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Abstract

To increase power and minimize bias in statistical analyses, quantitative outcomes are often

adjusted for precision and confounding variables using standard regression approaches.

The outcome is modeled as a linear function of the precision variables and confounders;

however, for many complex phenotypes, the assumptions of the linear regression models

are not always met. As an alternative, we used neural networks for the modeling of complex

phenotypes and covariate adjustments. We compared the prediction accuracy of the neural

network models to that of classical approaches based on linear regression. Using data from

the UK Biobank, COPDGene study, and Childhood Asthma Management Program

(CAMP), we examined the features of neural networks in this context and compared them

with traditional regression approaches for prediction of three outcomes: forced expiratory

volume in one second (FEV1), age at smoking cessation, and log transformation of age at

smoking cessation (due to age at smoking cessation being right-skewed). We used mean

squared error to compare neural network and regression models, and found the models per-

formed similarly unless the observed distribution of the phenotype was skewed, in which

case the neural network had smaller mean squared error. Our results suggest neural net-

work models have an advantage over standard regression approaches when the phenotypic

distribution is skewed. However, when the distribution is not skewed, the approaches per-

formed similarly. Our findings are relevant to studies that analyze phenotypes that are

skewed by nature or where the phenotype of interest is skewed as a result of the ascertain-

ment condition.
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Introduction

In epidemiological studies of respiratory diseases and smoking phenotypes, prediction models

are often fit using standard linear regression. However, a linear regression model assumes

there is a linear relationship between the mean of the phenotype and the covariates. While this

might be a reasonable assumption for some parts of the phenotypic range, it is questionable

whether linearity holds in the tails of the distribution, especially when diseased populations are

analyzed and the majority of study subjects have phenotypic values that are in the tails of the

distribution.

Neural networks, a well-developed deep learning approach [1], can describe non-linear

relationships between predictors and outcomes and are often able to achieve more accurate

prediction than those based on linear regression, making them potentially useful for predicting

complex respiratory phenotypes and smoking traits. Two important questions in epidemiology

are hypothesis testing and prediction. Hypothesis testing focuses on whether a variable X is

associated with an outcome Y, and whether other variables are confounders or precision vari-

ables. Prediction focuses on improving predictive accuracy by including all covariates with

appropriate forms that improve the prediction and excluding covariates that do not improve

the prediction accuracy of the model. Machine learning methods can provide a tool to investi-

gate covariates to include and forms of covariates to be used.

Previous work found machine learning methods can predict smoking cessation and forced

expiratory volume in one second (FEV1), a spirometric measure used to determine COPD

severity [2–4]. In particular, radial basis neural network predicted FEV1 using spirometry data

[5], and spirometry and demographic data [6], and the predicted and actual FEV1 values were

highly correlated. However, prediction accuracy was better for normal rather than restrictive

or obstructive diseased condition [5, 6]. Therefore, there is evidence machine learning and

deep learning methods can be used to predict these outcomes, and they can offer advantages

over other models in some circumstances.

We evaluated the prediction properties of neural network models as compared to standard

regression models. We used data from the UK Biobank [7], the COPDGene study [8], and the

Childhood Asthma Management Program (CAMP) [9] to assess the performance of both

approaches by comparing the test mean squared error (MSE) of each approach and each data

set. For each study we predicted FEV1, and using the UK Biobank and COPDGene study, we

also predicted age at smoking cessation and log age at smoking cessation.

Methodology

For the linear regression model, let yi denote the outcome, where i is the ith study subject. Let k
be the number of covariates x1i

; ‥; xki . To simplify, we denoted the covariate matrix as X and xi

is the ith subject in the matrix. We assumed a linear relationship and used the training set to

estimate parameters in the following equation:

EðyijxiÞ ¼ b0 þ b1x1i
þ b2x2i

þ � � � þ bkxki ð1Þ

Neural networks are made up of layers of neurons, and the number of neurons and layers

can vary depending on the data. The input layer of the neural network has a neuron for each of

the predictors from the data set being used, any hidden layers each have the number of neu-

rons specified by the user, and the output layer has one neuron when predicting a single con-

tinuous outcome [10]. The number of hidden layers and neurons for each hidden layer are

typically determined by trial and error. For this study, we used two hidden layers. Each neuron

has an associated weight, and the sum of the neurons multiplied by their weights is input into
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an activation function, which outputs to the next layer. Activation functions are specified for

each hidden layer and the output layer.

For the neural network model, suppose there are p layers in the model denoted L1, L2, � � �,

Lp. For the ith layer, there are ni neurons, each neuron is denoted N1i
;N2i

; � � � ;Nni
, and the layer

uses activation function ϕi. The activation function works as a link function and converts the

input signal to the output signal on a node. For example, a linear activation function is g(x) = x,

which is commonly used in linear regression models, while a non-linear activation function,

such as sigmoid function gðxÞ ¼ 1

1þe� x, can be used in a neural network model. Karlik and Olgac

(2011), and Sibi et al. (2013) provide more details and comparison of activation functions [11,

12]. The following equation is used for calculating Njiþ1
, the jth neuron in the ith + 1 layer:

Njiþ1
¼ �i

Xni

ki¼1

wki
Nki

 !

ð2Þ

where wki
is the weight for the kth neuron in the ith layer.

To evaluate prediction accuracy, we applied the trained models on the test data to predict

FEV1, age at smoking cessation, and log age at smoking cessation. We used data from the UK

Biobank, COPDGene study, and CAMP. The UK Biobank is a large prospective study [7],

COPDGene is a study of smokers in which participants were enrolled based on COPD affec-

tion status [8], and CAMP is a study of children with asthma [9]. For the UK Biobank and

CAMP, we included subjects of European ancestry. For the COPDGene study, we included

African American and non-Hispanic white participants in separate models. Ethnicity was

based on self-report. To predict FEV1, the models included age, sex, BMI, centered height, and

squared centered height as covariates. According to previous literature, these are common fac-

tors that may be associated with FEV1 [13, 14]. Height and height squared were centered to

reduce correlation between these two covariates. We considered two samples for prediction of

FEV1 using the UK Biobank data, one sample which included all subjects, and another sample

which only included a subset of subjects with the lowest 20% of FEV1 measurements to create

ascertainment bias. To predict age at smoking cessation and log age at smoking cessation, we

included former smokers, and the models included age, sex, age started smoking, education

(attended college or university), pack years of cigarettes, and smoker in household. Age at

smoking cessation was measured in the UK Biobank by asking participants who had stopped

smoking “At what age did you give up?”, and in the COPDGene study by asking participants

“How old were you when you completely stopped smoking?”. Characteristics of subjects are

shown in Table 1.

We randomly selected 1,000 subsets of the data sets to compare the mean test MSE for the

neural network and linear regression models where 50%, 25%, or 10% of the sampled data was

used as the test data. Each model was trained using the other 50%, 75%, or 90% of the sampled

data. Activation functions used and number of neurons for each model are included in

Table 2, and the architecture of the models is shown in S4 and S5 Figs in S1 Appendix. As seen

in Table 2, we used sigmoid functions for FEV1, hard sigmoid and rectified linear unit (RELU)

for smoking cessation, and sigmoid functions for log smoking cessation. Analyses were done

in R, and we used the package ‘Keras’ for the neural network analyses [15], and the package

‘caret’ for partitioning the data into the test and training data sets [16].

Data analysis

We applied the neural network models and linear regression models to predict FEV1 using the

UK Biobank data among subjects of European ancestry (N = 151,879), a subset of the UK
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Biobank data among subjects of European ancestry limited to subjects with the lowest 20% of

FEV1 measurements (N = 29,805), COPDGene study data among non-Hispanic white subjects

(N = 6,764), COPDGene study data among African American subjects (N = 3,365), and

CAMP data among subjects of European ancestry (N = 698), and to predict age at smoking

cessation and log age at smoking cessation using the UK Biobank data among subjects of Euro-

pean ancestry (N = 21,142), COPDGene study data among non-Hispanic white subjects

(N = 4,104), and COPDGene study data among African American subjects (N = 673). Note

that all data is from phase 1 of the COPDGene study.

Density plots of the outcomes revealed FEV1 was normally distributed, but age at smoking

cessation was right-skewed and could benefit from a log transformation. Density plots of the

distributions are shown in Fig 1.

We evaluated the predictive performance of the models by calculating the test MSE for each

model. For every data set, we separated 50%, 75%, or 90% of the sample as the training data,

and the remaining 50%, 25%, or 10% was used as the test data. Using the training data, the

neural network models and the linear regression models were fit, and then these models pre-

dicted the outcome y for the test data.

Table 1. Characteristics of subjects from the UK Biobank, COPDGene, and CAMP data. For continuous variables, we give the mean and standard deviation (i.e. mean

(sd)). Sample 1 is for FEV1 as the outcome. Sample 2 is for age at smoking cessation as the outcome and includes former smokers. Sample 3 is for FEV1 as the outcome for

the subjects with the lowest 20% of FEV1.

UK Biobank COPDGene: non-Hispanic white COPDGene: African American CAMP

Sample 1, n 151,879 6,764 3,365 698

FEV1 2.77 (0.75) 2.22 (0.95) 2.29 (0.86) 1.83 (0.50)

Sex (male), n (%) 88,406 (58.21) 3,553 (52.53) 1,856 (55.16) 408 (58.45)

Age, years 56.25 (7.98) 62.02 (8.86) 54.66 (7.21) 8.85 (2.13)

BMI 27.52 (4.86) 28.68 (6.05) 29.07 (6.66) 17.78 (3.05)

Height, cm 167.84 (9.08) 169.74 (9.46) 171.01 (9.67) 132.84 (13.84)

Sample 2, n 21,142 4,104 673 -

Smoking cessation, age in years 37.03 (10.33) 50.92 (11.03) 51.51 (9.66) -

Education (college or university), n (%) 9,201 (43.52) 3,039 (74.05) 341 (50.67) -

Pack years 18.09 (14.46) 46.71 (26.96) 38.51 (22.29) -

Smoker in household, n (%) 2,338 (11.06) 3,268 (79.63) 521 (77.41) -

Age started smoking, years 17.43 (3.18) 16.95 (3.85) 17.13 (4.97) -

Sample 3, n 29,805 - - -

FEV1 1.81 (0.28) - - -

Sex (male), n (%) 26,078 (87.50) - - -

Age, years 61.00 (6.27) - - -

BMI 28.26 (5.53) - - -

Height, cm 160.77 (7.06) - - -

https://doi.org/10.1371/journal.pone.0266752.t001

Table 2. Best neural network model features for predicting the different outcomes, determined by testing different combinations of activation functions, number of

layers, and number of neurons per layer for each data set.

Outcome First Hidden Layer Second Hidden Layer

Activation Function Neurons Activation Function Neurons

FEV1 Sigmoid 64 Sigmoid 16

Smoking Cessation Hard Sigmoid 64 RELU 32

Log Smoking Cessation Sigmoid 64 Sigmoid 32

https://doi.org/10.1371/journal.pone.0266752.t002
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Results

The MSE of the test data for the linear regression and neural network models for the different

data sets, sample sizes, and different proportions of data used for the test and training data are

shown in Fig 2 and in the S1-S3 Figs and S1-S3 Tables in S1 Appendix. As we decreased the

test data size, the standard error of the MSE increased, while the MSE was either similar for all

three test data size percentages (50%, 25%, and 10%) or decreased as the percent test data

decreased.

For the prediction of FEV1 for all subjects, the MSE was similar for neural network and lin-

ear regression across all data sets, sample sizes, and proportions of test data used except for

CAMP, where the MSE for linear regression was smaller than for neural network. For the pre-

diction of FEV1 for UK Biobank subjects with the lowest 20% FEV1 measurements, the MSE

was similar for neural network and linear regression for all sample sizes and proportions of

test data used. For the prediction of age at smoking cessation, the MSE was smaller for the

Fig 1. The plot in the top left shows the density plot of smoking cessation (age). The plot in the top right shows the density

plot of log smoking cessation (age). The plot in the bottom left shows the density plot of FEV1.

https://doi.org/10.1371/journal.pone.0266752.g001
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Fig 2. This figure includes box plots of the MSE for the different studies and outcomes when 50% of the data was used

to train the models.

https://doi.org/10.1371/journal.pone.0266752.g002

PLOS ONE Covariate adjustment of spirometric and smoking phenotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0266752 May 11, 2022 6 / 9

https://doi.org/10.1371/journal.pone.0266752.g002
https://doi.org/10.1371/journal.pone.0266752


neural network models for all data sets, sample sizes, and proportions of test data used, and

thus the neural network models showed an advantage in prediction over linear regression. The

neural network models showed the largest advantage over the linear regression models when

examining the COPDGene study among non-Hispanic white subjects. For the COPDGene

study among African American subjects, the neural network models still had a smaller MSE

when predicting age at smoking cessation, however, the difference was less than in the other

data sets. For the prediction of log age at smoking cessation, the MSE was smaller for neural

network than linear regression across all data sets, sample sizes, and proportions of test data

used except for the COPDGene study among African American subjects, for which linear

regression had a slightly smaller MSE when 50% of the data was used for testing. The neural

network models had the largest advantage over the linear regression models when examining

the COPDGene study among non-Hispanic white subjects.

Discussion

We used multiple permutations of subsets of the data to compare the prediction accuracy of

linear regression and neural networks for three continuous outcomes, FEV1, age at smoking

cessation, and log age at smoking cessation. The linear regression and neural network models

had similar MSE when the outcome was normally distributed (FEV1), but the neural network

model generally had smaller MSE than the linear regression when the outcome was not nor-

mally distributed (age at smoking cessation) or had been transformed (log age at smoking ces-

sation). This difference was largest for the COPDGene study among non-Hispanic white

subjects, and smallest for the COPDGene study among African American subjects. The subset

of the COPDGene study among African American subjects had the smallest sample size for

age at smoking cessation, which could be a reason we saw less of a difference in MSE between

the linear regression model and neural network model for age at smoking cessation, and

potentially could explain why the MSE was smaller for the linear regression when predicting

log age at smoking cessation using 50% of the data to test. While neural network had better

prediction accuracy in some scenarios, the interpretability of regression is superior to neural

networks as the coefficients in the regression model have a straightforward interpretation.

Previous research found success in using backpropagation neural network to classify cur-

rent and former smokers, with classification performance better than chance. However, com-

pared to a logistic regression model on the same data, they found prediction was not improved

when using the backpropagation neural network instead of the logistic regression [17]. Suc-

cessful prediction of FEV1 has also been found using neural networks previously, with one

study aiming to see if neural network models could predict FEV1 better than previously pub-

lished predictions that used multiple regression analysis. Using the same sample of elderly

adults as the previous model, the neural network predictions were found to correlate better to

the FEV1 values than the predictions made by the regression analysis [18].

There were some limitations of our analysis. While we considered continuous outcomes,

we did not consider binary outcomes. Additionally, while the neural network models generally

had lower MSE than the regression models when the phenotypic distribution was skewed, we

do not know if this is specific to the data we used or a general property of neural networks.

Also, it is important to note that our observations are based on only a few predictors and three

data sets. We used MSE of the test data to measure and compare prediction accuracy; however,

other metrics could be used to measure model fit.

While we focused on covariate adjustment of spirometric and smoking phenotypes, future

research could examine if the covariate adjustment using neural networks improves the perfor-

mance of genome wide association studies (GWAS) for rare or common variants. Reducing
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variability in the outcome should increase power for GWAS, and it is not clear if using neural

networks to improve covariate adjustment for spirometric and smoking phenotypes could

lead to novel variants. While we considered outcomes related to smoking and lung function, it

could be worth considering additional health outcomes in the future.

To summarize, we compared regression and neural network analyses based on test MSE,

and found for our outcomes there were scenarios where the regression and neural network

models performed similarly well. However, when the phenotypic distribution was skewed in

our data, the neural network model had a lower average test MSE in our analyses.

Supporting information

S1 Appendix. Additional tables, plots, and COPDGene study information.

(PDF)
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