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Abstract

The existing anomaly detection methods can be divided into two popular models based on

reconstruction or future frame prediction. Due to the strong learning capacity, reconstruction

approach can hardly generate significant reconstruction errors for anomalies, whereas

future frame prediction approach is sensitive to noise in complicated scenarios. Therefore, a

solution has been proposed by balancing the merits and demerits of the two models. How-

ever, most methods relied on single-scale information to capture spatial features and lacked

temporal continuity between the video frames, affecting anomaly detection accuracy. Thus,

we propose a novel method to improve anomaly detection performance. Because of the

objects of various scales in each video, we select different receptive fields to extract com-

prehensive spatial features by the hybrid dilated convolution (HDC) module. Meanwhile, the

deeper bidirectional convolutional long short-term memory (DB-ConvLSTM) module can

remember the temporal information between the consecutive frames. Experiments prove

that our method can detect abnormalities in various video scenes more accurately than the

state-of-the-art methods in the anomaly-detection task.

Introduction

In recent years, anomaly detection in surveillance videos has become a crucial research task due

to its potential application value for smart cities and public security [1]. Traditional surveillance

systems depend on artificial means to recognize abnormalities in the massive amount of real-

time video data. This way increases working hours, labor requirements, and error rate. Hence,

automatic detection of abnormal events [2] has drawn more and more attention from research-

ers. The intelligent surveillance system is a video supervising technology that uses an automatic

video analysis algorithm to find abnormal behaviors as soon as possible. However, anomaly

detection is subject to certain limitations so far. First, the abnormal events are much fewer than

normal samples in complex video surveillance data. Second, there is no standard definition of

“abnormality” because of context-dependent and human-defined semantics anomalous sam-

ples. Therefore, popular supervised methods are not suitable for our anomaly detection task.

Most state-of-the-art methods [3,4] usually employ unsupervised technologies that use nor-

mal events to train the network model. The abnormal events are detected as significant
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deviations from the learned model. In particular, many approaches use reconstruction error-

based methods [5,6], which train the normal samples and generate frames as consistently as

possible with the normal samples. Regular activities produce a small reconstruction error

when testing the learned model, whereas abnormal movements cause a relatively large error.

Nevertheless, obtaining a significant reconstruction error for anomalies is challenging due to a

deep neural network’s high learning capacity and generalization ability. Furthermore, the

methods recognize abnormalities regardless of context information and lack temporal conti-

nuity owing to the self-reconstructed generated frames. Therefore, it is accessible to the missed

and false detection phenomena while running these methods.

Considering the disadvantages of reconstruction methods, the video-prediction algorithms

[7,8] have been verified more efficient for anomaly detection. By only training regular events

to obtain a prediction model, the prediction methods follow the rule that normal events are

predictable, whereas abnormal events are unpredictable. It can make up for the shortcomings

of reconstruction methods, making normal and abnormal behaviors more distinguishable.

However, the traditional future-frame prediction model heavily depends on the information

of former frames, which is quite sensitive to any changes of these frames.

To solve the problems mentioned above, a new idea is proposed by considering the advan-

tages and disadvantages of prediction and reconstruction methods [9,10]. The future frame

prediction model expands the reconstruction error of abnormalities, making it easier to distin-

guish abnormal events. At the same time, the reconstruction model enhances the ability to pre-

dict future frames from regular events, which ensures robustness to noise. Nevertheless, the

literature [9] acquired only single-scale information from the previous layer based on a spatio-

temporal AutoEncoder (STAE), leading to the loss of detailed information for objects of differ-

ent sizes. The literature [10] used double conventional U-Net to integrate prediction and

reconstruction network (IPR) for anomaly detection. Still, this method cannot fully consider

the motion continuity between the video frames.

Motivated by the aforementioned anomaly detection task, it is necessary to sufficiently con-

sider multi-scale features and spatiotemporal continuity, which are essential for recognising

abnormal behaviours. Recently, lots of works have achieved great detection performance by

using multi-scale features of images [11,12]. Owing to the camera position and angle, objects

multi-scale features extraction can effectively improve the performance of target detection. This

paper proposes a novel spatio-temporal prediction and reconstruction network, i.e., STPR-net,

which integrates the multi-scale spatial features and temporal information. In the prediction

part, starting from the second downsampling of U-Net, we use the HDC module [13] to extract

multi-scale spatial features and learn the object’s scale variations. Then, at the end of the encod-

ing path of U-Net, we adopt the DB-ConvLSTM [14] to handle the temporal information and

obtain the complex motions between the continuous video frames. In the reconstruction part,

we use newly designed AutoEncoder (AE) structure to reconstruct the future frame through the

space and time dimension, which effectively improves the accuracy of the prediction results.

The rest of this article is organized as follows. Section 2 reviews the related works of anom-

aly detection. Section 3 presents the entire model framework of our method. Section 4 illus-

trates and discusses the experimental evaluation through a series of public datasets. Finally,

Section 5 summarises the paper and points out the future study directions.

Related work

With the rapid development of deep-learning technology, it has apparent advantages in anom-

aly detection tasks. Among all existing methods, the idea of reconstruction or future frame pre-

diction plays a vital role in detecting anomalies.
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Reconstruction methods

Recently, due to the strong capability of deep-learning networks in reconstruction, it has

undoubtedly made progress in anomaly detection task. Specifically, Zhai et al. [5] created a

deep-structured energy-based model to detect anomalous events. Hasan et al. [6] obtained a

regular model with the normal video sequences based on the AE structure and then applied it

to identify the irregularities. These researches indicated that convolution is mainly used to

extract features, so this structure hardly encodes temporal dependencies in a long video

sequence. Consequently, Chong et al. [15] and Luo et al. [16] presented convolutional long

short-term memory (ConvLSTM) layers to model temporal information. Li et al. [17] pro-

posed the multivariate Gaussian fully convolution adversarial autoencoder (MGFC-AAE) to

detect anomalies by considering gradient and optical flow patches. George et al. [18] used a

non-uniform spatio-temporal region resembling parallelepipeds to extract the related histo-

gram features. These methods simultaneously consider normal appearance and motion fea-

tures from the input data, further boosting the performance for video analysis.

Prediction methods

Inspired by the fact that future frame prediction has achieved outstanding results in the field of

computer vision, the prediction model aims to use the difference between the predicted frame

and its ground truth to detect abnormal events. For example, Munawar et al. [7] built a deep

prediction model to see the abnormal operation of industrial robots. Villegas et al. [8] combi-

nedthe LSTM network with analogy-based AE to settle long-term video-prediction matters.

Additionally, Liu et al. [19] proposed an approach to predict future frames based on U-Net,

which relies on the skip connection to obtain the essential structural characteristics between

high-level and low-level layers. However, these prediction methods have a typical problem of

poor anti-noise capability. Based on the previous works [9,10], we connect the prediction and

reconstruction module in series to improve the anomaly detection performance.

Proposed method

The framework of our method

The overall framework of our method is displayed in Fig 1. The architecture comprises three

parts: the prediction module, the reconstruction module, and the generative adversarial net-

work (GAN) module. Unlike the study of Tang et al. [10], our network inputs T continuous

Fig 1. Overall framework of our method. The framework is mainly composed of prediction module, reconstruction module, and GAN module.

https://doi.org/10.1371/journal.pone.0265564.g001
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frames into the predictive module one by one, achieving effective fusion of multi-scale spatial

features and temporal information. To enhance the robustness to noise of the predicted

frames, we add a reconstruction module into our network after the prediction module. The

reconstruction module uses an AE structure to retain the multi-scale spatiotemporal distribu-

tion information of the predicted frames, improving the prediction ability from normal events.

Meanwhile, we also adopt the GAN module consisting of a generator network (G) and a dis-

criminative network (D) to optimise our network through various loss functions. The different

parts of the proposed framework are illustrated in the next.

Prediction module. Fig 2 presents the details of the prediction module. The module com-

prises an encoding path and a decoding path. We insert an HDC network to capture multi-

scale spatial features of the training data and then adopt DB-ConvLSTM to model temporal

information between the consecutive T frames in a nonlinear way.

Due to the different positions and angles of the camera, the forms and sizes of objects are

significantly different. Recently, the HDC network can successfully tackle the multi-scale fea-

ture extraction task to benefit from the spatial feature information of things. At the same time,

the detailed spatial information tends to lose partly due to the downsampling of the U-Net

structure. To improve the representative capacity of the whole model, first, the proposed net-

work can extract multi-scale spatial information; second, it can make up for the detailed infor-

mation loss because of the downsampling operation. Therefore, we add the HDC network

starting from the second downsampling layer of the U-Net to capture the features as detailed

as possible. The previous study shows that the convolution before first downsampling will not

cause loss to feature data.

The structure of HDC is presented in Fig 3. The input feature data are sent into three differ-

ent model streams. These streams can obtain different receptive field sizes and extract multi-

scale features using a set of dilated convolution with varying dilation rates. To the best of our

knowledge, a low dilation rate seems suitable for capturing features of small objects, while a

high dilation rate is fit for big things. Finally, the feature maps from each stream are

concatenated with the input feature data for comprehensively considering multi-scale spatial

features information.

The anomaly detection methods commonly use three-dimensional (3D) convolution or

ConvLSTM [20] for time modeling of the input data. The 3D convolution needs more time to

Fig 2. Structure of prediction module. The input and output size of the module are both 256 × 256 × 3. The kernel sizes of all convolution and deconvolution are set to

3 × 3 and the downsample layers are set to 2 × 2.The resolutions of feature maps are equal inthe same convolution layer.

https://doi.org/10.1371/journal.pone.0265564.g002
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calculate the model parameters. Therefore, some methods adopt ConvLSTM to extract the

temporal features. However, the ConvLSTM can only process the sequence data forward.

According to the researches [14,21], it is also worth mentioning that considering both forward

and backward information is complementary to capture temporal correlation features for pre-

dicting future frames. Thus, the proposed model leverages the DB-ConvLSTM module to

obtain the related temporal information between the video frames.

Fig 3. Structure of HDC module. The sizes of input feature maps are 128 × 128 × 128 and 64 × 64 × 256 successively. The dilation rates set to 1, 2, and 5, respectively.

https://doi.org/10.1371/journal.pone.0265564.g003

Fig 4. Structure of DB-ConvLSTM module.

https://doi.org/10.1371/journal.pone.0265564.g004
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The input pattern of our model is different from the current methods that stack T sequen-

tial frames together into the model. Among these methods, the T frames are linked to each cor-

responding channel in the first output feature data, resulting in the collapse of temporal

information [22]. Thus, we feed T frames into the encoder orderly to generate corresponding

feature maps. The DB-ConvLSTM comprises a shallow forward and a deeper backward layer

(see Fig 4). More specifically, {Hf
t } represents the related outputs of forwarding sequential fea-

ture maps from the ConvLSTM units in the forward layer. The deeper backward layer takes

over the forward sequential results {Hf
t } to generate {Hb

t }corresponding outputs of back

sequential feature maps. And then, we use Eq (1) to simultaneously handle the forward and

the backward features data to get the final output sequence {Yt}. Finally, the feature informa-

tion can exchange between the forward and backward layer to extract more detailed and com-

plementary spatiotemporal features. As shown in Fig 4, we send the final output Yt into the

decoding process.

Yt ¼ tanhðWHf

y � H
f
t þWHb

y � H
b
y þ bÞ ð1Þ

Reconstruction module. As shown in Fig 5, we use the newly designed AE structure to

reconstruct the predicted frame I�tþ1
from the intermediate frame I�m. Subsequently, we adopt a

series of objective constraints function to optimise the proposed network, making I�tþ1
closer to

It+1.

GAN module. The GAN module leverages the G and D to optimize alternately during the

training phase, fully capturing the data distribution. The G aims to generate future frames as

realistic as possible, whereas D attempts to identify the frames generated by G. We use the

STPR-net as G, then order(I1, I2, I3, . . ., It) frames before the current frame It+1 as the input

tensor, and the generated frame I�tþ1
as the output tensor. For D, we choose PatchGAN [23] to

strengthen the ability to distinguish the difference between the genuine frame and generated

frame, guiding our model to focus attention on local image patches features.

Fig 5. Structure of reconstruction module. The input and output size of the module are both 256 × 256 × 3. The kernel sizes of all convolution and deconvolution are set

to 3 × 3 and the downsample layers are set to 2 × 2. The resolutions of feature maps are equal in the same convolution layer.

https://doi.org/10.1371/journal.pone.0265564.g005
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Loss function

We employ spatial and temporal loss functions to optimize the proposed method and mini-

mize the gap between the generated frame and its ground truth. More specifically, the intensity

loss can ensure the similarity of all pixels in the whole RGB space, and the gradient loss can

retain the sharpness of the generated images. Therefore, we use intensity and gradient loss as

the spatial constraint to make the generated frame I� identify with the corresponding ground

truth I. The intensity loss and gradient loss are calculated as

LintðI
�; IÞ ¼ kI� � Ik2

2
ð2Þ

LgdðI
�; IÞ ¼

X

i;j

�
�jI�i;j � I�i� 1;jj � jIi;j � Ii� 1;jj

�
�

1
þ
�
�jI�i;j � I�i;j� 1

j � jIi;j � Ii;j� 1j
�
�

1
ð3Þ

Moreover, the previous researches [24,25] indicated that the RGB difference could take the

place of the optical flow [26] as an effective temporal constrain. This constrain can reach a sim-

ilar effect but significantly reduce the running time. The temporal loss is defined as follows:

LrgbðI
�; IÞ ¼

�
�jI�tþ1

� Itj � jItþ1 � Itj
�
�

1
ð4Þ

We also leveraged GAN to constrain the training process owing to its excellent image gen-

eration [27] and video-prediction [10] performance in recent years. Specifically, G attempts to

generate future frames that are as realistic as possible, whereas D aims to distinguish the frames

generated by G. Ideally, the goal of the GAN is to reach the Nash equilibrium. When con-

straining the D, the network aims to classify I� into class 0 and I into class 1, where 0 indicates

the generated frame, and 1 represents the genuine frame. When optimizing the G, the process

is to make the generated frames I� classified into class 1 by D. The adversarial loss functions

for D and G are defined as

LD
advðI

�; IÞ ¼
1

2
ðDðI�Þ � 0Þ

2
þ

1

2
ðDðIÞ � 1Þ

2
ð5Þ

LG
advðI

�Þ ¼
1

2
ðDðI�Þ � 1Þ

2
ð6Þ

To acquire a well-trained model with a better ability to detect abnormalities, we collect all

the constraints above, i.e., spatial loss, temporal loss, and adversarial loss, for the final objective

optimization functions as follows:

LG ¼ aintLint þ agdLgd þ argbLrgb þ aadv þ LG
adv; ð7Þ

LD ¼ LD
adv ð8Þ

where αint, αgd, αrgb, and αadv are coefficients for the corresponding loss functions, respectively.

Anomaly detection

As far as we know, Peak Signal to Noise Ratio (PSNR) [28] is often picked to evaluate the

image quality. After obtaining the well-trained model, we calculate the difference between the

generated frame I� and corresponding ground truth I for anomaly detection.

PSNRðI�; IÞ ¼ 10log10

½maxI� �
2

1

N

XN

i¼0
ðI�i � IiÞ

2
ð9Þ
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where maxI� denotes the maximum value of the image pixels, N represents the total number of

pixels, and i is the pixel index.

We use the PSNR values to assess the generated frames in the test process. A higher PSNR

indicates that the generated frame resembles its ground truth. It will be detected as a regular

event and vice versa. For comparison, the PSNR values of all frames are normalized to the

range of [0, 1] in each test video. The regular score is expressed as

SðtÞ ¼
PSNRðI�t ; ItÞ � mintPSNRðI�t ; ItÞ

maxtPSNRðI�t ; ItÞ � mintPSNRðI�t ; ItÞ
ð10Þ

where the mintPSNR is the minimum value of the PSNR in every test video frame and the

maxtPSNR is corresponding maximum value.

Experimental results and discussion

This section has analyzed the proposed method performance on the Chinese University of

Hong Kong (CUHK) Avenue dataset [29] and the University of California San Diego (UCSD)

Pedestrian dataset [30]. The entire model was trained using TensorFlow with an NVIDIA

Tesla V100.

Evaluation metric

To measure the quality of our method, we do the related experiments and use the receiver

operating characteristic (ROC) curve as an indicator. The ROC curve is plotted by giving dif-

ferent threshold values and computing the true positive rate (TPR) and the false positive rate

(FPR). We compare our approach with the existing anomaly-detection algorithms through the

area under the curve (AUC) and equal error rate (EER). Higher AUC and lower EER values

indicate the better performance of anomaly detection. The graphic illustration between AUC

and EER is presented in Fig 6.

Datasets description

CUHK Avenue Dataset contains 16 training videos and 21 testing videos with 360 × 640 pixels

resolution obtained from Campus Avenue at the Chinese University of Hong Kong. The

pedestrians coming in and going out of the building are regarded as normal events, and the

abnormal events are throwing objects, running, loitering, and so on.

UCSD Dataset includes two subsets, Ped1 and Ped2, collected by the University of Califor-

nia San Diego. Ped1 consists of 34 training scenes and 36 testing scenes with 238 × 158 pixels

resolution, and Ped2 comprises 16 training scenes and 12 testing scenes with 360 × 240 pixels

resolution. In all normal cases, the people walk on the sidewalk. The abnormal videos contain

bicycles, skateboarders, wheelchairs, and vehicles crossing pedestrian areas.

Training details

For the training details of our algorithm, we choose Adam [31] to optimize the model parame-

ters. The model adopts a random clip of five sequential frames normalized to [-1, 1] in the

training phase. In addition, we set T to 4, and the mini-batch size is also 4. Concerning the

generator and discriminator, the learning rates are assigned to 0.0001 and 0.00001 for grey-

scale datasets, corresponding to 0.0002 and 0.00002 for color-scale datasets. For different data-

sets, the coefficient factors αint, αgd, αrgb, and αadv were slightly different.
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Experimental results

Results on the Avenue dataset. For a detailed description, in Fig 7, some events are

shown as the anomaly detection results from the fifth test video in the CUHK Avenue dataset.

Fig 7A displays the relationship between the test video frames and the regular score. The green

Fig 6. Relationship between AUC and EER.

https://doi.org/10.1371/journal.pone.0265564.g006
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blocks denote the ground truth abnormal region, and the blue line represents the regular score

of every frame. Higher regular scores indicate normal events. On the contrary, the lower

Fig 7. Frame-level evaluation results on the 5th test video of Avenue. (a) Relationship between the test video frames and the regular score. (b) Difference between the

ground truth and the corresponding generated frame.

https://doi.org/10.1371/journal.pone.0265564.g007
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regular scores matching the green area are anomalous events (e.g., throwing the bag). Fig 7B

presents the difference (labeled with a red rectangle) between the ground truth and the corre-

sponding generated frames. When running the proposed algorithm, the model has learned

Fig 8. Frame-level evaluation results on the 20th test video of UCSD Ped1. (a) Relationship between the test video frames and the regular score. (b) Difference between

the ground truth and the corresponding generated frame.

https://doi.org/10.1371/journal.pone.0265564.g008
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prior knowledge and predicts what will happen next. Under the campus avenue scene, the

training samples are all normal clips of walking persons. Once the test events do not match the

appearance and motion characteristics of the training samples, it will generate a big difference

between the generated frame and the ground truth.

Fig 9. Frame-level evaluation results on the 6th test video of UCSD Ped2. (a) Relationship between the test video frames and the regular score. (b) Difference between

the ground truth and the corresponding generated frame.

https://doi.org/10.1371/journal.pone.0265564.g009
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Results on the UCSD dataset. The size and shape of objects may vary on account of the

position and direction of the camera. Specifically, Figs 8 and 9 display the experimental results

of detecting anomalies from different camera directions on the UCSD Ped1 and Ped2 datasets.

The meanings of these figures are similar to those in Fig 7. Shown here, in Figs 8A and 9A, the

lower regular scores represent the abnormities (e.g., the car in the UCSD Ped1 20th test video

and the cyclists in the UCSD Ped2 6th test video). Higher regular scores are consistent with

normal behaviors. Just as Figs 8B and 9B depict, objects near the camera look more prominent

than those far from the camera, even though they are the same objects. We find that abnormal

events can be easily detected in different situations. Through analyzing the experimental

results, it is evident that our method performs well with the different scales of spatial features

because it uses the strengths of HDC to focus on the corresponding feature information.

Discussion

By analyzing the corresponding experimental results of different datasets, Table 1 shows a

quantitative comparison between our method and other deep learning approaches for frame-

level AUC. We find that the AUC values of our method are higher than that of the other

approaches, demonstrating great detection ability. Due to the evident capability for anomaly

detection based on a prediction network, we set the literature [19] as the baseline during the

testing phase. In detail, our approach raises 2.0%, 1.2%, and 1.6% for UCSD Ped1, UCSD

Ped2, and CUHK Avenue datasets compared with it. We can see that Ped1 datasets improve

higher AUC values than baseline [19]. The reason lies in that the reconstruction module of our

method is strong enough to overcome defects in the underlying noise of the Ped1 data.

Table 1. Comparison of frame-level AUC values on different datasets.

Methods AUC(%)

UCSD Ped1 UCSD Ped2 Avenue

Conv-AE [6] 81.0 90.0 70.2

STAE [9] 87.1 88.6 80.9

ConvLSTM [15] 89.9 87.4 80.3

ConvLSTM-AE [16] 75.5 88.1 77.0

MGFC-AAE [17] 85 91.6 84.2

Unmasking [32] 68.4 82.2 80.6

AnomalyNet [33] 83.5 94.9 86.1

Baseline [19] 83.1 95.4 84.9

IPR [10] 84.7 96.3 85.1

Proposed method 85.1 96.6 86.5

https://doi.org/10.1371/journal.pone.0265564.t001

Table 2. Comparison of EER values on different datasets.

Methods EER (%)

UCSD Ped1 UCSD Ped2 Avenue

Conv-AE [6] 27.9 21.7 25.1

STAE [9] 18.3 20.9 24.4

ConvLSTM [15] 12.5 12 20.7

MGFC-AAE [17] 20 16 22.3

AnomalyNet [33] 25.2 10.3 22

Baseline [19] 24 12 21

Proposed method 22.3 10.5 19.4

https://doi.org/10.1371/journal.pone.0265564.t002
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Moreover, our method gets better results than these approaches [9,10] because of fusing an

improved prediction module in our model. This prediction module integrates HDC and

DB-ConvLSTM strategies to widen the gap between normal and abnormal events and improve

the quality of predicted frames from the space and time dimension.

In addition, we also choose EER as the evaluation metric to demonstrate the superiority of

our approach. Table 2 shows the experimental results obtained from our method and other

algorithms. Compared with different techniques, we find that our method reaches a lower EER

except for ConvLSTM [15] (UCSD Ped1) and AnomalyNet [33] (UCSD Ped2).

Table 3. Effect of different parts for prediction module on different datasets.

Components AUC(%)

UCSD Ped1 UCSD Ped2 Avenue

HDC 83.9 95.8 85.5

ConvLSTM 83.7 95.5 85.2

DB-ConvLSTM 84.1 95.7 85.6

HDC& DB-ConvLSTM 85.1 96.6 86.5

https://doi.org/10.1371/journal.pone.0265564.t003

Fig 10. Frames with different Gaussian noise.

https://doi.org/10.1371/journal.pone.0265564.g010
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Ablation studies

Comparing different parts. To evaluate the performance of each part of the prediction

module for our method, we performed an ablation study for a different part. Specifically, three

variants (i.e., prediction module only with HDC, ConvLSTM, and DB-ConvLSTM) were

trained to access the effects of anomaly detection. Table 3 presents the AUC values computed

from the variants with different parts on the datasets. It can be seen that the variant with all

parts reaches the best results than those with fewer parts, which indicates the importance of

taking full advantage of the spatio-temporal features for anomaly detection. In detail, the HDC

can capture more comprehensive multi-scale spatial characteristics, and the DB-ConvLSTM

can obtain temporal information.

Robustness to noise. To prove the anti-noise performance of our method, we added

the Gaussian noise with different variances to the datasets. For intuitively presenting the

visual images, video frames from the UCSD Ped2 dataset with variances of 0.03 and 0.06

are shown in Fig 10. We used these data to experiment with different methods. The results

Fig 11. AUC value of different methods in different Gaussian noise.

https://doi.org/10.1371/journal.pone.0265564.g011
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are illustrated in Fig 11 for the varying curve of AUC with different Gaussian noise values.

Obviously, the AUC values of all methods steadily decrease as Gaussian noise increases.

We find that our approach has better robustness to noise than the baseline [19]. The main

reason is that the reconstruction module with the strong generalization ability is con-

nected after the improved prediction module. Thus, our method can overcome the prob-

lems caused by the noise and effectively improve the quality of the generated frame.

Conclusion and future work

In this paper, since the quality of future frame prediction is vital for anomaly detection, we

propose a practical prediction module by adding HDC and DB-ConvLSTM strategies to cap-

ture more detailed multi-scale spatial features and temporal information of normal events.

Furthermore, we integrated the reconstruction module after the prediction module to improve

the entire model’s noise immunity due to the lousy anti-noise performance. We carried out

the experiments on some publicly available datasets to verify the proposed model. The experi-

mental results show that the AUC values were 85.1%, 96.6%, and 86.5%, corresponding to

UCSD Ped1, Ped2 datasets, and CUHK Avenue. Compared with state-of-the-art approaches,

our method does well in detection accuracy through qualitative analysis and quantitative

comparisons.

The proposed method does not limit the type of abnormality, and it can achieve the general

detection of different abnormal behaviors in a specific scenario. Therefore, our approach can

be well applied to many video surveillance scenes. However, the proposed model depends on

the completeness of the training data of the scenarios, implying that the data should contain all

normal events. In the future study, we plan to extend existing datasets to include as many sur-

veillance video scenes as possible to address smart-city and public-security issues.
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