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Abstract

Background

Most evidence on the relationship between sodium and potassium intake and cardiovascu-

lar disease originated from general population studies. This study aimed to evaluate the

relation between estimated 24-hour sodium and potassium urinary excretion and the risk of

recurrent vascular events and mortality in patients with vascular disease.

Methods

7561 patients with vascular disease enrolled in the UCC-SMART cohort (1996–2015) were

included. Twenty-four hour sodium and potassium urinary excretion were estimated (Kawa-

saki formulae) from morning urine samples. Cox proportional hazard models with restricted

cubic splines were used to evaluate the relation between estimated urinary salt excretion

and major adverse cardiovascular events (MACE; including myocardial infarction, stroke,

cardiovascular mortality) and all-cause mortality.

Results

After a median follow-up of 7.4 years (interquartile range: 4.1–11.0), the relations between

estimated 24-hour sodium urinary excretion and outcomes were J-shaped with nadirs of

4.59 gram/day for recurrent MACE and 4.97 gram/day for all-cause mortality. The relation

between sodium-to-potassium excretion ratio and outcomes were also J-shaped with nadirs

of 2.71 for recurrent MACE and 2.60 for all-cause mortality. Higher potassium urinary excre-

tion was related to an increased risk of both recurrent MACE (HR 1.25 per gram potassium
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excretion per day; 95%CI 1.13–1.39) and all cause-mortality (HR 1.13 per gram potassium

excretion per day; 95%CI 1.03–1.25).

Conclusions

In patients with established vascular disease, lower and higher sodium intake were associ-

ated with higher risk of recurrent MACE and all-cause mortality. Higher estimated 24-hour

potassium urinary excretion was associated with a higher risk of recurrent MACE and all-

cause mortality.

Introduction

Blood pressure (BP) control is an essential target for the prevention and management of recur-

rent cardiovascular disease (CVD) in patients with established vascular disease. In adults with

and without hypertension, higher sodium intake is linearly associated with higher BP levels [1,

2], and therefore most treatment guidelines advocate dietary sodium restriction to levels

between 1.5 and 2.4 g per day to lower the risk of (recurrent) CVD [3–5].

However, previous cohort studies evaluating the association between sodium intake and

CV events in primary prevention populations have shown conflicting results. While some

studies report a neutral or positive linear association between sodium intake and CVD and

total mortality [6–8], others demonstrate a J- or U-shaped relationship between estimated

sodium intake and CVD risk with lower and higher sodium intake both being associated with

higher risk of CVD, all-cause mortality, and longevity [9–12]. Thus, guideline recommenda-

tions on dietary sodium intake conflict with findings from several observational studies

regarding CVD risk.

In contrast to sodium, higher potassium intake has been inversely related to BP levels and

may have a protective effect, thereby modifying the association between sodium intake, BP

and CVD [10, 13]. Consequently, both the World Health Organization (WHO) and recent

guidelines on the primary prevention of CVD recommend an intake of at least 3.5 grams per

day [4, 5, 14]. In addition, emerging evidence suggest that the sodium-to-potassium excretion

ratio represents a more important risk factor for CVD than sodium and potassium separately

[6, 15]. Since most of the evidence on the relationship between sodium and potassium intake

and CVD originated from general population studies, the question is whether the above guide-

line recommendations can be applied to patients with established vascular disease. Clarifying

the optimal dietary sodium and potassium intake is especially important in patients with clini-

cal manifest arterial disease who are most likely to receive recommendations regarding dietary

salt intake.

Hence, the aim of this study was to examine the relation between estimates of 24-hour

sodium and potassium urinary excretion (as proxies for dietary intake), as well as their ratio,

and the risk of recurrent major adverse cardiovascular events (MACE) and all-cause mortality

in a high-risk population cohort with stable CVD.

Methods

Study design and participants

Patients originated from the Utrecht Cardiovascular Cohort-Second Manifestation of ARTe-

rial disease (UCC-SMART) cohort. The UCC-SMART cohort is an ongoing, prospective
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cohort study starting from 1996 and comprised of 18 to 79-year-old patients referred to the

University Medical Center Utrecht (UMCU), the Netherlands, for management of atheroscle-

rotic disease or cardiovascular risk factors. A detailed description of the study rationale and

design has been previously described [16]. The study is in accordance with the 1964 Helsinki

declaration, was approved by the institutional review board of the Utrecht University Medical

Center, and all patients gave written informed consent.

For the current study, patients with established vascular disease (coronary heart disease,

cerebrovascular disease, peripheral arterial disease or abdominal aortic aneurysm) at baseline

between January 1996 and February 2015 were included (n = 7561).

Baseline assessment

At baseline, the patients underwent a standardized vascular screening protocol consisting of a

health questionnaire including medical history and risk factors, physical examination and lab-

oratory testing.

Office BP was measured with a nonrandom sphygmomanometer (Iso-Stabil 5; Speidel &

Keller, Jungingen, Germany) three times simultaneously at the right and left upper arm in an

upright position with an interval of 30 seconds. The mean of the last two BP measurements

from the arm with the highest BP was used. Hypertension was defined as a prescription of anti-

hypertensive medication and/or an office systolic BP of�140 or diastolic BP of�90 mmHg.

Laboratory blood testing was performed in fasting state for total cholesterol, triglycerides,

high-density lipoprotein (HDL) cholesterol, creatinine, and high-sensitivity C-reactive protein

(CRP). Low-density lipoprotein (LDL) cholesterol was calculated using the Friedewald for-

mula [17] up to a plasma triglycerides level of 9 mmol/L [18]. The estimated glomerular filtra-

tion rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) formula [19].

Upon arrival at the study clinic, usually in the morning, a urine sample was collected in fast-

ing state and stored at -20˚C. Urinary sodium and potassium levels were measured using an

ARCHITECT ci8200 analyzer (Abbott Laboratories, Lake Bluff, Illinois, USA). The coefficient

of variation for both sodium and potassium was 3%, and 6% for creatinine. The Kawasaki for-

mula was used to estimate 24-hour sodium and potassium urinary excretion from a fasting

morning urine sample, and these estimates were used as proxies for sodium and potassium

intake [20] (S1 Table). We chose to use the Kawasaki formula to allow comparability between

this and previous studies and because this formula is considered the least biased method for

estimating 24-hour sodium excretion compared to other formula-based approaches [21].

Outcome assessment

Patients received a bi-annual health questionnaire concerning hospitalizations and outpatient

clinic visits. Outcomes of interest for this study were first occurrence of myocardial infarction,

stroke, vascular death, and a composite of these events (all vascular events). All-cause mortality

was recorded as well. Definitions of events are shown in S2 Table. When a possible event was

reported, hospital records including radiology examinations, laboratory reports, and hospital

discharge letters, were collected. Death and cause of death were reported by relatives of the

participant, the general practitioner, or the vascular specialist. The medical records and infor-

mation from the questionnaire and/or the family were subsequently assessed by three separate

physicians from the study end-point committee. Duration of follow-up was defined as the

time between study enrollment and first cardiovascular event or death from any cause, date of

loss to follow-up (n = 407 (5.4%)), or the preselected date of March 1st, 2015.
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Statistical analysis

Baseline characteristics are presented stratified in quintiles of estimated 24-hour sodium and

potassium urinary excretion. Because complete case analysis would lead to loss of statistical

power and possibly bias [22], missing data of determinants and possible confounders (urine

sodium (n = 510, 6.7%), potassium (n = 440, 5.8%), urine creatinine (n = 200, 2.6%), CRP

(n = 179, 2.4%) and�1% for other variables) was imputed using single regression imputation

(aregImpute-algorithm in R, Hmisc package).

Linear regression models were fitted to examine the association between estimated 24-hour

sodium and potassium urinary excretion and blood pressure. Restricted cubic-spline functions

with four knots were used to explore the shape of the association between baseline salt mea-

sures (estimated 24-hour sodium urinary excretion, estimated 24-hour potassium urinary

excretion, and the ratio between the two) and the outcomes [23]. Based on visual inspection of

the restricted-cubic spline plots, a quadratic relation between outcomes and estimated 24-hour

sodium urinary excretion and the sodium-to-potassium excretion ratio seemed present.

Hence, we fitted multivariable Cox proportional-hazards models, including linear and qua-

dratic terms for estimated 24-hour sodium urinary excretion and the sodium-to-potassium

excretion ratio. As the restricted cubic-spline plots of the relationship between the estimated

24-hour potassium urinary excretion and outcomes showed no sign of non-linearity, these

Cox proportional-hazards model only included a linear term. Proportional hazards assump-

tions were tested by visual inspection of Schoenfeld residuals plots and no violation was

observed.

Analyses were adjusted for age, sex, body mass index (BMI), smoking, presence of diabetes,

eGFR, and non-HDL cholesterol. The p-values of the effects of baseline salt measures on the

occurrence of vascular events and mortality were based on the χ2 statistic. Nadirs (value of salt

measures associated with lowest hazard) were derived for the non-linear relations. Hazard

ratios (HR’s) with 95% confidence intervals (CIs) were reported for the linear associations.

Nadirs were derived as the minimum of the quadratic function that models the relation

between outcomes and baseline salt measures. For graphic representation of the relationship

between estimated sodium urinary excretion and the sodium-to-potassium excretion ratio and

cardiovascular events and mortality, hazard ratios and 95% CIs were plotted, taking the corre-

sponding nadir as a reference.

We performed interaction analyses for key characteristics that might modify the association

between salt measures and CV events (age (<65 years versus� 65 years), sex, use of blood-

pressure lowering medication, and hypertension). Moreover, we tested the interaction between

estimated 24-hour sodium and potassium urinary excretion. When a significant interaction

was found, the analyses were stratified according to the effect modifying characteristic.

Sensitivity analyses were performed to evaluate the likelihood of reverse causality. Because

reverse causality, if present, affects short-term rather than long-term results, analyses were

repeated excluding patients with events within 1, 2, and 5 year(s) after inclusion. Furthermore,

we performed analyses excluding patients treated with loop diuretics at baseline since this is

often prescribed in the treatment of heart failure and often also accompanied by sodium

restriction. Lastly, to evaluate whether patients with low levels of salt excretion had lower sur-

vival rates in the first years of follow-up, Kaplan-Meier survival curves were plotted by quintile

of each salt measure (estimated 24-hour sodium excretion, estimated potassium excretion, and

stage-to-potassium ratio) for recurrent CVD and all-cause mortality.

All analyses were performed with R statistical software (Version 3.5.1; R foundation for Sta-

tistical Computing, Vienna, Austria). All p-values were two-tailed, with statistical significance

set at 0.05.
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Results

Baseline characteristics

Baseline characteristics for all subjects categorized by quintile of estimated 24-hour sodium

urinary excretion and estimated 24-hour potassium urinary excretion are summarized in

Table 1 and S3 Table, respectively. The mean estimated 24-hour sodium urinary excretion was

4.91 g/day (standard deviation (SD) 1.41), and the mean estimated 24-hour potassium urinary

excretion was 2.18 g/day (SD 0.53). Patients with low estimated 24-hour sodium and potas-

sium urinary excretion were younger, had lower BMI, were less likely to have a history of dia-

betes mellitus or coronary artery disease; and generally had a lower blood pressure.

Furthermore, they were more likely to be current smokers, have a history of cerebrovascular

disease, and use diuretics.

During a median follow-up of 7.4 years (interquartile range (IQR): 4.1–11.0 years; 58,386

person-years), the composite outcome of myocardial infarction, stroke, or vascular death

occurred in 1332 patients. A total of 1502 deaths were reported.

Relation between estimated 24-hour sodium and potassium excretion and

blood pressure

Adjusted linear regression models assessing the relationship between baseline estimated

24-hour sodium urinary excretion and baseline blood pressure showed that every 1 g/day

increase of sodium urinary excretion was associated with a higher mean (95% CI) systolic

blood pressure and diastolic blood pressure of 1.28 mmHg (0.95–1.62) and 0.46 mmHg (0.28–

0.65), respectively. Every 1 g/day increase of potassium urinary excretion was also associated

with a higher mean (95% CI) systolic blood pressure and diastolic blood pressure of 1.04

mmHg (0.15–1.93) and 0.61 mmHg (0.11–1.11), respectively.

Relation between 24-hour sodium excretion and recurrent cardiovascular

events and all-cause mortality

The relationship between estimated 24-hour sodium urinary excretion and the incidence of

vascular events followed a J-shaped curve, with increased hazard ratios at low and high sodium

urinary excretions. This was initially explored by a Cox proportional-hazards model with

restricted cubic splines (S1 Fig) and confirmed by a non-linear Cox proportional-hazards

model including linear and quadratic sodium urinary excretion terms (p = 0.02; non-linear

term p<0.01) (Fig 1A). Similarly, the relationship between estimated 24-hour sodium urinary

excretion and all-cause mortality followed a J-shaped curve (Fig 1B; p<0.01; non-linear term

p<0.01). The nadir for vascular events was 4.59 g/day and 4.97 g/day for all-cause mortality.

No association was found between estimated 24-hour sodium urinary excretion and the occur-

rence of stroke (p = 0.91, non-linear term p = 0.61) (S2 Fig) and the occurrence of myocardial

infarction (p = 0.97; non-linear term p = 0.76) (S3 Fig). Still, the relationship between sodium

urinary excretion and vascular mortality was J-shaped (p<0.01, non-linear term p<0.01, nadir

4.98) (S4 Fig).

Relation between 24-hour potassium excretion and recurrent

cardiovascular events and all-cause mortality

No evidence of non-linearity in the relations between estimated 24-hour potassium urinary

excretion and any outcome was found in the fully adjusted models; all non-linear p-values

were>0.05 (S1 Fig). Therefore, Cox proportional-hazards models that investigated the rela-

tion between potassium urinary excretion and recurrent MACE and all-cause mortality only
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included linear terms for potassium urinary excretion. In the fully adjusted models, potassium

urinary excretion was observed to have a positive relation with the primary composite out-

come (MI, stroke, and cardiovascular mortality) (HR 1.25; 95%CI 1.13–1.39) (Fig 1C) and the

separate components myocardial infarction (HR 1.26; 95%CI 1.07–1.48) and cardiovascular

mortality (HR 1.20; 95%CI 1.06–1.37) (S2–S4 Figs). Also, potassium urinary excretion was

positively associated with all-cause mortality (HR 1.13; 95%CI 1.03–1.25) (Fig 1D).

Table 1. Baseline characteristics of all participants, according to estimated 24-hour sodium excretion.

Overall Estimated urinary sodium excretion, g/day; quintiles

Q1 Q2 Q3 Q4 Q5

Range quintiles (g/day) [1.28–3.73] [3.74–4.47] [4.48–5.13] [5.14–5.97] [5.98–16]

Mean Sodium (g/day) 4.9 ± 1.4 3.1 ± 0.5 4.1 ± 0.2 4.8 ± 0.2 5.5 ± 0.2 7.0 ± 1.0

n = 7561 n = 1513 n = 1512 n = 1512 n = 1512 n = 1512

Male sex 5574 (74%) 864 (57%) 1036 (69%) 1153 (76%) 1227 (81%) 1294 (86%)

Age (years) 60 ± 10 58 ± 11 60 ± 10 60 ± 10 61 ± 10 61 ± 10

Current smoker 2396 (32%) 606 (40%) 487 (32%) 496 (33%) 414 (27%) 393 (26%)

Physical examination
Body mass index (kg/m2) 26.8 ± 4.0 26.0 ± 4.1 26.3 ± 3.8 26.7 ± 3.7 27.2 ± 3.9 28.0 ± 4.3

Systolic blood pressure (mmHg) 140 ± 21 137 ± 20 139 ± 21 140 ± 20 141 ± 21 143 ± 21

Diastolic blood pressure (mmHg) 81 ± 11 80± 11 80 ± 11 81 ± 11 82 ± 11 82 ± 11

History of vascular disease
Diabetes mellitus 1327 (18%) 218 (14%) 221 (15%) 225 (15%) 287 (19%) 376 (25%)

Coronary artery disease 4576 (61%) 784 (52%) 880 (58%) 930 (62%) 990 (65%) 992 (66%)

Peripheral artery disease 1408 (19%) 312 (21%) 290 (19%) 264 (17%) 273 (18%) 269 (18%)

Cerebrovascular disease 2247 (30%) 545 (36%) 468 (31%) 438 (29%) 397 (26%) 399 (26%)

Abdominal aortic aneurysm 650 (9%) 124 (8%) 126 (8%) 107 (7%) 132 (9%) 161 (11%)

Laboratory values
Potassium excretion (g/day) 2.2 ± 0.5 1.9 ± 0.5 2.0 ± 0.4 2.1 ± 0.5 2.3 ± 0.5 2.6 ± 0.6

Total cholesterol (mmol/L) 4.9 ± 1.2 5.0 ± 1.2 4.9 ± 1.2 4.8 ± 1.2 4.8 ± 1.2 4.8 ± 1.2

HDL-cholesterol (mmol/L) 1.2 ± 0.4 1.3 ± 0.4 1.3 ± 0.4 1.2 ± 0.4 1.2 ± 0.3 1.2 ± 0.4

LDL-cholesterol (mmol/L) 2.9 ± 1.1 3.0 ± 1.1 2.9 ± 1.1 2.8 ± 1.1 2.8 ± 1.0 2.8 ± 1.1

Triglycerides (mmol/L) 1.4 (1.0–2.0) 1.4 (1.0–2.0) 1.4 (1.0–2.0) 1.4 (1.0–2.0) 1.4 (1.0–2.1) 1.4 (1.0–2.0)

Estimated GFR (ml/min/1.73m2) 76 ± 18 77 ± 19 76 ± 17 77 ± 17 76 ± 18 77 ± 19

CRP (mg/L) 2.1 (2.1–4.4) 2.4 (1.1–4.9) 2.0 (1.0–4.2) 1.9 (0.9–4.0) 1.9 (0.9–4.5) 2.1 (1.0–4.5)

Medication use
Lipid lowering 5091 (67%) 981 (65%) 994 (66%) 1033 (68%) 1039 (69%) 1044 (69%)

Platelet inhibitor 5762 (76%) 1109 (73%) 1165 (77%) 1141 (75%) 1184 (78%) 1163 (77%)

Antihypertensives 5599 (74%) 1105 (73%) 1061 (70%) 1093 (72%) 1164 (77%) 1176 (78%)

Diuretics 1574 (21%) 467 (31%) 305 (20%) 251 (17%) 262 (17%) 289 (19%)

Loop diuretics 617 (8%) 253 (17%) 109 (7%) 82 (5%) 89 (6%) 84 (6%)

Thiazide diuretics 874 (12%) 191 (13%) 178 (12%) 159 (11%) 156 (10%) 190 (13%)

ACE-inhibitors 2298 (30%) 523 (35%) 419 (28%) 475 (31%) 442 (29%) 439 (29%)

Beta-blockers 4023 (53%) 751 (50%) 738 (49%) 838 (55%) 863 (57%) 833 (55%)

Calcium antagonists 1568 (21%) 278 (18%) 268 (18%) 268 (18%) 323 (21%) 431 (29%)

All data in n (%) or mean ± standard deviation (except for triglycerides and CRP: median with IQR). HDL, high-density lipoprotein; LDL, low-density lipoprotein; Hs-

CRP, high-sensitivity C-reactive protein; BMI, body mass index; eGFR, estimated glomerular filtration rate (calculated with Chronic Kidney Disease Epidemiology

Collaboration [CKD-EPI] formula).

https://doi.org/10.1371/journal.pone.0265429.t001
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Fig 1. Relation between salt excretion and recurrent cardiovascular events and mortality. Adjusted hazard ratios for vascular events and mortality

by baseline estimated salt excretion (distribution shown by histogram) A. Relation between estimated 24-hour urinary sodium excretion and vascular

events (linear term P = 0.02; non-linear term P<0.01). Nadir: 4.59 g/day. B. Relation between estimated 24-hour urinary sodium excretion and

mortality (linear term P<0.01; non-linear term<0.01). Nadir: 4.97 g/day. C. Relation between 1 gram/day higher estimated 24-hour urinary potassium

excretion and vascular events. D. Relation between 1 gram/day higher estimated 24-hour urinary potassium excretion and mortality. E. Relation

between sodium-to-potassium excretion ratio and vascular events (linear term P<0.01; non-linear term<0.01). Nadir: 2.71 g/day. F. Relation between

sodium-to-potassium excretion ratio and mortality (linear term P<0.01; non-linear term<0.01). Nadir: 2.60 g/day. All hazard ratios were plotted

between the 1st and 99th percentile of the corresponding salt measure. Dotted lines represent 95% confidence intervals. All models were adjusted for age,

sex, current smoking, BMI (kg/m2), presence of diabetes, eGFR, and non-high-density lipoprotein cholesterol. HR = Hazard ratio.

https://doi.org/10.1371/journal.pone.0265429.g001
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Relation between sodium-to-potassium excretion ratio and recurrent

cardiovascular events and all-cause mortality

The relationship between sodium-to-potassium excretion ratio and the incidence of vascular

events followed a J-shaped curve, with increased hazard rates at low and high ratios (Fig 1E;

p<0.01; non-linear term p<0.01). Also, the relationship between sodium-to-potassium excretion

ratio and all-cause mortality followed a J-shaped curve (Fig 1F; p<0.01; non-linear term p<0.01).

The nadir for vascular events was 2.71 and 2.60 for all-cause mortality. No association was found

between the sodium-to-potassium excretion ratio and the occurrence of stroke (p = 0.72, non-lin-

ear term p = 0.52) (S2 Fig) and the occurrence of myocardial infarction (p = 0.14; non-linear

term p = 0.23) (S3 Fig). Still, the relationship between sodium-to-potassium excretion ratio and

vascular mortality was J-shaped (p<0.01, non-linear term p<0.01, nadir 2.64) (S4 Fig).

Interactions

Results of the interaction tests are shown in S4 Table. The effect of sodium-to-potassium excre-

tion ratio on all-cause mortality was modified by age (<65 versus�65 years). Hence, results

were stratified according to age (S5 Fig). In patients aged�65 years, the sodium-to-potassium

excretion ratio was not associated with all-cause mortality. There were no other significant

interaction terms.

Sensitivity analysis

The shape of the relationship between sodium and potassium urinary excretion and vascular

events and mortality did not materially change after exclusion of patients who experienced

events or died within 1, 2, and 5 year(s) after inclusion and after exclusion of patients treated

with loop diuretics (n = 617) (a surrogate for heart failure patients) (S6 and S7 Figs). In the

first years of follow-up, survival rates for patients in the lower quintiles of salt excretion were

similar to those of patients in the other quintiles of salt excretion (S8 Fig).

Discussion

In the current study we found a J-shaped relation between estimated 24-hour sodium urinary

excretion and recurrent vascular events and mortality in patients with vascular disease. The

optimum estimated sodium urinary excretion found was between 4.5 grams per day and 5.0

grams per day, which is generally viewed as an excess in sodium intake. This J-shaped relation

was even more pronounced when accounting for potassium intake, using the sodium-to-

potassium excretion ratio, with an optimum ratio between 2.5 and 3.0. Increasing values of

estimated 24-hour potassium urinary excretion increased the risk of recurrent vascular events

and mortality, and this relation was linear.

Several previous observational studies in populations at high cardiovascular risk have also

found a J-shaped curve between sodium urinary excretion levels and the risk of CVD and mor-

tality [24–26]. In line with our findings, an observational post hoc analysis of 28,880 partici-

pants of the ONTARGET and TRANSCEND trials with established CVD or high-risk diabetes

mellitus found a sodium excretion between 4 and 5.99 gram per day as the optimum level of

sodium excretion using cardiovascular death, myocardial infarction, stroke, and hospitaliza-

tion for congestive heart failure as outcome [24]. Studies in patients with diabetes (type 1 and

2) also found lower 24-hour urinary sodium excretion to be associated with increased cardio-

vascular [25] and all-cause mortality [25, 26]. Results from the current study add to the limited

amount of evidence on the relation between sodium and cardiovascular events and mortality

in a population with vascular disease.
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Reverse causality has been proposed as an explanation for the relation observed between

low sodium excretion and vascular events and mortality [27]. Observations suggestive of

reverse causality include that a J-shaped association is seen during short, but not during pro-

longed follow-up [28] or that an initially present J-shaped relation becomes linear after exclu-

sion of study participants having conditions that lead to reduced sodium intake and are

simultaneously associated with an increased risk of adverse events. Sensitivity analyses of the

present study showed that exclusion of patients with events within 1, 2, and 5 year(s) after start

of the study and exclusion of patients treated with loop diuretics, considered as a proxy for a

diagnosis of congestive heart failure, did not materially alter the shape of the relations. Still, we

recognize that reverse causality cannot be completely ruled out and may partly account for the

increased risk observed in patients with low sodium excretion.

Second, systematic error in sodium measurement has been proposed as an explanation for

the paradoxical U- or J-shape relation [29]. Similar to this study, previous cohort studies often

used formulas to estimate an individual’s usual sodium intake based on a single spot urine

rather than multiple non-consecutive 24-hour urine collections [30, 31]. Although the latter is

cumbersome and logistically more challenging, the formula-based approach may result in sys-

tematic errors with overestimation at lower levels and underestimation at higher levels of

sodium intake [32, 33]. This may even change the shape of the dose-response curve; placing

subjects in poor health into groups with low sodium intake and falsely ascribe higher mortality

to low sodium [33]. Although, a J-shaped relationship was also described in studies that mea-

sured sodium intake by 24-hour urine collections [9, 26], it can not be ruled out that the for-

mula-based approach may in part lead to these paradoxical findings.

Third, it is also possible that the J-shaped relation is due to selection on the index event

[34]. This can be understood by considering the onset of vascular events as the sum of the

effect of multiple causal factors. If one important causal risk factor such as high sodium intake

is already present, less effect of other factors is required for disease onset. Subsequently, com-

paring high sodium consumers with low sodium consumers who already have developed vas-

cular disease, leads to the high sodium consumers having a relatively healthy risk profile

compared to low sodium consumers in both measured and unmeasured factors. Nonetheless,

the observed associations in this study remained after adjustment for most known risk factors

for vascular disease, making index event bias a less likely explanation.

Besides methodological explanations, a causal mechanism explaining the relation observed

between low sodium excretion and vascular events and mortality should also be considered.

Sodium is an important electrolyte in the extracellular fluid and has an essential role in regulat-

ing the intra- and extracellular fluid. Previous neuroscience studies in animals have revealed

neural networks that play a role in the regulation of sodium appetite to ensure a certain level of

sodium intake [35]. From these studies, it is hypothesized that sodium is under strict control,

which is supported by the observation that sodium is often within a narrow range. For exam-

ple, the mean estimated 24-hour sodium excretion level in our study is close to the mean range

for sodium intake defined by previous analyses of worldwide 24-hour urinary sodium excre-

tion data [36–38]. Low sodium intake may therefore result in activation of a physiological

mechanism to balance sodium concentration including an increase in plasma renin activity

and aldosterone which consequently increase in sympathetic nerve activity [39], serum choles-

terol and triglyceride levels, adrenalin secretion [40], and resistance to insulin [41, 42], which

may counteract the benefit of lowering blood pressure.

In the current study, a positive linear relationship between estimated 24-hour urinary

potassium excretion and the risk of recurrent MACE and all-cause mortality was observed.

Considering the separate components of MACE, the effect of potassium excretion on recurrent

MACE was mainly driven by an increased risk of myocardial infarction. These findings differ
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compared to previous studies in primary and secondary prevention cohorts describing non-

significant associations between potassium intake and coronary heart disease and significant

inverse associations between potassium intake and MACE, respectively [13, 43, 44]. The dis-

crepancies between our study and previous studies may be due to the difference in case-mix

(patients with versus without vascular disease) and use of different statistical approaches. For

example, previous studies were able to adjust for additional lifestyle factors (i.e. caloric, fruit,

and vegetable intake), which reduced the risk of residual confounding [24]. However, these

studies often analyzed 24-hour urinary potassium excretion categorically rather than continu-

ously (using non-linear terms), potentially leading to a loss of power and inaccurate estima-

tions [45, 46]. Moreover, reverse causality and index events bias may also have played a role

here. However, sensitivity analyses evaluating the likelihood of these biases showed similar

results, making these explanations less likely.

As with all studies of observational nature, no definitive causal conclusions can be drawn.

To guide clinical practice, these findings need to be replicated by large and long-term random-

ized controlled trials evaluating the effect of different targets for dietary salt intake on clinical

(cardiovascular) outcomes in patients with clinically manifest vascular disease. In the recently

published Salt Substitute and Stroke Study (SSaSS) [47], involving 20.995 persons with either a

history of stroke or a high BP from 600 villages in rural China, the effect of regular salt (100%

sodium chloride) was compared with a salt substitute (75% sodium chloride and 25% potas-

sium chloride) with respect to stroke. The combined use of lower sodium and higher potas-

sium, by means of this substitute, led to a lower rate of stroke than the use of regular salt (rate

ratio 0.86; 95%CI 0.77–0.96). Although SSaSS provides some answers, it remains unclear

whether the effect can be attributed to lower sodium intake, higher potassium intake or both.

Strengths of the present cohort study include the large number of patients with manifest

vascular disease with extensive and standardized measurement of risk factors at baseline and a

long follow-up with a low proportion of patients lost to follow-up. Furthermore, the generaliz-

ability of the results is high as the UCC-SMART cohort consists of a referred patient popula-

tion with a broad spectrum of vascular disease. A limitation of the study includes the

possibility of measurement error when using the Kawasaki formulas for the conversion of spot

urine sodium and potassium measurements into estimated 24-hour urinary excretion. Since a

lower proportion (~77%) of ingested potassium is excreted renally [48], the estimated 24-hour

urinary potassium excretion in this study is likely a suboptimal reflection of actual potassium

intake in this population. Lastly, patient characteristics were only measured at baseline which

made it unable to address the time-varying nature of sodium and potassium excretion.

In conclusion, in this observational study, relations between both estimated 24-hour

sodium urinary excretion and sodium-to-potassium excretion ratio and recurrent MACE and

all-cause mortality were J-shaped, with sodium excretion above and below 4.5–5.0 both being

associated with higher risk of recurrent MACE and all-cause mortality. Furthermore, higher

estimated 24-hour potassium urinary excretion was associated with a higher risk of recurrent

MACE, mainly driven by an increased risk of myocardial infarction, and all-cause mortality.

These results provide no evidence for dietary sodium restriction to levels between 1.5 and 2.4 g

per day as a means of reducing the risk of recurrent CVD in patients with vascular disease and

underline the need for further investigation into the relation between salt intake and cardio-

vascular disease in this population.

Supporting information

S1 Fig. Restricted-cubic-spline plots of the association between estimated salt excretion

and recurrent major adverse cardiovascular events and all-cause mortality. Restricted-
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cubic-spline plots of association between estimated 24-hour urinary excretion of sodium

(A-B), potassium (C-D), and their ratio (E-F) and recurrent MACE (left column) and all-cause

mortality (right column). Histograms demonstrate distributions of different salt measures.

The median of each salt measure (4.80 g/day, 2.12 g/day and 2.27 for sodium, potassium and

their ratio, respectively) was taken as a reference (HR = 1.0). Spline curves were plotted

between the 1st and 99th percentile of the corresponding salt measure. Dotted lines represent

95% confidence intervals. All plots were adjusted for age, sex, current smoking, BMI (kg/m2),

presence of diabetes, eGFR, and non-high-density lipoprotein cholesterol. HR = Hazard ratio.

(PNG)

S2 Fig. Relationship between salt excretion and the occurrence of stroke. A. Relation

between 1 gram/day higher estimated 24-hour urinary sodium excretion and the occurrence

of stroke. B. Relation between 1 gram/day higher estimated 24-hour urinary potassium excre-

tion and the occurrence of stroke. C. Relation between 1 unit higher sodium-to-potassium

excretion ratio and the occurrence of stroke. Histograms demonstrate distributions of differ-

ent salt measures. The median of each salt measure (4.80 g/day, 2.12 g/day and 2.27 for

sodium, potassium and their ratio, respectively) was taken as a reference (HR = 1.0). All hazard

ratios were plotted between the 1st and 99th percentile of the corresponding salt measure. Dot-

ted lines represent 95% confidence intervals. All plots were adjusted for age, sex, current smok-

ing, BMI (kg/m2), presence of diabetes, eGFR, and non-high-density lipoprotein cholesterol.

HR = Hazard ratio.

(PNG)

S3 Fig. Relationship between salt excretion and the occurrence of myocardial infarction. A.

Relation between 1 gram/day higher estimated 24-hour urinary sodium excretion and the

occurrence of myocardial infarction. B. Relation between 1 gram/day higher estimated

24-hour urinary potassium excretion and the occurrence of myocardial infarction. C. Relation

between 1 unit higher sodium-to-potassium excretion ratio and the occurrence of myocardial

infarction. Histograms demonstrate distributions of different salt measures. The median of

each salt measure (4.80 g/day, 2.12 g/day and 2.27 for sodium, potassium and their ratio,

respectively) was taken as a reference (HR = 1.0). All hazard ratios were plotted between the

1st and 99th percentile of the corresponding salt measure. Dotted lines represent 95% confi-

dence intervals. All plots were adjusted for age, sex, current smoking, BMI (kg/m2), presence

of diabetes, eGFR, and non-high-density lipoprotein cholesterol. HR = Hazard ratio.

(PNG)

S4 Fig. Relationship between salt excretion and vascular mortality. A. Relation between esti-

mated 24-hour urinary sodium excretion and vascular mortality (linear term P<0.01; non-lin-

ear term P<0.01). Nadir: 4.98 g/day. B. Relation between 1 gram/day higher estimated

24-hour urinary potassium excretion and vascular mortality. C. Relation between sodium-to-

potassium excretion ratio and vascular mortality (linear term P<0.01, non-linear term

P<0.01). Nadir 2.64. Histograms demonstrate distributions of different salt measures. All haz-

ard ratios were plotted between the 1st and 99th percentile of the corresponding salt measure.

Dotted lines represent 95% confidence intervals. All plots were adjusted for age, sex, current

smoking, BMI (kg/m2), presence of diabetes, eGFR, and non-high-density lipoprotein choles-

terol. HR = Hazard ratio.

(PNG)

S5 Fig. Stratified analyses for patients <65 years and�65 years of age. Adjusted hazard

ratio for mortality by baseline sodium-to-potassium excretion ratio. Hazard ratios were plotted

between the 1st and 99th percentile of the sodium-to-potassium excretion ratio. Plots were
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adjusted for age, sex, current smoking, BMI (kg/m2), presence of diabetes, eGFR, and non-

high-density lipoprotein cholesterol. HR = Hazard ratio.

(PNG)

S6 Fig. Sensitivity analysis excluding patients with short follow-up. A-B. Change in esti-

mated effect between estimated 24-hour sodium urinary excretion and vascular events (A) and

mortality (B) after exclusion of patients who experienced events or died within 1 year (dashed

red line), 2 years (dashed green line), and 5 years (dashed blue line) after inclusion. Black lines

depict the main analysis. C-D. Change in estimated effect between 24-hour potassium urinary

excretion and vascular events (C) and mortality (D) after exclusion of patients who experi-

enced events or died within 1 year (dashed red line), 2 years (dashed green line), and 5 years

(dashed blue line) after inclusion. E-F. Change in estimated effect between sodium-to-potas-

sium excretion ratio and vascular events (E) and mortality (F) after exclusion of patients who

experienced events or died within 1 year (dashed red line), 2 years (dashed green line), and 5

years (dashed blue line) after inclusion. HR = Hazard ratio.

(PNG)

S7 Fig. Sensitivity analysis excluding patients treated with loop diuretics. A-B. Change in

estimated effect between estimated 24-hour sodium urinary excretion and vascular events (A)

and mortality (B) after exclusion of patients who were treated with loop diuretics (dashed blue

line). Black lines depict the main analysis. C-D. Change in estimated effect between 24-hour

potassium urinary excretion and vascular events (C) and mortality (D) after exclusion of patients

who were treated with loop diuretics (dashed blue line). E-F. Change in estimated effect between

sodium-to-potassium excretion ratio and vascular events (E) and mortality (F) after exclusion of

patients who were treated with loop diuretics (dashed blue line). HR = Hazard ratio.

(PNG)

S8 Fig. Sensitivity analysis evaluating survival curves for quintiles of salt excretion. A-B.

Survival curves in quintiles of estimated 24-hour sodium excretion for (A) recurrent cardio-

vascular disease; (B) all-cause mortality. C-D. Survival curves in quintiles of estimated 24-hour

potassium excretion for (C) recurrent cardiovascular disease; (D) all-cause mortality. E-F. Sur-

vival curves in quintiles of the sodium-to-potassium ratio for (E) recurrent cardiovascular dis-

ease; (F) all-cause mortality.

(PNG)

S1 Table. Kawasaki formula used to predict 24-hour urinary sodium and potassium excre-

tion from spot urine samples.

(DOCX)

S2 Table. Definitions of vascular outcomes.

(DOCX)

S3 Table. Baseline characteristics of all participants, according to estimated 24 hour potas-

sium excretion.

(DOCX)

S4 Table. P-values for interaction.

(DOCX)
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