.0267199

46. Konda V.R. and Tsitsiklis J.N. Actor-critic algorithms. in Advances in neural information processing sys-

tems. 2000.

47. Williams R.J.J.M.l., Simple statistical gradient-following algorithms for connectionist reinforcement

learning. 1992. 8(3): p. 229–256.

48. Vaswani A., et al. Attention is all you need. in Advances in neural information processing systems.

2017.

49. Hochreiter S. and Schmidhuber J.J.N.c., Long short-term memory. 1997. 9(8): p. 1735–1780.

50. Ma Q., et al., Combinatorial optimization by graph pointer networks and hierarchical reinforcement

learning. 2019.

51. Fricker C., N.J.E.j.o.t. Gast, and logistics, Incentives and redistribution in homogeneous bike-sharing

systems with stations of finite capacity. 2016. 5(3): p. 261–291.

52. Pal A. and Zhang Y.J.T.R.P.C.E.T., Free-floating bike sharing: Solving real-life large-scale static rebal-

ancing problems. 2017. 80: p. 92–116.

PLOS ONE Solving pickup and drop-off problem using hybrid pointer networks with deep reinforcement learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0267199 May 26, 2022 19 / 19

https://doi.org/10.1371/journal.pone.0267199

