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Abstract

In the age of the data deluge there are still many domains and applications restricted to the
use of small datasets. The ability to harness these small datasets to solve problems through
the use of supervised learning methods can have a significant impact in many important
areas. The insufficient size of training data usually results in unsatisfactory performance of
machine learning algorithms. The current research work aims to contribute to mitigate the
small data problem through the creation of artificial instances, which are added to the train-
ing process. The proposed algorithm, Geometric Small Data Oversampling Technique,
uses geometric regions around existing samples to generate new high quality instances.
Experimental results show a significant improvement in accuracy when compared with the
use of the initial small dataset as well as other popular artificial data generation techniques.

1 Introduction

Insufficient size of datasets is a common issue in many supervised learning tasks [1, 2]. The
limited availability of training samples can be caused by different factors. First, data is becom-
ing an increasingly expensive resource [3] as the process to retain them is getting more com-
plex due to strict privacy regulations such as the General Data Protection Regulation (GDPR)
[4]. Additionally, the small dataset problem can be found in numerous industries where orga-
nizations simply do not have access to a reasonable amount of data. For example manufactur-
ing industries are usually dealing with a small number of samples in the early stages of product
development while health care organizations have to work with different kinds of rare diseases,
where very few records are available [2].

In machine learning, researchers are usually concerned with the design of sophisticated
learning algorithms when aiming to improve prediction performance. However, increasing
the sample size is often a more effective approach. A rule of thumb is that “a dumb algorithm
with lots and lots of data beats a clever one with modest amounts of it” [5]. Generally, a small
number of training samples is characterized by a loose data structure with multiple informa-
tion gaps. This lack of information negatively impacts the performance of machine learning
algorithms [6]. Consequently, the knowledge gained from models trained with small sample
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sizes is considered unreliable as well as imprecise and does not lead to a robust performance
[2].

Considering the size of data, there are two types of problems: The first, is the insufficiency
of data belonging to one or more of the classes (imbalance learning problem) for a binary or
multi-class classification task while the second is the small size of the whole dataset (small data
problem) for any classification or regression task [7]. In both cases, the performance of
machine learning models is affected [8]. In this work, we consider only the second type of
problems i.e. the small data problem proposing an efficient algorithm, GSDOT, that increases
the classification performance.

A theoretical definition of “small” can be found in statistical learning theory by Vapnik. A
sample size is defined as small, if the ratio between the number of training samples and Vap-
nik-Chervonenkis (VC) dimensions is approximately less than 20. VC dimensions are deter-
mined as the maximum number of vectors that can be separated into two classes in all possible
ways by a set of functions [9].

Under-representation of observations in the sample set can be solved in different ways.
Techniques to artificially add information by extending the sample size, and eventually
improving the performance of the algorithms, can translate into significant improvements in
many application domains [7]. However, it is important to note that the challenge in artificial
data generation is to create data which extend the training set without creating noise [10].
Additionally, generating artificial data will only work if the initial sample is representative of
the underlying population. Fig 1 shows the relationship between population, sample and syn-
thetic data.

The next sections will describe an effective way to tackle the small data problem. Specifi-
cally, the focus in this paper is the case of binary classification tasks with the objective to gener-
ate artificial data for both of the classes, called arbitrarily the positive and negative class. The

Population

Synthetic

Fig 1. Relationship between population, sample and synthetic data [10].
https://doi.org/10.1371/journal.pone.0265626.9001
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application for the multi-class case is also straightforward and it is based on the binarization of
the problem through the one-vs-all approach. On the other hand, regression tasks require an
extensive modification of the data generation process and they will be a topic of future
research.

In section 2, the previously studied solutions are reviewed, while a detailed description of
the proposed method is presented in section 3. This is followed by the research methodology
and the experimental results in sections 4 and 5. Finally, the conclusions of the paper are pre-
sented in section 6.

2 Related work

Several methods to increase the data size have been presented by the research community. In
this section, the most important approaches to deal with the small data problem are presented.
We start by describing fuzzy theories, which have historically been the most used approach.
Next, we look at the resampling mechanism, which mainly consists of bootstrapping tech-
niques, and finally, we review oversampling methods that can be a valuable option to increase
the sample size in small datasets.

2.1 Fuzzy theory

Many artificial sample generation techniques presented in the literature are based on fuzzy
theory [2]. The fuzzy set theory defines a strict mathematical framework to generalize the clas-
sical notion of a dataset providing a wide scope of applicability, especially in the fields of infor-
mation processing and pattern classification [11]. Based on this concept, several methods have
emerged in the last decade to estimate or approximate functions which are generating artificial
samples for small datasets.

The fundamental concept of creating synthetic data is called Virtual Sample Generation
(VSG) and was originally proposed by [1]. The introduction of virtual examples expands the
effective training set size and can therefore help to mitigate the learning problem. [1] showed
that the process of creating artificial samples is mathematically equivalent to incorporating
prior knowledge. The concept was applied on object recognition by transforming the views of
3D-objects and therefore generating artificial samples.

Based on the above approach, several closely related studies were developed for
manufacturing environments. The first method to overcome scheduling problems, due to the
lack of data in early stages of manufacturing systems, was the creation of a Functional Virtual
Population (FVP) [12]. A number of synthetic samples was created, within a newly defined
domain range. Although, the process was manually configured, its application dramatically
improved the classification accuracy of a neural network.

[13] proposed the Diffusion-Neural-Network (DNN) method, an approach that fuzzifies
information in order to extend a small dataset. It combines the principle of information diffu-
sion by [14] with traditional Neural Networks to approximate functions. The information dif-
fusion method partially fills the information gaps by using fuzzy theory to represent the
similarities between samples and subsequently derive new ones.

In order to fully fill the information gaps, Mega-Trend-Diffusion (MTD) [3] combines data
trend estimation with a diffusion technique to estimate the domain range, thus avoiding over-
estimation. It diffuses a set of data instead of each sample individually. It is considered as an
improvement of DNN and was initially developed to improve early flexible manufacturing sys-
tem scheduling accuracy. In further research, MTD was widely used as a synthetic sample gen-
eration method and was recognized as an effective way to deal with small datasets [2].
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A drawback of MTD is that only considers the data attributes as independent and does not
deal with their relationships. Genetic Algorithm Based Virtual Sample Generation was pro-
posed that takes the relationship among the attributes into account and explores the integrated
effects of attributes instead of dealing with them individually. The algorithm has three steps:
Initially, samples are randomly selected to determine the range of each attribute by using
MTD functions. Next, a Genetic Algorithm is applied to find the most feasible virtual samples.
Finally, the average error of these new samples is calculated. The results outperformed the
ones using MTD and also showed better performance in prediction than in the case of no gen-
eration of synthetic samples [15, 16].

2.2 Bootstrapping Procedure or Random OverSampling

An alternative approach to fuzzy theory as well the most well-known artificial sample genera-
tion method is the Bootstrapping Procedure [2] or Random OverSampling (ROS). The main
difference to the previously presented techniques is that ROS expands the training set by dupli-
cating instances from the original dataset [17]. The selection is done with replacement, thus it
allows the algorithms to use the same sample more than one time. However, ROS may cause
overfitting when applied to small data because it repetitively uses the same information [18,
19]. Nevertheless, [20] applied ROS in batch process industries where it was shown that it may
help mitigate the small data problem.

3 Proposed method

Compared to the previous section, a different approach to fill information gaps is the creation
of new instances and not copies of the existing ones like in ROS. These methods were origi-
nally developed in the context of machine learning to deal with the imbalanced learning prob-
lem. Therefore, their origin comes from a different research community than the fuzzy and
bootstrapping methods presented above.

In this section, we present Geometric Small Data Oversampling Technique (GSDOT) as a
novel data generation procedure suitable for the small data problem. The data generation
mechanism of GSDOT is based on the oversampling algorithm Geometric SMOTE
(G-SMOTE) [21]. GSDOT is applied on the entire dataset, independent from the class distri-
bution. Therefore, GSDOT constitutes a new algorithm that generates artificial data for all the
classes in the dataset.

GSDOT algorithm randomly generates artificial data within a geometric region of the input
space. The size of this area is derived from the distance of the selected sample, either from the
positive or negative class, to one of its nearest neighbors, whereas the shape is determined by
the hyperparameters called truncation factor and deformation factor. Additionally, the selection
strategy hyperparameter modifies the selection process and also affects the size of the geomet-
ric region. Details of hte algorithm are provided below.

3.1 GSDOT algorithm

The inputs of the GSDOT algorithm are sets of the positive and negative class samples S,
Sneq respectively, the three geometric hyper-parameters truncation factor, deformation factor
and selection strategy as well as the number of generated samples for the positive class N,,,, and
for the negative class N,,.,. A sensible choice for the last two inputs, used also in the experimen-
tal procedure below, is to preserve the class distribution in the resampled dataset. The GSDOT
algorithm can be generally described in the following steps:

is initialized. S

1. An empty set S gen

gen will be populated with artificial data from both classes.
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2. 805 is shuffled and the process described below is repeated N, times until N, artificial
points have been generated.

2.1. A positive class instance Xce,, is selected randomly from Sy, as the center of the geo-
metric region.

2.2. Depending on the values of ay,; (positive, negative or combined), this step results in a ran-
domly selected sample X1, which belongs to either Sy, or S,

2.3. A random point X, is generated inside the hyperspheroid centered at X,,,;,. The major
axis of the hyper-spheroid is defined by Xyface = Xcenter While the permissible data genera-
tion area as well as the rest of geometric characteristics are determined by the hyperpara-
meters truncation factor and deformation factor.

24.x

en 18 added to the set of generated samples Sg,,,.

3. Step 2 is repeated using the substitution pos <+ neg until N,,,, artificial points have been
generated.

3.2 Considerations

As it is shown above, GSDOT algorithm applies independently the G-SMOTE data generation
process for both the positive and negative classes. The above description of step 2, that consti-
tutes the data generation mechanism, excludes mathematical formulas and details which can
be found in [21]. Fig 2 shows an example of the GSDOT data generation process when positive
class data generation is considered.

4 Research methodology

The main objective of this work is to compare GSDOT to other algorithms that deal with the
the small data problem. Therefore, we use a variety of datasets, metrics and classifiers to evalu-
ate the performance of the various methods. A description of this set-up, the experimental pro-
cedure as well as the software implementation is provided in this section.

4.1 Experimental data

The ten datasets used to test the performance of GSDOT are retrieved from UCI Machine
Learning Repository [22]. The focus on their selection lies on binary classification problems
with a balanced distribution of the two classes. In order to assure generalizability of the results,
the datasets are related to different topics such as health care, finance, business and physics.
Details of the datasets are presented in Table 1.

The approach to test whether oversamplers, and particularly GSDOT, are able to produce
high quality artificial data, is to generate randomly undersampled versions of the above data-
sets and try to reconstruct them. Specifically, random sampling of 50%, 75%, 90% and 95% is
applied on them, called undersampling ratio, followed by their enhancement with artificial
data that are created from the various oversampling methods. The details of the process are
presented in subsection 4.4.

4.2 Evaluation metrics

To evaluate the performance of GSDOT, the experiment includes two different metrics. The
first choice is Accuracy as it is one of the most common metrics for the evaluation of
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®  Positive class real data

o Negative class real data

+ Positive class synthetic data

Fig 2. The GSDOT data generation mechanism when positive class samples are generated. The process is repeated for the negative class.

https://doi.org/10.1371/journal.pone.0265626.9002

Table 1. Description of the datasets.

classification models [23]. Accuracy measures the ratio of correct predictions over the total

number of instances. The mathematical formula is the following:

TP + TN
TP+ TN + FP + FN

Accuracy =

where TP, TN, FP, FN denote the number of correctly classified positive, negative and misclas-
sified negative, positive instances, respectively. Accuracy might be inappropriate for datasets
with a significant difference between the number of positive and negative classes since rare
classes have a small impact to the final outcome compared to the majority classes. To make

Dataset Number of samples Number of attributes Area
Arcene 900 10.000 Health Care
Audit 776 18 Business
Banknote Authentication 1.372 5 Finance
Spambase 4.610 57 Business
Breast Cancer 699 10 Health Care
Indian Liver Patient 583 10 Health Care
Tonosphere 351 34 Physics
MAGIC Gamma Telescope 19.020 11 Physics
Musk 6.598 168 Physics
Parkinsons 197 23 Health Care

https://doi.org/10.1371/journal.pone.0265626.t001
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sure the contribution in the accuracies of the two classes stay relatively balanced, we include
the geometric mean score (G-Mean) as a second measure. G-Mean is the geometric mean of
sensitivity and specificity:

TP y TN
TP+ FN TN+ FP

G — Mean = +/sensitivity x specificity = \/

4.3 Machine learning algorithms

For the evaluation of the oversampling methods, a variety of classifiers are included to ensure
that the results are independent of their characteristics. Specifically, the experiment is con-
ducted using the following four classifiers: Logistic Regression (LR) [24], K-Nearest Neighbors
(KNN) [25], Decision Tree (DT) [26] and Gradient Boosting (GB) [27].

To deal with the small data problem, GSDOT is compared to three other algorithms. One
of them, ROS is chosen for its simplicity. As explained in the sections above, although GSDOT
is a novel algorithm, its data generation mechanism is based on G-SMOTE. Besides
G-SMOTE, there are several other informed oversampling algorithms presented in the litera-
ture. The first method to be proposed and still the most popular is the Synthetic Minority
Oversampling TEchnique (SMOTE) [28]. Numerous variants of SMOTE have been created,
increasing its status [29], with one of the most popular and effective variants being Borderline
SMOTE (B-SMOTE) [30]. In the case of the small data problem, when SMOTE and
B-SMOTE are used, the data generation process is trivially extended to include not only the
minority classes but also the majority class [19]. We include both of them in the experimental
procedure. Finally, the benchmark results (B-MARK) of using the original data are also
included, as well as the case when no synthetic data are generated and the classifiers are trained
using the undersampled data (NONE).

4.4 Experimental procedure

As explained above, the main goal of the paper is to evaluate how well GSDOT algorithm, as
presented in subsection 3.1, compares to other methods, when small datasets are enhanced
with artificial samples.

The performance of the classifiers is assessed using k-fold cross-validation scores with k = 5.
Each dataset D is randomly splitted into k subsets (folds) D;, D,, - - -, Dy of approximately
equal size. Each fold is used as a test set and the remaining folds are used to train the model.
The process is repeated in k stages, until each Dy is used as a validation set [31]. The experi-
mental procedure for an arbritary dataset and cross-validation stage is described below:

1. The k — 1 folds are undersampled using an undersampling ratio of 50%, 75%, 90% and 95%,
equal to the percentage of the dataset that is removed (1). Alternatively, no undersampling
is applied and the original data are presented to the classifiers, a case identified as B-MARK
).

2. Synthetic data generation is applied to the undersampled data (3) of the previous step that
increases their size and class distribution back to the initial (4). Alternatively, no synthetic
data are generated and the small data are presented to the classifiers, a case identified as
NONE (5).

3. The resampled data of the previous step as well as the data from two special cases as
described above are used to train the classifiers.
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4. The classifiers are evaluated on the remaining fold of step 1.

Fig 3 provides a schematic represenation of the experimental procedure:

This procedure results in a cross validation score for each combination of dataset, classifier,
synthetic data generation method and evaluation metric. It is also repeated three times and the
average cross-validation score is calculated across the three runs. The initialization in each of
the runs is random, including the undersampling step of the process and all random parame-
ters of the machine learning algorithms. The algorithms used in the experiment have various
hyperparameters that yield different scores. The maximum of these scores is reported.

In order to confirm the statistical significance of the experimental results, the Friedman test
as well as the Holm test [32] are applied. Ranking scores are assigned to each synthetic data
generation method, as well as the B-MARK and NONE cases, with scores of 1 to 5 for the best
and worst performing methods, respectively. The Friedman test is a non-parametric procedure
that compares the average rankings of the algorithms under the null hypothesis that all show
identical performance independent of the selected classifier and evaluation metric. If the null-
hypothesis is rejected to our favor, we proceed with the Holm test. The Holm test acts as a
post-hoc test for the Friedman test for controlling the family-wise error rate when all algo-
rithms are compared to a control method. It is a powerful non-parametric test in situations
where we want to test whether a newly proposed method is better than existing ones. The con-
trol method in our case is the proposed GSDOT method and is tested under the null hypothe-
sis that it performs similarly to the rest of synthetic data generation methods for every
combination of classifier and metric.

4.5 Software implementation

The implementation of the experimental procedure was based on the Python programming
language, using the Scikit-Learn [33] and Imbalanced-Learn [34] libraries. All functions, algo-
rithms, experiments and results reported are provided at the GitHub repository of the project.
Additionally, the Research-Learn library provides a framework to implement comparative
experiments, also being fully integrated with the Scikit-Learn ecosystem.

5 Results and discussion

In this section the performance of the different oversamplers and the results of the statistical
tests are presented and analyzed.

5.1 Comparative presentation

The mean cross validation scores and the standard error across all datasets per classifier, metric
and undersampling ratio (Ratio) are presented in Table 2. The Ratio is included in order to
evaluate how the methods perform as the dataset size diminishes. As explained above, we also
include the B-MARK method that represents the performance of the classfiers on the original
dataset. The B-MARK method is expected to obtain the best results by design. Therefore, the
highest scores for each row, excluding the B-MARK scores, are highlighted.

Table 2 shows that GSDOT outperforms all other methods, almost for all combinations of
classifiers and metrics. Throughout the scores we can observe that all methods have a better
performance as the dataset increase their size i.e. the Ratio gets smaller. Particularly, the scores
of GSDOT are the closest to the ones of the B-MARK results, which implies that it is able to
reconstruct the original dataset more effectively compared to the rest of the synthetic data gen-
eration methods.
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Datasets

Undersampling

Small Datasets

80% % Removed Data = 0%, S0%, 75%, 90%, 95%
+ Artificial Data
8. NONE ROS, SMOTE, B-SMOTE, GSDOT
Mag,

Test Data Training Data

20%
Classifiers
Evaluation

Accuracy, G-Mean

Results
CV Scores, Statistical Analysis

Fig 3. Visualization of the experimental procedure.

https://doi.org/10.1371/journal.pone.0265626.9003

Table 3 presents the mean and standard error of percentage difference between GSDOT
and NONE. It shows that GSDOT performs significantly better compared to the case where no
synthetic data generation is applied for every combination of undersampling ratio, classifier
and metric. Particularly, the performance gap increases for higher undersampling ratios.

A ranking score in the range 1 to 5 is assigned to each oversampler as well as the two special
case NONE and B-MARK. The mean ranking across the datasets of all methods is presented in
Table 4:

The highest rankings for each row, excluding the B-MARK case, are highlighted. Looking
at the table, GSDOT is ranked on the top place when comparing with NONE, ROS, SMOTE
and B-SMOTE.

5.2 Statistical analysis

To confirm the significance of the above presented results we apply the Friedman test as well
as the Holm Test on the above results. The application of the Friedman test is presented in
Table 5:

Therefore, the null hypothesis of the Friedman test is rejected at a significance level of
a=0.05, i.e. the synthetic data generation methods do not perform similarly in the mean rank-
ings for any combination of classifier and evaluation metric.

The Holm method is applied to adjust the p- values of the paired difference test with
GSDOT algorithm as the control method. The results are shown in Table 6:

At a significance level of a = 0.05 the null hypothesis of the Holm’s test is rejected for 25 out
32 combinations. This indicates that the proposed method outperforms all other methods in
most cases.
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Table 2. Results for mean cross validation scores of all methods.

Ratio Classifier Metric NONE ROS SMOTE B-SMOTE GSDOT B-MARK

50 LR ACCURACY 0.91 +0.03 0.91 +0.03 0.91 +0.02 0.91 +0.03 0.92 +0.02 0.92 +£0.02
50 LR G-MEAN 0.88 + 0.04 0.88 + 0.04 0.89 + 0.04 0.89 + 0.04 0.89 + 0.04 0.90 + 0.04
50 KNN ACCURACY 0.88 +0.03 0.88 +0.03 0.89 +0.03 0.88 +0.03 0.89 +0.03 0.90 +0.03
50 KNN G-MEAN 0.84 + 0.04 0.85 +0.04 0.86 + 0.04 0.85 + 0.04 0.86 + 0.04 0.87 £ 0.04
50 DT ACCURACY 0.88 + 0.04 0.88 + 0.04 0.88 + 0.04 0.88 + 0.04 0.90 + 0.03 0.90 +0.03
50 DT G-MEAN 0.86 + 0.05 0.86 + 0.05 0.87 +0.05 0.87 +0.05 0.89 + 0.04 0.89 +0.03
50 GBC ACCURACY 0.91 + 0.04 0.92 +0.03 0.92 +0.03 0.91 +0.04 0.93 +0.03 0.94 +0.02
50 GBC G-MEAN 0.90 + 0.04 0.90 + 0.04 0.91 +0.03 0.90 + 0.04 0.92 +0.03 0.93 £0.03
75 LR ACCURACY 0.90 + 0.03 0.89 +0.03 0.89 +0.03 0.89 +0.03 0.90 + 0.03 0.92 +£0.02
75 LR G-MEAN 0.86 + 0.05 0.86 + 0.05 0.87 + 0.04 0.87 + 0.04 0.87 + 0.04 0.90 + 0.04
75 KNN ACCURACY 0.86 + 0.04 0.86 + 0.04 0.87 + 0.04 0.85 + 0.04 0.87 +£ 0.04 0.90 £ 0.03
75 KNN G-MEAN 0.80 + 0.06 0.82 +0.05 0.84 + 0.04 0.83 +0.05 0.84 +0.04 0.87 £ 0.04
75 DT ACCURACY 0.86 + 0.05 0.86 + 0.05 0.86 + 0.05 0.85 +0.06 0.89 + 0.04 0.90 +0.03
75 DT G-MEAN 0.83 + 0.06 0.84 + 0.05 0.84 + 0.06 0.83 +0.06 0.86 + 0.05 0.89 +£0.03
75 GBC ACCURACY 0.87 +0.05 0.88 + 0.05 0.88 + 0.05 0.88 +0.05 0.90 + 0.04 0.94 +0.02
75 GBC G-MEAN 0.85 + 0.06 0.85 + 0.06 0.86 + 0.05 0.85 +0.06 0.89 + 0.04 0.93 +0.03
90 LR ACCURACY 0.86 + 0.04 0.86 + 0.04 0.86 + 0.04 0.85 + 0.04 0.87 +0.04 0.92 +0.02
90 LR G-MEAN 0.81 + 0.06 0.82 + 0.06 0.82 + 0.06 0.82 +0.05 0.83 + 0.06 0.90 + 0.04
90 KNN ACCURACY 0.81 +0.05 0.82 +0.05 0.82 +0.05 0.81 +0.05 0.83 + 0.05 0.90 +0.03
90 KNN G-MEAN 0.69 + 0.10 0.76 + 0.07 0.78 + 0.06 0.74 + 0.09 0.78 + 0.06 0.87 £ 0.04
90 DT ACCURACY 0.84 + 0.05 0.83 +0.05 0.83 + 0.06 0.83 +0.05 0.87 + 0.04 0.90 +0.03
90 DT G-MEAN 0.81 + 0.06 0.81 +0.06 0.80 + 0.06 0.80 + 0.06 0.84 +0.05 0.89 +£0.03
90 GBC ACCURACY 0.84 + 0.06 0.84 £+ 0.06 0.84 £ 0.06 0.84 £ 0.05 0.88 + 0.04 0.94 + 0.02
90 GBC G-MEAN 0.82 + 0.06 0.81 + 0.06 0.81 +0.07 0.81 +0.06 0.86 + 0.05 0.93 £0.03
95 LR ACCURACY 0.83 +0.05 0.83 +0.05 0.83 +0.05 0.83 +0.04 0.84 + 0.05 0.92 +£0.02
95 LR G-MEAN 0.75 + 0.08 0.76 + 0.07 0.76 + 0.07 0.77 £ 0.07 0.76 + 0.08 0.90 + 0.04
95 KNN ACCURACY 0.79 + 0.05 0.79 + 0.05 0.81 +0.05 0.79 +0.05 0.81 + 0.05 0.90 +0.03
95 KNN G-MEAN 0.60 +0.13 0.69 +0.09 0.71 + 0.09 0.74 + 0.06 0.73 +£0.07 0.87 £ 0.04
95 DT ACCURACY 0.81 +0.05 0.81 +0.05 0.82 +0.05 0.81 +0.05 0.85 + 0.05 0.90 +0.03
95 DT G-MEAN 0.77 + 0.06 0.78 + 0.06 0.78 + 0.06 0.78 + 0.06 0.81 + 0.06 0.89 +£0.03
95 GBC ACCURACY 0.82 +0.05 0.83 +0.05 0.83 +0.05 0.82 +0.05 0.85 + 0.05 0.94 +£0.02
95 GBC G-MEAN 0.77 + 0.07 0.78 + 0.07 0.78 + 0.07 0.78 + 0.07 0.81 + 0.07 0.93 +0.03

https://doi.org/10.1371/journal.pone.0265626.t002

6 Conclusions

Many domains and applications continue to be limited to the use of small datasets. The insuffi-
cient size of training data usually results in inferior performance of machine learning algo-
rithms. This paper proposes an effective solution to mitigate the small data problem in
classification tasks. As shown above, the GSDOT algorithm has the ability to generate high
quality artificial samples and improve the prediction accuracy of the classifiers used in the
experiments. This improvement relates to the algorithm’s capability of increasing the diversity
of new instances while avoiding the generation of noisy samples. An important point is that
GSDOT significantly improves classification performance compared to the case where only
the small data are used, for every combination of undersampling ratio, classifier and metric as
shown in Table 2. Specifically, the full experimental results show that there is not a single
instance where using the small data outperformed GSDOT. Table 3 also shows that the
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Table 3. Results for percentage difference between GSDOT and NONE.

Ratio Classifier Metric Difference
50 LR ACCURACY 0.52+0.27
50 LR G-MEAN 0.36 £ 0.14
50 KNN ACCURACY 1.30 + 0.45
50 KNN G-MEAN 2.48 £ 0.96
50 DT ACCURACY 2.58 £1.02
50 DT G-MEAN 3.72+1.61
50 GBC ACCURACY 2.75+1.42
50 GBC G-MEAN 2.90 + 1.46
75 LR ACCURACY 0.40 £ 0.15
75 LR G-MEAN 1.05£0.58
75 KNN ACCURACY 1.93 £ 0.50
75 KNN G-MEAN 7.27 £4.51
75 DT ACCURACY 4.13+1.88
75 DT G-MEAN 4.67 £1.97
75 GBC ACCURACY 4.39 +2.51
75 GBC G-MEAN 5.67 £ 3.00
90 LR ACCURACY 1.41 £0.52
90 LR G-MEAN 3.26 £ 1.58
90 KNN ACCURACY 2.95+1.21
90 KNN G-MEAN 33.43 £26.93
90 DT ACCURACY 4.47 + 1.46
90 DT G-MEAN 4.32 +1.88
90 GBC ACCURACY 5.17 +2.48
90 GBC G-MEAN 5.64 +2.35
95 LR ACCURACY 1.40 + 0.63
95 LR G-MEAN 1.23 +£3.71
95 KNN ACCURACY 2.94 +£1.28
95 KNN G-MEAN 23.66 £ 20.31
95 DT ACCURACY 5.00 £ 2.04
95 DT G-MEAN 5.18+1.79
95 GBC ACCURACY 4.11 £ 1.96
95 GBC G-MEAN 525+243

https://doi.org/10.1371/journal.pone.0265626.t003

performance gap increases for higher undersampling ratios. This is a clear indication that,
when using a small dataset, it is safe and appropriate to apply the the GSDOT algorithm, in
order to generate artificial samples and improve the performance of classifiers. Also GSDOT
outperforms standard artificial data generation approaches such as ROS and SMOTE, being
closer to the B-MARK scores than any of them. As presented in Table 2, in 30 out of 32 combi-
nations of classifiers and metrics, GSDOT outperforms all other methods. Finally, the statisti-

cal analysis of the experiments, Tables 5 and 6, confirms the dominance of the proposed

algorithm. The GSDOT implementation is available as an open source project, so that the
research community and data science practitioners can make use of it to improve the perfor-

mance of machine learning algorithms.
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Table 4. Results for mean rankings of all methods.

Ratio Classifier Metric NONE RANDOM SMOTE B-SMOTE GSDOT B-MARK
50 LR ACCURACY 4.64 4.64 3.07 5.14 1.71 1.79
50 LR G-MEAN 5.14 4.57 2.57 4.14 2.71 1.86
50 KNN ACCURACY 4.36 5.43 3.0 4.14 2.14 1.93
50 KNN G-MEAN 4.71 5.0 3.0 4.0 2.43 1.86
50 DT ACCURACY 4.43 4.57 3.79 4.71 1.71 1.79
50 DT G-MEAN 4.79 4.64 3.36 4.64 1.86 1.71
50 GBC ACCURACY 5.29 4.21 4.0 4.36 1.79 1.36
50 GBC G-MEAN 521 4.5 3.93 4.21 1.86 1.29
75 LR ACCURACY 4.0 4.64 3.86 5.36 2.14 1.0
75 LR G-MEAN 4.43 4.86 3.71 4.57 2.29 1.14
75 KNN ACCURACY 4.86 4.57 2.79 5.0 2.21 1.57
75 KNN G-MEAN 5.43 4.57 2.57 4.57 2.29 1.57
75 DT ACCURACY 4.14 4.29 4.14 5.0 2.14 1.29
75 DT G-MEAN 4.43 4.0 4.14 4.86 2.43 1.14
75 GBC ACCURACY 4.71 4.0 3.86 4.86 2.43 1.14
75 GBC G-MEAN 4.86 4.14 4.0 4.43 2.43 1.14
90 LR ACCURACY 4.21 4.29 3.64 543 2.43 1.0
90 LR G-MEAN 5.14 4.29 3.86 4.43 2.29 1.0
90 KNN ACCURACY 5.0 4.36 3.0 5.07 2.57 1.0
90 KNN G-MEAN 5.43 4.57 2.57 5.0 2.43 1.0
90 DT ACCURACY 4.21 4.36 4.21 5.21 2.0 1.0
90 DT G-MEAN 4.5 4.07 4.36 4.93 2.14 1.0
90 GBC ACCURACY 4.64 4.14 3.93 5.0 2.29 1.0
90 GBC G-MEAN 4.43 4.14 4.14 5.0 2.29 1.0
95 LR ACCURACY 4.29 4.71 3.29 5.14 2.57 1.0
95 LR G-MEAN 4.64 4.79 3.29 4.43 2.86 1.0
95 KNN ACCURACY 5.14 4.71 2.57 4.86 2.71 1.0
95 KNN G-MEAN 5.57 4.29 3.0 4.29 2.86 1.0
95 DT ACCURACY 5.36 4.29 3.93 4.43 2.0 1.0
95 DT G-MEAN 5.14 4.29 3.86 4.43 2.29 1.0
95 GBC ACCURACY 443 4.36 3.71 5.29 2.21 1.0
95 GBC G-MEAN 4.5 4.5 3.64 4.86 2.5 1.0
https://doi.org/10.1371/journal.pone.0265626.1004

Table 5. Results for Friedman test.

Classifier Metric p-value Significance

LR ACCURACY 1.2e-11 True

LR G-MEAN 6.9¢-08 True

KNN ACCURACY 2.7e-12 True

KNN G-MEAN 3.5e-13 True

DT ACCURACY 2.9e-12 True

DT G-MEAN 6.7e-11 True

GBC ACCURACY 4.9e-11 True

GBC G-MEAN 1.7e-09 True
https://doi.org/10.1371/journal.pone.0265626.t005
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Table 6. The p-values of the Holm’s test.

Classifier Metric

LR ACCURACY
LR G-MEAN
KNN ACCURACY
KNN G-MEAN
DT ACCURACY
DT G-MEAN
GBC ACCURACY
GBC G-MEAN

https://doi.org/10.1371/journal.pone.0265626.t1006

NONE ROS SMOTE B-SMOTE
2.9e-03 7.6e-05 2.9e-03 5.4e-05
2.1e-01 2.1e-01 1.0e-00 1.0e-00
2.7e-05 7.8e-08 1.4e-01 1.8e-03
1.1e-02 3.3e-03 2.9e-01 2.9e-01
1.5e-05 1.5e-05 4.8e-05 3.3e-05
1.3e-05 4.4e-05 4.4e-05 4.4e-05
2.2e-03 2.9¢-03 5.8e-03 1.8e-03
1.8e-03 3.9¢-03 7.3e-03 7.3e-03
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