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Abstract

Myocardial infarction has a high mortality rate worldwide. Therefore, clinical intervention

in cardiac remodeling after myocardial infarction is essential. Açai pulp is a natural prod-

uct and has been considered a functional food because of its antioxidant/anti-inflamma-

tory properties. The aim of the present study was to analyze the effect of açai pulp

supplementation on cardiac remodeling after myocardial infarction in rats. After 7 days of

surgery, male Wistar rats were assigned to six groups: sham animals fed standard chow

(SA0, n = 14), fed standard chow with 2% açai pulp (SA2, n = 12) and fed standard chow

with 5% açai pulp (SA5, n = 14), infarcted animals fed standard chow (IA0, n = 12), fed

standard chow with 2% açai pulp (IA2, n = 12), and fed standard chow with 5% açai pulp

(IA5, n = 12). After 3 months of supplementation, echocardiography and euthanasia were

performed. Açai pulp supplementation, after myocardial infarction, improved energy

metabolism, attenuated oxidative stress (lower concentration of malondialdehyde, P =

0.023; dose-dependent effect), modulated the inflammatory process (lower concentration

of interleukin-10, P<0.001; dose-dependent effect) and decreased the deposit of collagen

(lower percentage of interstitial collagen fraction, P<0.001; dose-dependent effect). In

conclusion, açai pulp supplementation attenuated cardiac remodeling after myocardial

infarction in rats. Also, different doses of açai pulp supplementation have dose-dependent

effects on cardiac remodeling.
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Introduction

Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Myo-

cardial infarction (MI) is associated with a higher mortality rate than other CVDs [1]. MI is

defined as a focus of necrosis resulting from low tissue perfusion, with signs and symptoms

consequent to cardiac cell death [2]. Cellular and molecular alterations initiate a cascade of

intracellular signaling, which increases inflammation, oxidative stress, apoptosis, and changes

in cardiac energy metabolism [3, 4]. Initially, cardiac remodeling is a relevant factor in the pro-

gression of CVD because it plays a fundamental role in the pathophysiology of ventricular dys-

function [5, 6].

Therefore, inflammatory processes and oxidative stress are potential targets for attenuating

cardiac remodeling and reducing mortality after MI. In this context, specific foods with high

antioxidant properties have been used as sources of cardioprotective compounds [7–9]. Açai

(Euterpe oleracea Mart.) is a plant in the Arecaceae family and a palm fruit native to the Ama-

zon region of Brazil. Açai seeds have been used in animal foods, plantations and home gar-

dens. Açai pulp is a functional food, consumed in energy drinks, ice cream, juice, and

pharmaceutical products; and used in cosmetics [10, 11]. Notably, the consumption of açai

pulp has been increasing worldwide.

Açai seed and pulp are rich in several phytochemicals but differ in the degree of richness.

Açai seeds contain 65% fiber, 5% protein, 2% lipids, 2% mineral salts, and 28.3% polyphenols

(catechin, epicatechin, and polymeric and oligomeric proanthocyanidins) [12]. Açai pulp con-

tains 48% lipids, 25% total sugars, 13% protein, a small amount of fiber, vitamins (A, B1, B2,

B3, C, and E), and 25.5% polyphenols (predominantly cyanidin 3-glucoside and cyanidin

3-rutinoside) [13, 14].

In experimental models, açai seed supplementation was performed using hydroalcoholic

seed extract (ASE) [15, 16]. Because the seeds are not edible, supplementation has been

achieved using açai capsules in clinical studies. Additionally, açai pulp is edible and more

attractive than the seeds because of its sensorial characteristics (i.e., appearance, texture, and

taste). These characteristics remain unchanged when the pulp is pasteurized and frozen for

storage [17]. Thus, açai pulp can be easily used in clinical and experimental studies [18–20].

Studies have shown in experimental models that ASE supplementation has anti-inflamma-

tory [15, 16] and antioxidative activities [21, 22]. This anti-inflammatory activity was also

observed in açai pulp supplementation by decreased transcription of nuclear factor kappa B

(NF-κB) in the brain [23]. In addition, supplementation with açai pulp decreased the concen-

tration of interferon-gamma (IFN-γ) in individuals with metabolic syndrome [20].

Regarding antioxidative activity, supplementation with açai pulp decreased nitric oxide in

microglial cells [24]. Studies performed in different clinical situations reported that açai pulp

supplementation increased total antioxidant capacity (TAC) and attenuated exercise-induced

muscle damage in junior athletes [25], increased catalase and TAC, and reduced the produc-

tion of reactive species (RS) and malondialdehyde (MDA) in healthy volunteers [19, 26].

Açai pulp supplementation has also promoted benefits in the heart; for instance, a study of

doxorubicin-induced cardiotoxicity in rats found attenuation of this toxicity by decreased oxi-

dative damage (increased glutathione peroxidase and decreased lipid hydroperoxide concen-

tration). Furthermore, açai pulp supplementation improved energy metabolism in the heart

(increased β-hydroxyacyl-CoA dehydrogenase, decreased phosphofructokinase; and increased

citrate synthase, complex II, and adenosine triphosphate [ATP] synthase enzymatic activities)

[27].

In a search of electronic libraries (PubMed, Scopus, and Cochrane) for information on MI

and açai supplementation, two articles were found. An experimental model of coronary artery
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ligation [28], and a global ischemia-reperfusion model in rats [29]. In the first study, açai seed

supplementation was performed for 4 weeks, and the rats received 100 mg/kg/day of ASE. The

authors observed attenuation in hypertrophy (decreased heart weight), fibrosis (decreased col-

lagen deposition in the left ventricle), and cardiac dysfunction (alterations in arterial and left

ventricular pressure) [28]. In the second study, the authors supplemented 5% of açai pulp for 6

weeks and observed an improvement in energy metabolism and attenuation of oxidative stress

[29]. Thus far, whether açai pulp supplementation affects cardiac remodeling after MI remains

unknown. Although açai pulp has antioxidant and anti-inflammatory activities, its chemical

composition differs from that of the seed, as afore mentioned.

Therefore, the aim of this study was to evaluate the effect of açai pulp supplementation in

rat chow on cardiac remodeling after MI by modifying oxidative stress, energy metabolism,

and inflammatory pathways.

Materials and methods

All experiments and procedures were performed in accordance with the National Institute of

Health’s Guide for the Care and Use of Laboratory Animals and with the Ethical Principles in

Animal Experimentation adopted by the Brazilian College of Animal Experimentation. The

study protocol (n˚1066/2013) was submitted and approved by the Botucatu Medical School

Animal Research Ethics Committee.

Male Wistar rats weighing from 200 to 250 g. Animals were subjected to MI according to a

method previously described [2, 30] or sham surgery. After surgery, rats were housed in indi-

vidual cages, in a temperature-controlled room (24˚C) with a 12-hour light/12-hour dark

cycle. Water was supplied ad libitum, and food was controlled.

After the initial echocardiographic exam, animals were allocated into six groups: (1) sham

animals fed standard chow (SA0, n = 14); (2) sham animals fed standard chow with 2% açai

pulp (SA2, n = 12); (3) sham animals fed standard chow with 5% açai pulp (SA5, n = 14); (4)

infarcted animals fed standard chow (IA0, n = 12); (5) infarcted animals fed standard chow

with 2% açai pulp (IA2, n = 12); and (6) infarcted animals fed standard chow with 5% açai

pulp (IA5, n = 12). Supplementation was performed for 90 days. After this period, the animals

were evaluated using the final echocardiographic exam.

Experimental MI

Animals were anesthetized with ketamine (70 mg/kg) and xylazine (1 mg/kg); next, the heart

was exteriorized, and the left coronary artery was ligated with 5–0 mononylon between the

pulmonary outflow tract and left atrium. Heart was replaced in the thorax, the lungs were

inflated by positive pressure, and the thoracotomy was closed [2, 30]. In the sham group, the

same MI procedure was performed but without coronary occlusion.

Açai supplementation

Açai pulp was purchased commercially (Icefruit1) from the same batch, homogenized,

packed in one-liter bottles, and stored at -80˚C for later use in chow. The açai pulp was ana-

lyzed, and the total phenolic compounds expressed as a quantity of gallic acid were 170 mg/

100 g [31], antioxidant activity was 48.3 g of 2,2-diphenyl-1-picrylhydrazyl (DPPH)/kg [32],

and total anthocyanin was 15.6 mg/100g [33]. We also determined fat content (6%) and water

content (88%). Supplementation doses of 2% and 5% were chosen based on De Souza et al.

(2012) [34] and Fragoso et al. (2013) [35], respectively. Nuvilab chow (Nuvital1) was used for

all animals. Chow was initially chopped for the later addition of açai pulp, and the mixture was

pelleted and dried at ambient temperature. The chow was stored at -20˚C.
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Seven days after surgery, an initial echocardiographic exam was performed, and the animals

were allocated into groups to start açai supplementation for 3 months. The food intake of all

animals was measured periodically. The mean daily intake of each rat was then calculated.

Echocardiographic study

At both time points (i.e., initial echocardiographic exam 7 days after surgery and final

exam after 90 days of supplementation), animals were evaluated using a transthoracic

echocardiographic exam. All measurements were performed according to the method rec-

ommended by the American Society of Echocardiography [36] and validated in the

infarcted rat model in our laboratory [37]. The equipment used was General Electric Med-

ical Systems, model Vivid S6 (Tirat Carmel, Israel) with a multifrequency transducer of 5

to 11.5 MHz. Mitral inflow and aortic flow were assessed using the same transducer oper-

ating at 5.0 MHz.

The initial echocardiographic examination was performed on infarcted animals to check

the infarct size and fraction area variation, to homogenize infarct size among the groups. In

the final echocardiographic examination, cardiac structures were measured in at least five con-

secutive cardiac cycles [38, 39].

Morphometric analysis

Transverse sections (5 μm) of the left ventricles (LVs) were performed in paraffin blocks and

stained with hematoxylin and eosin for cardiomyocyte cross-sectional area (CSA), and with

Picrosirius Red Stain for interstitial collagen fraction (ICF) and infarction size calculations.

The infarct size was calculated using the following formula: [(endocardial + epicardial circum-

ferences of the infarcted area) / (endocardial + epicardial ventricular circumferences) × 100]

(Fig 1). This method is considered more precise than echocardiography analysis because echo-

cardiogram measure only the endocardial perimeter of the infarct, which may be overesti-

mated by the infarction expansion process [40]. In this study, animals with infarcted area

smaller than 30% were excluded.

CSA was measured from 70 cells per ventricle. Digital images were collected (400 × mag-

nification) using a video camera attached to a Leica microscope. ICF was determined in

remote cardiac areas free from MI from at least 30 digital images (400 × magnification). All

images were collected with a video camera attached to a Leica microscope, and the images

were analyzed with the Image-Pro Plus 3.0 software program (Media Cybernetics, Silver

Spring, MD, USA).

Fig 1. Myocardial infarcted area. (A) Sham animal heart, (B) Infarcted animal heart.

https://doi.org/10.1371/journal.pone.0264854.g001
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Lipid hydroperoxide, oxidative stress, and energy metabolism enzymes

Protein extraction was performed on LV samples to determine the lipid hydroperoxide (LH)

concentration and enzyme activities. Glutathione peroxidase (GPx, E.C.1.11.1.9), superoxide

dismutase (SOD, E.C.1.15.1.1), and catalase (CAT, E.C.1.11.1.6) activities were assessed as pre-

viously described [41, 42]. Cardiac energy metabolism was assessed using β-hydroxyacyl coen-

zyme-A dehydrogenase (β-OHADH, E.C.1.1.1.35.), lactate dehydrogenase (LDH, E.

C.1.1.1.27), pyruvate dehydrogenase complex (PDH), citrate synthase (CS; E.C.4.1.3.7.), com-

plex I (NADH: ubiquinone oxidoreductase), complex II (succinate dehydrogenase), and ATP

synthase (EC 3.6.3.14) activities, as previously described [42].

Spectrophotometric determinations were performed using a Pharmacia Biotech Spectro-

photometer UV/visible Ultrospec 5000 with Swift II Application software for computer system

control, 974213 (Cambridge, England, UK) at 560 nm.

Malondialdehyde concentration

Protein extraction was performed on LV samples and quantified using the Bradford method

[43]. The extraction was conducted in red light 1 day before the analysis. MDA concentration

was determined by the method in (Nielsen et al. [1997]). Fluorometric detection was per-

formed at 527 nm of excitation and 551 nm of emission [44].

Cytokine production and tissue inhibitor of metalloproteinase-1 evaluation

Tumor necrosis factor-α (TNF-α), IFN-γ, interleukin-10 (IL-10) and tissue inhibitor of metal-

loproteinase-1 (TIMP-1) concentrations were determined. Protein extraction was performed

on the LV samples and quantified using the Bradford method [43]. The extraction was evalu-

ated by ELISA, according to the manufacturer’s instructions (R&D Systems, Minneapolis,

MN, USA).

Western blot analysis

Nuclear erythroid factor-2 (Nrf-2), NF-κB, and pNF-κB total and phosphorylated (NF-κB and

pNF-κB, respectively), collagen I, collagen III, and caspase-3 expression were determined. LV

samples were extracted using radioimmunoprecipitation assay buffer or nuclear extraction

buffer. Protein content was quantified using the Bradford method [43], and samples contain-

ing 50 μg of protein were separated by electrophoresis using a Mini-Protean 3 Electrophoresis

Cell (Bio-Rad, Hercules, CA, USA) system and transferred to a nitrocellulose membrane. The

membrane was blocked and incubated with primary antibodies. The membrane was then

washed with TBS and Tween 20 and incubated with the appropriate secondary peroxidase-

conjugated antibody. A SuperSignal1West Pico Chemiluminescent Substrate (Pierce Protein

Research Products, Rockford, IL, USA) was used to detect bound antibodies. Glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) mouse monoclonal (Santa Cruz Biotechnology Inc.,

Europe) was used for normalization.

Statistical analysis

Data are presented as the mean ± standard error of the mean (SEM). Variables with no normal

distribution were normalized using the most suitable mathematical transformation. For data

that could not be normalized, we used the Kruskal Wallis test (comparison among sham

groups SA0, SA2, and SA5 and among infarcted groups IA0, IA2, and IA5) and the Mann

Whitney test (comparison between groups: SA0 and IA0; SA2 and IA2; and SA5 and IA5).

Then, Bonferroni correction was performed.
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Data were analyzed by 2-factor ANOVA: (1) factor one: presence of MI (I); (2) factor two:

açai supplementation (A); and (3) interaction between factors I and A. When a significant

interaction between factors was observed, Holm Sidak multiple comparisons were used. When

no interaction was found, the factors were separated to assess whether MI animals differed

from sham animals and whether supplemented animals differed from those without

supplementation.

The results are as follows: (1) changes promoted by MI, corresponding to comparisons

between the SA0 and IA0 groups in case of interactions, and comparisons between all animals

with or without MI in the absence of interaction between the factors; (2) the effect of açai sup-

plementation in MI animals, corresponding to the comparison among groups IA0, IA2, and

IA5 in the presence of interaction; and (3) the effect of açai supplementation in all animals in

the absence of interaction between the factors. Thus, in this last situation, we interpreted the

results by indicating the effect of açai supplementation in a general action in the heart. In this

manner, we also observed this action in MI.

One-factor ANOVA was used to compare infarction size in the infarcted groups. Spear-

man’s rank correlation coefficient test was performed to compare the dose-dependent effects

of açai supplementation. Differences were considered statistically significant if P<0.05. Statis-

tical analyses were performed using SigmaStat for Windows software version 3.5 (Systat Soft-

ware Inc. San Jose, CA, USA).

Results

Survival, food intake, and body weight

Mortality during the experimental period was as follows: one animal of the sham animals,

eight animals from IA0, six from IA2, and five from IA5 (P = 0.728). As expected, no differ-

ences were observed in the initial echocardiographic examination (Table 1). In addition, no

difference was observed in the infarction size among the infarcted groups in relation to food

intake and body weight (Table 2).

Effect of MI in the rat heart

MI promoted myocardial remodeling by morphological changes (higher LV systolic and dia-

stolic diameter adjusted by body weight, higher LV mass index, left atrium, and CSA) and

functional changes (systolic: lower fractional area change and ejection fraction; and diastolic:

lower E’ media and A’ media) (Table 2).

Changes in energy metabolism were as follows: abnormal oxidation of fatty acids (lower β-

OHADH), lower glucose oxidation (lower activity of PDH), lower CS, lower electron transport

chain complexes (lower activity of complex I and complex II), lower ATP synthase, and higher

Table 1. Initial echocardiographic exam (7 days after surgery).

Groups P value

IA0 (n = 11) IA2 (n = 12) IA5 (n = 12) P

Diastolic area (mm2) 65.3±3.32 66±.2.31 60.3±1.66 0.209

Sistolic area (mm2) 44.4±2.74 44.8±2.85 40.1±2.14 0.362

% MI 38±2.96 37.3±2.94 36.2±2.38 0.899

FAC (%) 32.3±1.99 32.6±2.57 33.8±2.39 0.890

I: infarction; S: sham; A: açai; A0: no supplementation; A2: 2% of açai supplementation; A5: 5% of açai supplementation. FAC: fractional area change. Data are expressed

as mean ± SEM. it was performed 1-factor ANOVA.

https://doi.org/10.1371/journal.pone.0264854.t001
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lactate production from pyruvate (higher LDH activity). No difference was observed in phos-

phofructokinase (PFK) activity (Table 3). An antioxidant imbalance was also observed (higher

LH and MDA concentrations, higher SOD activity, lower GPx activity, and Nrf-2 expression).

Table 2. Echocardiographic and morphometric data.

Groups P values

SA0 (n = 14) SA2 (n = 13) SA5 (n = 14) IA0 (n = 12) IA2 (n = 12) IA5 (n = 12) P (I) P (A) P (IxA)

Food intake (g) 23±0.6 22.6±0.7 23.7±0.6 24.8±0.5 23.1±0.5 23.2±0.8 0.257 0.254 0.194

Initial BW (g) 266±9 260±9 275±8 252±5 260±8 258±7 0.133 0.605 0.595

Final BW (g) 430±10 432±14 436±11 452±11 445±13 447±13 0.127 0.949 0.906

Infarction size (%) - - - 42.8±1.9 39.7±2.7 42.1±1.8 - 0.556 -

�LVSD/BW (mm/kg) 9.52±0.43 9.39±0.29 8.81±0.33 17.5±0.98 17.6±1.09 18.5±0.84 <0.0011 0.994 0.297

�LVDD/BW (mm/kg) 18.4±0.3 18.8±0.5 17.8±0.5 22.7±0.8 22.9±1 23.3±0.8 <0.0011 0.901 0.428

�LVMI (g/kg) 1.7±0.04 1.8±0.07 1.7±0.07 3.3±0.21 3±0.2 3.2±0.22 <0.0011 0.921 0.217
#LA/BW (mm/kg) 12±0.3 13±0.4 12±0.3 16±1 15±1.1 15±0.9 0.0051 0.132 0.665

#FAC (%) 69±1.7 67±1.1 68±1.2 32±3 33±1.8 31±3.3 <0.0051 0.538 0.605

�Ejection fraction 86±1.3 87±1.2 88±0.7 54±3.8 55±3.5 50±3.2 <0.0011 0.794 0.338

E’ media (cm/s) 3.9±0.2 4.1±0.2 4.1±0.1 3.9±0.2 3.6±0.2 3.6±0.1 0.0121 0.988 0.176

�A’ media (mm2) 3.7±0.2 3.5±0.2 3.3±0.2 2.9±0.2 2.9±0.3 3.5±0.4 0.0131 0.583 0.100

CSA (μm2) 207±34 252±27 245±25 304±28 275±30 289±28 0.0271 0.923 0.422

I: infarction; S: sham; A: açai; A0: no supplementation; A2: 2% açai supplementation; A5: 5% açai supplementation; BW: body weight; LVSD: left ventricular systolic

diameter; LVDD: left ventricular diastolic diameter; LVMI: left ventricular mass index; LA: left atrium; FAC: fractional area change; E’ media: average between early

diastolic wave of the mitral annulus lateral and septal; A’ media: average between late diastolic wave of the mitral annulus lateral and septal; CSA: cardiomyocyte cross-

sectional area. Data are expressed as mean ± SEM. Bold numbers represents significant effects considered.
1 Comparisons for I factor: infarcted animals different from sham animals.

� variables normalized for 2-factor ANOVA test.
# Mann Whitney and Kruskal Wallis.

https://doi.org/10.1371/journal.pone.0264854.t002

Table 3. Energy metabolism markers.

Groups P values

SA0 (n = 8) SA2 (n = 8) SA5 (n = 8) IA0 (n = 8) IA2 (n = 8) IA5 (n = 8) P (I) P (A) P (IxA)

β-OHADH (nmol/g) 33.1±2.02 33.6±1.87 37.2±1.54 20.2±1.45 19.0±1.6 24.6±1.41 <0.0011 0.0142 0.823

#LDH (nmol/g) 70.3±2.66a 81.1±7.27 65.6±6.42 139±6.39a,A,C 70.1±1.77A 65.4±2.16C <0.005 0.880 <0.0053

#PFK (nmol/g) 143±5.9 141±9.2 133±9.1 155±4.67 152±5.4 143±9.2 0.129 0.939 0.447

PDH (nmol/g) 286±12.1 300±15.5 317±15.5 218±15.4 293±15.6 298±11.4 0.0111 <0.0012 0.085

�CS (nmol/g) 86.3±8.15 108±10.2 131±9.87 51.8±2.37 62.6±5.27 62.6±3.95 <0.0011 0.0022 0.291

�complex I (nmol/g) 5.19±0.07a 4.99±0.14b 5.11±0.10 3.39±0.29a,C 3.37±0.35b,B 4.78±0.22B,C <0.001 0.015 0.0153

complex II (nmol/g) 5.54±0.34 4.66±0.34 4.73±0.31 3.09±0.16 2.99±0.18 3.48±0.25 <0.0011 0.208 0.094

ATP synthase (nmol/g) 37.4±0.91a, E 35.9±1.16b,D 31.4±1.39c,D,E 20.6±1.01a 21.9±1.06b 20.1±0.98c <0.001 0.007 0.049

I: infarction; S: sham; A: açai; A0: no supplementation; A2: 2% açai supplementation; A5: 5% açai supplementation. β-OHADH: β-hydroxyacyl coenzyme-A

dehydrogenase; LDH: lactate dehydrogenase; PFK: Phosphofructokinase; PDH: pyruvate dehydrogenase complex; CS: citrate synthase. Data are expressed as

mean ± SEM. Bold numbers represents significant effects considered.
1 Comparisons for I factor: infarcted animals different from sham animals.
2 Comparisons for açai factor, β-OHADH: animals A06¼animals A5 and animals A26¼animals A5; PDH: animals A06¼animals A2 and animals A06¼animals A5; CS:

animals A06¼animals A2 and animals A06¼animals A5.
3 IxA: when interactions are observed, same superscript letters represents differences (P<0.05).

�variables normalized for 2-factor ANOVA test.
#Mann Whitney and Kruskal Wallis.

https://doi.org/10.1371/journal.pone.0264854.t003
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No difference was observed in CAT activity (Table 4). MI led to inflammatory alterations

(higher IL-10 and lower INF-y concentrations). No differences were observed in NF-κB total

and phosphorylated (NF-κB and pNF-κB, respectively) expression (Table 5 and S1 Fig). A

higher deposition of collagen was observed after MI (higher concentration of TIMP-1, per-

centage of ICF, and expression of collagen I). No differences were observed in the expression

of collagen III and caspase-3 (Table 6 and S2 and S3 Figs).

Effect of açai supplementation after MI

Açai supplementation in infarcted animals improved cardiac energy metabolism (higher activ-

ity of β-OHADH, PDH, CS, complex I, and lower LDH activity) (Table 3 and Fig 2) and atten-

uated oxidative stress (lower concentration of MDA and SOD activity) (Table 4 and Fig 3).

Furthermore, açai supplementation modulated the inflammatory process (lower concentration

of IL-10) (Table 5 and Fig 4) and decreased the deposition of collagen (lower concentration of

TIMP-1 and percentage of ICF) (Table 6 and Fig 4).

Dose-dependent effects of açai supplementation after MI

Different doses of açai supplementation led to dose-dependent effects. This effect can be

observed in antioxidant enzymes: lower SOD activity (P = 0.005), and higher GPx activity

(P = 0.014); lipid peroxidation markers: lower concentration of LH (P = 0.034), and MDA

(P = 0.009); in energy metabolism enzymes: higher activity of PDH (P = 0.001), CS (P = 0.043),

and complex I (P = 0.003); and lower activity of LDH (P<0.001); anti-inflammatory cytokine:

lower concentration of IL-10 (P<0.001); and collagen deposit markers: lower percentage of

ICF (P = 0.016), and lower concentration of TIMP-1 (P<0.001) (S1 Table).

Discussion

The aim of this study was to analyze the influence of açai supplementation on cardiac remodel-

ing after MI in rats. Our data showed that MI promoted morphological and functional cardiac

alterations, altered energy metabolism, increased oxidative stress, worsened the inflammatory

process, and increased collagen deposition in the heart. These alterations are characteristic of

cardiac remodeling and have been observed in other studies [7–9]. Supplementation of açai in

Table 4. Oxidative stress markers.

Groups P values

SA0 (n = 8) SA2 (n = 8) SA5 (n = 8) IA0 (n = 8) IA2 (n = 8) IA5 (n = 8) P (I) P (A) P (IxA)

�LH (nmol/mg) 250±10.9 241±13.5 251±11.9 301±15 286±15.2 254±15.4 0.0041 0.251 0.169

MDA (μmol/g) 0.35±0.05a 0.36±0.03b 0.31±0.04 1.32±0.25a,A,C 0.77±0.12b,A 0.61±0.12C <0.001 0.013 0.0233

CAT (μmol/mg) 64.5±4.23 59.1±5.11 56.6±4.04 47.8±3.17 61±3.62 60.5±7 0.351 0.709 0.065

SOD (nmol/mg) 7.06±0.36a 7.34±0.36b 7.59±0.31 8.95±0.38a,C 8.74±0.54b,B 6.9±0.41B,C 0.011 0.095 0.0063

GPx (nmol/mg) 45.0±3.1 43.9±1.87 45.6±1.82 34.6±1.44 39.9±2.31 43.6±2.92 0.0061 0.133 0.179

(n) Espression Nrf-2 (8) 1.45±0.31 (8) 1.48±0.39 (7) 1.21±0.38 (6) 1.05±0.34 (8) 0.66±0.18 (8) 0.75±0.16 0.0291 0.674 0.760

I: infarction; S: sham; A: açai; A0: no supplementation; A2: 2% açai supplementation; A5: 5% açai supplementation. LH: lipid hydroperoxide; MDA: malondialdehyde;

CAT: catalase; SOD: superoxide dismutase; GPx: glutathione peroxidase; Nrf-2: expression of nuclear factor erythroid-2. Data are expressed as mean ± SEM. Bold

numbers represents significant effects considered.
1 Comparisons for I factor: infarcted animals different from sham animals.
3 IxA: when interactions are observed, same superscript letters represents differences (P<0.05).

�variables normalized for 2-factor ANOVA test.

https://doi.org/10.1371/journal.pone.0264854.t004
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infarcted animals improved energy metabolism, attenuated oxidative stress, modulated the

inflammatory process, and decreased fibrosis. Furthermore, açai supplementation resulted in a

dose-dependent response.

Influence of açai pulp supplementation in MI heart

Under physiological conditions, fatty acids are used as the main energy substrate. However, after

MI, cardiac metabolism changes and glucose oxidation increase energy production [45]. Açai

supplementation increased fatty acid oxidation and decreased the glycolytic pathway after MI.

These data show that açai increased the use of fatty acids as an energy substrate, which is similar

to what occurs in the heart under normal conditions [45]. Moreover, as afore mentioned, açai

pulp has a high lipid content (48% of lipids) [13, 14], which may have contributed to the increased

use of fatty acids. Furthermore, açai supplementation improved the citric acid cycle and electron

transport chain. In the citric acid cycle, acetyl coenzyme A (acetyl CoA) and oxaloacetate are cata-

lyzed by citrate synthase to citrate. At the end of this cycle, it generates additional coenzymes,

Table 6. Collagen degradation markers and caspase-3.

Groups P values

SA0 SA2 SA5 IA0 IA2 IA5 P (I) P (A) P (IxA)

�TIMP-1 (pg/mg) (6) 8.94±2.48a (4) 9.42±0.90 (2) 18.1±8.85 (4) 51.4±13.5a,A,C (4) 12.3±1.62A (4) 8.25±1.95C 0.055 0.049 <0.0013

�ICF (%) (8) 2.19±0.3a,E,F (8) 3.09±0.9b,F (8) 3.08±0.3c,E (8) 10.4±1.5a,C (8) 10.2±1.4b,B (8) 8.07±1.8c,B,C <0.001 0.090 <0.0013

Expression Collagen I (8) 0.73±0.13 (6) 0.87±0.17 (6) 0.73±0.16 (6) 1.22±0.21 (6) 1.18±0.29 (6) 0.85±0.14 0.0501 0.439 0.603

Expression Collagen III (7) 0.84±0.09 (6) 1.04±0.14 (6) 1.26±0.24 (6) 1.14±0.17 (6) 1.00±0.07 (6) 1.25±0.14 0.503 0.164 0.464

Expression Caspase-3 (8) 1.88±0.58 (7) 2.81±0.73 (8) 3.21±0.65 (7) 1.58±0.42 (8) 2.63±0.68 (7) 2.36±0.65 0.397 0.182 0.853

I: infarction; S: sham; A: açai; A0: no supplementation; A2: 2% açai supplementation; A5: 5% açai supplementation. TIMP-1: tissue inhibitor of metalloproteinase-1;

ICF: interstitial collagen fraction. Data are expressed as mean ± SEM. Bold numbers represents significant effects considered.
1 Comparisons for I factor: infarcted animals different from sham animals.
3 IxA: when interactions are observed, same superscript letters represents differences (P<0.05).

�variables normalized for 2-factor ANOVA test.
#Mann Whitney and Kruskal Wallis.

https://doi.org/10.1371/journal.pone.0264854.t006

Table 5. Production of cytokines inflammatory.

Groups P values

SA0 SA2 SA5 IA0 IA2 IA5 P (I) P (A) P (IxA)

(n) IL-10 (pg/mg) (6) 3.21±0.47a,E (6) 4.81±0.71D (6) 8.49±1.c,D,E (6) 6.83±0.44a,A,C (6) 4.75±0.62A,B (6) 2.48±0.27c,B,C 0.123 0.529 <0.0013

INF-γ (pg/mg) (6) 0.48±0.19 (5) 1.05±0.32 (5) 1.33±0.22 (6) 0.48±0.18 (6) 0.62±0.27 (4) 0.13±0.08 0.0081 0.276 0.054
#TNF-α (pg/mg) (6) 0.10±0.01 (6) 0.02±0.02 (6) 0.78±0.47 (6) 0.24±0.16 (6) 0.92±0.49 (6) 0.53±00.33 0.699 0.250 0.427

Expression p NF-κB (8) 0.85±0.10 (8) 1.24±0.14 (6) 1.08±0.21 (6) 1.25±0.21 (6) 1.03±0.27 (7) 1.06±0.16 0.696 0.872 0.222

Expression NF-κB (8) 0.94±0.16 (8) 1.16±0.12 (6) 1.09±0.25 (6) 1.20±0.17 (6) 0.96±0.20 (7) 1.03±0.17 0.990 0.997 0.415

�Expression p NF-κB / NF-κB (8) 1.00±0.10 (8) 1.05±0.05 (6) 0.97±0.13 (6) 1.02±0.07 (6) 0.86±0.06 (7) 0.91±0.11 0.191 0.663 0.377

I: infarction; S: sham; A: açai; A0: no supplementation; A2: 2% açai supplementation; A5: 5% açai supplementation. IL-10: interleukin 10; INF-γ: interferon γ; TNF-α:

tumor necrosis factor-α, NF-κB: nuclear factor kappa B. Data are expressed as mean ± SEM. Bold numbers represents significant effects considered.
1 Comparisons for I factor: infarcted animals different from sham animals.
3 IxA: when interactions are observed, same superscript letters represents differences (P<0.05).

�variables normalized for 2-factor ANOVA test.
#Mann Whitney and Kruskal Wallis.

https://doi.org/10.1371/journal.pone.0264854.t005
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which are responsible for the electron transport that occurs in the inner membrane of mitochon-

dria to the intermembrane space. Moreover, this electron transfer is mediated by specific com-

plexes I to IV and provides protons for complex V to produce ATP [45, 46]. Thus, açai

supplementation improved energy metabolism in the heart. Two other studies have also observed

that açai pulp supplementation improves cardiac energy metabolism in the heart in a doxorubi-

cin-induced cardiotoxicity model [27] and in a global ischemia-reperfusion model [29].

After MI, there is an imbalance between RS production and myocardial antioxidant

reserves [47]. In addition, changes in cardiac metabolism, increase the generation of superox-

ide radicals and increase oxidative stress [45]. In oxidative stress, the membrane is one of the

cell components most affected by lipid peroxidation in its phospholipids, which causes changes

in cell structure and permeability. This lipid peroxidation produces MDA, which is the most

abundant end product of lipid peroxidation chain reactions and is commonly used as an indi-

cator of oxidative damage [48, 49]. In our study, açai supplementation decreased the MDA

concentration in the heart, leading to an improvement in oxidative stress. In addition, açai

supplementation decreased the SOD activity. SOD is an antioxidant enzyme that protects

mitochondria against deleterious superoxide radicals in pathophysiological and pathological

conditions [50]. Other authors have also observed lower SOD activity in animals supple-

mented with açai. They suggested that the high levels of antioxidant compounds present in the

açai pulp can reduce RS, maintaining redox balance, without the physiological need to increase

antioxidant enzyme activity [51–53]. Therefore, the presence of phytochemical compounds,

especially polyphenols, has been associated with the effects of açai as an antioxidant via both

direct [13] and indirect effects [53–55] in different experimental models. Thus, in this study,

the decreased MDA concentration and SOD activity promoted by açai supplementation sug-

gest a reduction in RS in these animals, maintaining redox balance. Decreased SOD activity

has also been reported with infarcted animals and supplementation of natural products with

antioxidant/anti-inflammatory properties [7, 8].

Fig 2. Energy metabolism enzymes in sham and infarcted rats with and without açai supplementation. (A) β-

OHADH: β-hydroxyacyl coenzyme-A dehydrogenase, (B) PDH: pyruvate dehydrogenase complex, (C) CS: citrate

synthase, (D) Complex I, (E) LDH: lactate dehydrogenase. Data are expressed as mean ± SEM. Same letter represents a

significant difference between groups (p<0.005). Sample size: SA0 = 8; SA2 = 8; SA5 = 8; IA0 = 8; IA2 = 8; IA5 = 8.

https://doi.org/10.1371/journal.pone.0264854.g002
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Regarding the inflammatory response, MI activates innate immunity, characterized by an

increase in proinflammatory cytokines (TNF-α, interleukin-1 β (IL-1β), and interleukin-6 (IL-

6)) [56]. An anti-inflammatory repair response is initiated, characterized by the activation and

accelerated proliferation of fibroblasts [57, 58]. Finally, repairing macrophages are recruited

and release inhibitory mediators (i.e., transforming growth factor-β and IL-10), which sup-

press inflammation and activate profibrotic processes [59]. Thus, the acute inflammatory pro-

cess after MI is followed by inflammatory balance and tissue repair with stabilization of the

healing process [60]. Therefore, the decreased concentration of the anti-inflammatory cyto-

kine IL-10, observed in groups supplemented with açai, suggests that the inflammatory process

is balanced and that there is no reason to increase the production of anti-inflammatory cyto-

kines. This balance in the inflammatory process can also be confirmed by the normal values of

TNF-α and NF-κB (phosphorylated, total, and its relation).

The participation of the extracellular matrix and its structural elements, such as collagen

and other proteins, is also relevant in the remodeling process. The ECM is upregulated by

matrix metalloproteinases (MMPs) and downregulated by tissue inhibitors of metalloprotei-

nases (TIMPs) [61]. A study reported that MI promoted an increase in MMP-2 [8]. Therefore,

an increase in TIMP-1 in infarcted animals is expected to be a consequence of the increase in

MMPs [61]. In our study, açai supplementation decreased TIMP-1 concentration and ICF

Fig 3. Oxidative stress markers in sham and infarcted rats with and without açai supplementation. (A) MDA:

malondialdehyde, (B) SOD: superoxide dismutase. Data are expressed as mean ± SEM. The same letter represents a

significant difference between groups (p<0.005). Sample size: SA0 = 8; SA2 = 8; SA5 = 8; IA0 = 8; IA2 = 8; IA5 = 8.

https://doi.org/10.1371/journal.pone.0264854.g003
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percentage. Thus, açai supplementation led to a decrease in extracellular matrix degradation

and, consequently, a decrease in fibrosis.

This study did not observe an improvement in morphological and functional variables, as

evaluated by echocardiography, promoted by açai supplementation. Our study supplemented

açai for 3 months after MI, as prior studies performed in our laboratory with an experimental

model of infarction have done [7, 8]. Considering these results with açai supplementation, we

observed important biochemical improvements. We suggest that an increased supplementa-

tion time, would result in improvements in morphological and functional variables. In addi-

tion, açai supplementation doses had dose-dependent effects. Thus, increasing the dose of açai

supplementation, would improvement the morphological and functional variables.

In this study, açai supplementation with 2% and 5% had a dose-dependent effect on post-

MI cardiac remodeling. Regarding the açai dose, concentrations of 2% and 5% in rat chow

were equivalent to 15.6 g (1 tablespoons daily) and 39 g (2.5 tablespoons daily) for humans,

respectively [62]. Therefore, the amount is not large, açai is a product that can be easily found

year-round in Brazil, and the price is affordable.

Conclusion

Açai supplementation attenuated cardiac remodeling after MI in rats. The mechanism

involved reduced oxidative stress, improved energy metabolism, modulated the inflammatory

process, and decreased fibrosis. Different doses of açai supplementation had dose-dependent

effects on cardiac remodeling.

Supporting information

S1 Table. Dose-dependent effects of different doses of açai supplementation.

(DOCX)

Fig 4. Inflammatory process and collagen deposit in sham and infarcted rats with and without açai

supplementation. (A) IL-10: interleukin 10. Sample size: SA0 = 6; SA2 = 6; SA5 = 6; IA0 = 6; IA2 = 6; IA5 = 6. (B)

TIMP-1: tissue inhibitor of metalloproteinase-1. Sample size: SA0 = 6; SA2 = 4; SA5 = 2; IA0 = 4; IA2 = 4; IA5 = 4. (C)

ICF: interstitial collagen fraction. Sample size: SA0 = 8; SA2 = 8; SA5 = 8; IA0 = 8; IA2 = 8; IA5 = 8. Data are expressed

as mean ± SEM. The same letter represents a significant difference between groups (p<0.005).

https://doi.org/10.1371/journal.pone.0264854.g004
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S1 Fig. NF-κB total and phosphorylated in sham and infarcted rats with and without açai

supplementation. (A) NF-κB total: nuclear factor kappa B, (B) pNF-κB: nuclear factor kappa

B: phosphorylated nuclear factor kappa B. Sample size: SA0 = 8; SA2 = 8; SA5 = 6; IA0 = 6;

IA2 = 6; IA5 = 7.

(TIF)

S2 Fig. Collagen I and III in sham and infarcted rats with and without açai supplementa-

tion. (A) Collagen I. Sample size: SA0 = 8; SA2 = 6; SA5 = 6; IA0 = 6; IA2 = 6; IA5 = 6. (B) Col-

lagen III. Sample size: SA0 = 7; SA2 = 6; SA5 = 6; IA0 = 6; IA2 = 6; IA5 = 6.

(TIF)

S3 Fig. Nrf-2 and caspase-3 in sham and infarcted rats with and without açai supplementa-

tion. (A) Nrf-2: expression of nuclear factor erythroid-2. Sample size: SA0 = 8; SA2 = 8;

SA5 = 7; IA0 = 6; IA2 = 8; IA5 = 8. (B) Caspase-3. Sample size: SA0 = 8; SA2 = 7; SA5 = 8;

IA0 = 7; IA2 = 8; IA5 = 7.

(TIF)

Acknowledgments

We thank Mario B. Bruno, José Georgette and Antonio Carlos de Lalla for animal manage-

ment and technical assistance. AMF, SARP, BFP, MFM, LAMZ and PSAG designed the

research; AMF, ACC, BPMR, RACS, AFG, TFB, LLI, BCO, BLBP, AAHF and KO conducted

the research; AMF and SARP analyzed the data and wrote the paper. SARP had primary

responsibility for final content. All authors read and approved the final manuscript.

Author Contributions

Conceptualization: Paula Schmidt Azevedo, Leonardo Antonio Mamede Zornoff, Marcos

Ferreira Minicucci, Bertha Furlan Polegato, Sergio Alberto Rupp Paiva.

Data curation: Amanda Menezes Figueiredo, Ana Carolina Cardoso, Renata Aparecida Can-

dido Silva, Andrea Freitas Goncalves Della Ripa, Tatiana Fernanda Bachiega Pinelli, Bruna

Camargo Oliveira, Bruna Paola Murino Rafacho, Larissa Lumi Watanabe Ishikawa, Paula

Schmidt Azevedo, Katashi Okoshi, Ana Angelica Henrique Fernandes, Leonardo Antonio

Mamede Zornoff, Marcos Ferreira Minicucci, Bertha Furlan Polegato, Sergio Alberto Rupp

Paiva.

Formal analysis: Amanda Menezes Figueiredo, Bruna Paola Murino Rafacho, Paula Schmidt

Azevedo, Katashi Okoshi, Ana Angelica Henrique Fernandes, Leonardo Antonio Mamede

Zornoff, Marcos Ferreira Minicucci, Bertha Furlan Polegato, Sergio Alberto Rupp Paiva.

Funding acquisition: Sergio Alberto Rupp Paiva.

Investigation: Amanda Menezes Figueiredo, Bruna Leticia Buzati Pereira, Paula Schmidt Aze-

vedo, Marcos Ferreira Minicucci, Bertha Furlan Polegato, Sergio Alberto Rupp Paiva.

Methodology: Amanda Menezes Figueiredo, Ana Carolina Cardoso, Paula Schmidt Azevedo,

Leonardo Antonio Mamede Zornoff, Marcos Ferreira Minicucci, Bertha Furlan Polegato,

Sergio Alberto Rupp Paiva.

Project administration: Amanda Menezes Figueiredo, Sergio Alberto Rupp Paiva.

Resources: Amanda Menezes Figueiredo, Sergio Alberto Rupp Paiva.
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