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Abstract

Poly(lactic-co-glycolic acid) is one of the most used polymers for drug delivery systems

(DDSs). It shows excellent biocompatibility, biodegradability, and allows spatio-temporal

control of the release of a drug by altering its chemistry. In spite of this, few formulations

have reached the market. To characterize and optimize the drug release process, mathe-

matical models offer a good alternative as they allow interpreting and predicting experimen-

tal findings, saving time and money. However, there is no general model that describes all

types of drug release of polymeric DDSs. This study aims to perform a statistical comparison

of several mathematical models commonly used in order to find which of them best

describes the drug release profile from PLGA particles synthesized by nanoprecipitation

method. For this purpose, 40 datasets extracted from scientific articles published since

2016 were collected. Each set was fitted by the models: order zero to fifth order polynomials,

Korsmeyer-Peppas, Weibull and Hyperbolic Tangent Function. Some data sets had few

observations that do not allow to apply statistic test, thus bootstrap resampling technique

was performed. Statistic evidence showed that Hyperbolic Tangent Function model is the

one that best fit most of the data.

Introduction

For more than 50 years, through nanotechnology and biomedicine, formulations and devices

have been developed with the aim of improving the delivery and transport of drugs inside the

human body [1–3]. The use of drug delivery systems (DDS) has brought great benefits such as

altered drug pharmacokinetics, increased bioavailability, controlled and sustained drug
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release, target therapy, combinatorial therapy, versatility in presentation modalities, simplified

treatment schedules, suit clinical needs and patient preferences, decrease side effects, and

increase patient treatment compliance [4–11]. DDS generally include: microsized forms as

polymeric microspheres [12], microsponges [13], microneedles [14], and nanosized devices

like liposomes [15], niosomes [16], metals nanoparticles [17], magnetic nanoparticles [18],

nanocrystals [19], organic nanotubes [20], exosomes [21], and polymeric nanoparticles [22].

Especially, polymeric nanomaterials have attracted attention as DDS due to their excellent

biocompatibility [23, 24] and biodegradability properties [25], as well as the spatio-temporal
control of drug delivery [26]. Another attractive feature is that they allow the encapsulation of

drugs with low water solubility and/or a short in vivo life, thus increasing their bioavailability

over time [27].

One of the synthetic biodegradable polymers used in DDS is Poly (lactic-co-glycolic acid)

or PLGA. This is a biopolymer synthesized from the polymerization of polyglycolic acid

(PGA) and polylactic acid (PLA) monomers [28]. PLGA is stable, biocompatible, degradable

under physiological conditions, non-immunogenic, and non-toxic, and commercially avail-

able with a wide range of different physicochemical properties [29]. The selection of specific

characteristics such as its molecular weight, inherent viscosity or the LA:GA ratio allows to

control the duration and behavior of the release profile of a PLGA DDS [28, 30–32]. These par-

ticularities make it suitable in applications such as tissue engineering [33], bioimaging [34],

therapeutic devices, and pharmaceutical formulations as an excipient or as part of DDSs [35–

37]. Therefore, several PLGA-based products are approved by the FDA and the European

Medical Agency and are marketed to treat different conditions [28, 38, 39].

PLGA-based DDSs include morphologies such as microparticles or microspheres [40],

nanofibers [41], films [42], foams [43], gels [44], nanoparticles [45, 46], among others [30, 35].

Being of a size that allows them to navigate freely through the body and remain for a long

period of time in the blood circulatory system, nanoparticles, especially polymeric ones, have

shown great potential as DDS [47, 48]. For instance, for long-term administration formula-

tions, the time of permanence in blood varies between 24 hours (i.e. Lupron1, AbbVie Inc.

[49]), 4 weeks (Lupron Depot1, AbbVie Inc. [50]), 12 weeks (Lupaneta Pack1, AbbVie Inc.

[51]), to 24 weeks (i.e. Triptodur1, Arbor Pharmaceutics [52]). To optimally develop a drug

delivery system, the release mechanisms and physicochemical processes involved in the trans-

port and release of the active ingredient within an organism must be known, especially when

working with nanometric systems. The main role of PLGA in these systems is the regulation of

drug release kinetics in order to achieve a sustained and controlled release. This is made possi-

ble due to the ability to modify the biodegradability of the polymer by altering its chemistry

(lactide/glycolide ratio), molecular weight, stoichiometry, functionalization of the terminal

groups [53, 54], and by changing its size, shape, and porosity [55]. In addition, release distur-

bances caused by the particle’s ability to absorb water and polymer-drug and drug-drug inter-

actions may occur [30, 38, 56–58]. Drug transport systems made with PLGA nanoparticles

tend to show a biphasic behavior in which initially there is a sudden release dominated by the

diffusion phenomenon in which a high concentration of active agent is rapidly released in a

short period of time [59], followed by a period of slow and continuous release, where polymer

degradation/erosion is the most influential mechanism [60]. The initial stage is due to the pres-

ence of non-encapsulated drug molecules on the surface, drug particles attached to the surface

of the nanoparticle [61], diffusion of the active compound through the polymeric matrix, diffu-

sion of the encapsulated agent through water-filled pores, penetration of the surrounding

medium from the surface to the center of the nanoparticle and activation of the hydrolytic deg-

radation of the PLGA [58, 62]. Initial hydrolytic degradation of the polymer and diffusion of

the drug through the polymer matrix are also present, although their impact is minor [30, 40,
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58]. The hydrophilic or hydrophobic nature of the encapsulating agent and its molecular

weight also play an important role in this phase [32]. This initial stage can be shortened or

eliminated altogether by adjusting the nanoparticle synthesis technique [63]. The second

phase is due to the integration of more complex mechanisms such as the existence of different

crystalline and hydrated forms of the drug, the interactions formed between polymer and

drug, and the plugging of solution-filled pores, which is the result of the formation of bonds

between polymer chains [32, 64]. Sometimes a third and final phase is observed, in which the

release increases because the degradation of the polymer within the nanoparticle is catalyzed

by the decrease in pH generated by the acidic residues produced by the degradation of the

nanoparticle surface. This phenomenon is known as autocatalytic heterogeneous degradation

and is frequently observed in large particles [63].

Despite the benefits of using micro- and nanoformulations in drug delivery systems, not

many products have reached the market [65]. This demonstrates the difficulty of developing

PLGA encapsulations and consequently their high manufacturing cost, since at each stage of

the design cycle, delivery methods need to be evaluated [66]. The development of advanced

DDS depends on a carefully studied and monitored selection of the components. This can be

facilitated by the use of mathematical models that allow predicting the rates and behavior of

the drug release process, over-time drug concentration in the body, and the biological efficacy

of developed DDSs [9, 67, 68]. By choosing the right model it would be possible to reduce the

number of experiments required and gain an understanding of the physicochemical dynamic

of the phenomena, thus facilitating the development of new pharmaceutical products [58, 69].

Mathematical models in general are able to interpret and predict experimental findings and

are used as an abstraction of a real system with assumptions and simplifications [70]. These

mathematical expressions provide a qualitative and quantitative description of the main phe-

nomena involved in drug release by incorporating more parameters in their equation, related

or not to physicochemical properties [71–73].

These models can be: i) mechanistic realistic: real phenomena such as drug diffusion or dis-

solution, erosion, swelling, precipitation, and degradation of the polymer are taken into

account [74], so they can be complex to apply, or ii) empirical/semi-empirical: not based on

real chemical, physical or biological phenomena but are partially realistic from the physical-

chemical point of view and are therefore generally easy to apply and explain [75].

This study aims to perform a comparative statistical analysis of existing mathematical mod-

els of drug release kinetics from PLGA nanoparticle-based DDSs engineered by nanoprecipita-

tion to find which one could be the most suitable general model for describing the release

profile.

Materials and methods

Forty data sets describing the over-time drug release of different PLGA nanoformulations as

synthesized using nanoprecipitation techniques were extracted from twenty scientific articles.

The articles were selected by searching for the following keywords or combinations: “drug

release systems”, “poly(lactic-co-glycolic acid)”, “PLGA”, “nanoprecipitation” in academic

search engines such as Google Scholar, PubMed y NCBI. To limit the study, the authors

selected scientific articles from 2016. Furthermore, to the best of our knowledge, this was the

year in which the mathematical model of hyperbolic tangent function was applied for the first

time to evaluate the release profile of core-shell lipid nanoparticles [76]. From each data set,

the characteristics of the nanoparticle such as encapsulated drug, size, shape, and surface mod-

ifications, as well as the characteristics of the polymer used such as LA/GA ratio and molecular

weight or inherent viscosity, among others, were listed. Fig 1 illustrates the search process for
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the scientific articles selected for this study. The data sets obtained can be found in the supple-

mentary information.

Forty data sets obtained were fitted by linear sum-of-squares regression to five conventional

empirical/semi-empirical models:

Zero-order: The release kinetics of an agent is only a function of time, and the process takes

place at a constant rate independent of the concentration of the active agent [77].

Qt ¼ k0 � t þ Q0 ð1Þ

Where:

Qt = percentage of the released drug after time t.

Q0 = initial percentage of the released drug (Usually 0).

k0 = rate constant for zero-order kinetics.

t = time.

First-order: First-order release kinetics states that the variation in concentration with

respect to time depends only on the concentration of the active agent remaining in the

Fig 1. Flow diagram for the screening procedure and selection criteria for the scientific articles chosen in this

study.

https://doi.org/10.1371/journal.pone.0264825.g001
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device [78].

ln Qtð Þ ¼ ln Qoð Þ þ k1 ð2Þ

Where:

Qt = percentage of the released drug after time t.
Q0 = initial percentage of the released drug (Usually 0).

k1 = rate constant for first-order kinetics.

t = time.

Korsmeyer-Peppas: It is used to describe drug release from a polymeric system considering

non-fickian mechanisms [79]. The model is useful when the release mechanism is unknown or

when more than one type of drug release phenomenon is involved [77, 80]. Even if Peppas

(1985) points out that this model is applicable only for the first 60% of the release curve; how-

ever, we analyzed it in both cases, 60% and 100% drug release profile [81].

ln Qtð Þ ¼ ln kKPð Þ þ n ln tð Þ ð3Þ

Where:

Qt = percentage of the released drug after time t.
kKP = constant of nanoparticles incorporating geometric characteristic structures.

n = release exponent (related to the drug release mechanism).

t = time.

Weibull: It is an empirical model that serves as a theoretical basis for almost all release kinet-

ics in heterogeneous matrices. It represents a distribution function describing a phenomenon

associated with a finite time [40, 80].

ln � ln 1 � Qtð Þ½ � ¼ ln /ð Þ þ b � ln tð Þ ð4Þ

Where:

Qt = percentage of the released drug after time t.
α = scale parameter, defines the timescale of the process.

β = curve shape factor.

t = time.

Hyperbolic tangent function: This function arises from the modification of the diffusive

release model used by Korsmeyer-Peppas with the intention of being able to extend the mathe-

matical expression to the entire release curve of a homogeneous particle [73, 76].

atanh Qt=Q1ð Þ ¼/ t1
2 þ b ð5Þ

Where:

Q1 = total percentage of the released drug.

Qt = percentage of the released drug after time t.
α = constant related to particular size and diffusion constant.

Fig 2 shows a time-line of the development of the mathematical models used in this study.

In addition, the 40 data sets were fitted by regression to second to fifth order polynomials,

according to the equations shown in S1 File.

The fitting process of each model was carried out by means of simple linear regression anal-

ysis by sum of squares in the free software R [87]. Model acceptance criteria, such as the linear

regression indexes (intercept I and slope S), regression coefficient (R2), adjusted or corrected

regression coefficient (R2
a), sum of squares of residual (SSR), sum of squares of the error

(SSE), sum square of total variation (SST), the T-statistic and the F-statistic were calculated

using the function “lm” in R [88].
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The significance test of the t-statistic (t-value) was used to evaluate the capacity of the

parameters to linearly relate the dependent variable to the independent variable. In this test

the following hypotheses were considered:

Null hypothesisH0 : bi ¼ 0

Alternative hypothesisHa : bi 6¼ 0

Considering βi as the i-th analyzed parameter. Following the rejection rule, for a signifi-

cance level of/ = 0.05, in a two-tailed test, the critical value according to the probability table

is |t|> 1.96, therefore:

Reject H0 if jtj � 1:96

Reject H0 if p � valor � 0:05

By rejecting H0, it is concluded that βi 6¼ 0 and hence a statistically significant relationship

between the variables analyzed [89].

In case of the intercept, when the null hypothesis was accepted by means of the critical

value or the p-value, it was recalculated considering the intercept as 0. If the null hypothesis is

accepted for the slope, then the model was rejected.

On the other hand, the significance test of F-statistic, like t-statistic, indicates whether there

is a significant relationship between the independent and dependent variables. In this sense, if

only one parameter is analyzed, it will lead to the same conclusion as the t-statistic, but, having

Fig 2. Time-line of conventional empirical/semi-empirical models. a. [82]; b. [83]; c. [84]; d. [85]; e. [79]; f. [81]; g.

[86]; h. [50]; i. [76].

https://doi.org/10.1371/journal.pone.0264825.g002
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more parameters, F-test can prove that there is an overall significant relationship. In this case,

same hypotheses were assumed:

H0 : bi ¼ 0

Ha : bi 6¼ 0

The rejection criteria were:

Reject H0 if F � F/

Reject H0 if p � value � 0:05

By rejecting H0, it is concluded that there is a statistically significant relationship between

the analyzed variables [89], conversely, if p − value> 0.05 the model was rejected.

Additionally, using the R function “glance” of the package “broom” the value of the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) were calculated for

each of the fits [90].

The equations for the mathematical model acceptance criteria are summarized in S1 File.

Whereas the data sets obtained from literature contain few cumulative percentage values

over time (3–14 per set), Bootstrap resampling technique was employed. This is a resampling

method for statistical inference when the original sample is small. The technique seeks to cre-

ate multiple data subsets from a real data set without making arbitrary assumptions, with the

new data set being equally representative of the target population [91]. It is also commonly

used to estimate confidence intervals, bias, and variance of an estimator or to calibrate hypoth-

esis tests [92], see Fig 3.

In this study, the Bootstrap resampling technique was used to estimate the values of inter-

cept, slope, and R2 with 1000 Bootstrap samples using the “Boot” function. This requires the

packages: “carData” [93], “car” [94], and “MUMIn” [95]. To correct the AIC value, we applied

the function “boot.stepAIC” of the libraries “bootStepAIC” [96] and “MASS” [97]. In addition,

the confidence interval for each of the parameters corrected to 95% was calculated with the

function “confint” (S3 File).

Fig 3. Diagram of the process for parameter estimation by Bootstrap resampling.

https://doi.org/10.1371/journal.pone.0264825.g003
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Results

The cumulative drug release data extracted from the scientific articles collected are described

in detail with the data in S2 File. Also, Table 1 briefly describes the polymer used for the syn-

thesis, the drug encapsulated, the main characteristics of the nanoparticles obtained, the

parameters under which the release assay was performed (release medium and duration) and

the percentage of drug release achieved in each case. It can be observed that in 80% of the tests

carried out, PLGA with an L/G ratio of 50:50 was used, being the polymer with a molecular

weight of 7–17 kD the most commonly used. One hundred percent of the nanoparticles gener-

ated are nearly spherical and have a size range between 60 and 550 nm, and only 25% of the

formulations performed surface modifications. On the other hand, the drug release conditions

were variable. 32 of the release assays were performed in Phosphate buffer saline (PBS), 3 in

hydrochloric acid, 2 in Phosphate buffer (PB), 2 in Fetal bovine serum (FBS) and 1 in Simu-

lated body fluids (STF). The time to study drug release ranged from 3 hours to 21 days (504

hours). Finally, the number of observations per set was also variable. 20% of the data presented

6 observations, 17.5% 8 observations, 15% 14 observations, 12.5% 7 observations, 10% 5 obser-

vations, another 10% 9 observations, 5% 3 observations and only one data set presented 4, 10,

11 and 12 observations respectively.

S3 File shows, by means of an example using set number 33 [111] and its fit to the Kors-

meyer-Peppas model, the program used to fit the mathematical models in the statistical pro-

gram R.

S4 File shows the results of the fit and the acceptance criteria for each studied mathematical

model and polynomial. The first criteria for rejecting a mathematical model was to evaluate

the slope and F-statistic, after recalculating with intercept = 0 if necessary. Table 2 shows the

results obtained. In the case of zero-order fit, sets 7–10, 18 and 19 were rejected, for first-order

sets 5–11, 18, 19, 28, 29, 34 and 40, for Korsmeyer-Peppas 100% sets 7–9, 18 and 19, for Kors-

meyer-Peppas 60% sets 7–10, 18, 26, 27, 28 and 36, for Weibull sets 7–9 and 18, and for Hyper-

bolic Tangent only the fit for sets 7 to 9 was rejected. It is important to note that no model was

adequately fit for sets 7, 8 and 9. In some cases the number of observations limited the applica-

tion of the statistical analysis in R. Specifically for the Korsmeyer-Peppas 60% model, it was

not possible to perform the analysis on sets 7–10, 18, 26, 26, 27 and 36 because with the two

first observations the set exceeded 60% of the release curve. We analyzed R2- R2
a values, and

AIC-BIC of previously un-rejected models. The best fit for each dataset is detailed in Table 3.

According to these criteria, none of the datasets fit the zero-order and first-order models. Nei-

ther model fitted Weibull according to AIC and BIC. When studying in parallel R2- R2
a and

AIC-BIC only 48% of the sets accept the same model under these two criteria, which indicates

that they are not equivalent. The mathematical model with the largest number of data sets with

adequate fit is the hyperbolic tangent. Following R2- R2
a and AIC-BIC criteria, 48% and 65%

of the sets fit this model best, respectively. In addition, sets 7, 8 and 9 sets (8% of the data) did

not fit any model.

Regarding the fit to the polynomial equations, the value of the intercept was analyzed (a let-

ter in all polynomial functions) following the criteria mentioned in the methodology section.

If null hypothesis was accepted, then the statistics were recalculated with a value of inter-

cept = 0. If the value of the last term, represented by the letters c, d, e, f for each polynomial

degree respectively, was equal to zero the model was rejected since the equation is transformed

into one of a lower degree. The results are described in Table 4. Through this analysis it was

found that in this particular case, the results obtained by AIC-BIC y R2—R2
a are the same for

all sets. Nine of the forty datasets did not fit any model. In accordance with the t-value and p-

value of the last term, 11 data sets were rejected for the second-degree equation, 23 for the
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Table 1. Main characteristics of the 40 datasets analyzed.

No Drug Polymer Lactide:

Glycolide

ratio

MW [kDa] or

Inherent

viscosity [dL

g-1]

NP shape NP size

[nm]

Surface

modification

Release

medium

Time

range

[hours]

Total Release

percentage

[%]

Year Ref.

1 Paclitaxel PLGA (50:50) NM Spherical 166.9±5.0 - PBS 168 80 2016 [98]

2 Paclitaxel PLGA-Tween

80

(50:50) NM Spherical 156.5±8.6 - PBS 168 75 2016 [98]

3 Simvastatin PLGA (50:50) 0.2 dL g-1 Spherical 99–129 TPGS

Liposome

PBS 240 68 2018 [99]

4 Ketamine PLGA-PEG (50:50) 5–55 kDa Spherical 98.8±0.9 - PBS 504 82 2020 [100]

5 Ketamine PLGA-PEG (50:50) 5–55 kDa Spherical 80–300 Shellac PBS 504 58 2020 [100]

6 Carbamazepine PLGA (50:50) 7–17 kDa Spherical 180.6±6.2 - PB 48 90 2020 [101]

7 Levetiracetam PLGA (50:50) 7–17 kDa Spherical 180.6±6.2 - PB 48 100 2020 [101]

8 Ibuprofen PLGA-PVA (50:50) 24–38 kDa Spherical 100–200 - PBS 3 100 2017 [102]

9 Ibuprofen PLGA-PVA (50:50) 24–38 kDa Spherical 100–200 - PBS 3 100 2017 [102]

10 Dil PLGA (50:50) 24–38 kDa Spherical 157.9±6.1 - PBS 24 88 2017 [103]

11 Dil PLGA (50:50) 24–38 kDa Spherical 230.8±4.3 - PBS 24 79 2017 [103]

12 N-acetilcysteine PLGA (75:25) 25–90 kDa Spherical 145–205 - PBS 168 100 2018 [104]

13 Dexamethasone PLGA-PEG (50:50) 5 kDa Spherical 250–400 - PBS 360 60 2017 [105]

14 Paclitaxel PLGA (50:50) 1–50 kDa Spherical 140±5 - PBS 240 86 2017 [106]

15 Paclitaxel PLGA (75:25) NM Spherical 120±5 - PBS 240 88.5 2017 [106]

16 Paclitaxel PLGA (50:50) 1–50 kDa Spherical 140±5 - PBS 240 87.5 2017 [106]

17 Paclitaxel PLGA (75:25) 128 kDa Spherical 120±5 - PBS 240 89 2017 [106]

18 Paclitaxel PLGA (50:50) NM Spherical 60–450 - FBS 3 100 2017 [107]

19 Sorafenib PLGA (50:50) NM Spherical 70–550 - FBS 3 100 2017 [107]

20 Ropinirole HCl PLGA-PVA (50:50) NM Spherical 308.3±23 Polysorbate 80 PBS 24 42 2020 [108]

21 Ropinirole HCl PLGA-PVA (50:50) NM Spherical 345.5±42 Polysorbate 80 PBS 24 36 2020 [108]

22 Ropinirole HCl PLGA-PVA (50:50) NM Spherical 264.6±11 Polysorbate 80 PBS 24 43 2020 [108]

23 Ropinirole HCl PLGA-PVA (50:50) NM Spherical 212±3 Polysorbate 80 PBS 24 58 2020 [108]

24 Ropinirole HCl PLGA-PVA (50:50) NM Spherical 351.9±20 Polysorbate 80 PBS 24 44 2020 [108]

25 Ropinirole HCl PLGA-PVA (50:50) NM Spherical 196.4±8 Polysorbate 80 PBS 24 62 2020 [108]

26 Ciprofloxacin PLGA-PEG (50:50) 30–35 kDa Spherical 174–205 - STF 144 95 2019 [109]

27 Methotrexate PLGA-PVA (50:50) 7–17 kDa Spherical 78.1±7.3 - PBS 72 92 2019 [46]

28 Methotrexate &

Curcumin

PLGA-PVA (50:50) 7–17 kDa Spherical 148.3±4.1 - PBS 72 80 2019 [46]

29 Curcumin PLGA-PVA (50:50) 7–17 kDa Spherical 92.4±5.2 - PBS 72 75 2019 [46]

30 Methotrexate &

Curcumin

PLGA-PVA (50:50) 7–17 kDa Spherical 148.3±4.1 - PBS 72 57 2019 [46]

31 Curcumin PLGA (75:25) 65 kDa Spherical 280±16 - PBS 120 68 2018 [110]

32 Curcumin PLGA (75:25) 65kDa Spherical 251±3 Anti-EGFRvIII

antibodies

PBS 120 69 2018 [110]

33 MTPC PLGA-PEG (50:50) 17 kDa Spherical 143.2±3.7 - PBS 4 62 2020 [111]

34 Lansoprazole PLGA (50:50) NM Spherical 246.7±3.4 - PBS 48 92 2019 [112]

35 Saquinavir PLGA (50:50) NM Spherical 412.2 - PBS 16 99 2020 [113]

36 Insulin PLGA-PEG (50:50) 10 kDa Spherical 78.7 Zinc chloride PBS 8 100 2017 [37]

37 Paclitaxel PLGA-PEG (50:50) 55 kDa Spherical 100 - PBS 168 39 2020 [114]

38 Olmesartan

medoxomil

PLGA (75:25) 4–15 kDa Spherical 71.2±4.5 - HCl 24 39 2016 [45]

39 Olmesartan

medoxomil

PLGA (75:25) 4–15 kDa Spherical 78.9±3.2 - HCl 24 30 2016 [45]

(Continued)
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third-order equation, 27 for the fourth-order equation, and 25 for the fifth-order equation.

AIC-BIC and R2—R2
a showed that the polynomial equation that provided the best fit to the

largest amount of data was the second-degree equation (38%), followed by the third-degree

equation (20%), the fifth-degree equation (13%) and finally the fourth-degree equation (8%).

It is worth noting that when the average R2—R2
a of the data sets unrejected previously were

evaluated, it was found that these values tend to increase as the degree of the polynomial

increases, as can be seen in Fig 4.

Moreover, when Bootstrap resampling was performed (S5 File) it could be found that the

best fit for data sets 7, 8 and 9 is Korsmeyer-Peppas 100% or zero-order by R2 and Korsmeyer-

Peppas 100% by AIC, see Table 5. More specifically, by AIC, 30% of the sets present a better fit

with Korsmeyer-Peppas 100% and 70% with Hyperbolic Tangent for polynomial equations

13%, 23%, 23%, 23%, and 33% were fit to second to fifth degree polynomials respectively. In

addition, a single data set fitted to all polynomials and 3 to none. It is important to note that by

analyzing the coefficient of determination of the resampled data, more than one model is

accepted. As the best fit, by using the AIC with the most negative value, the model or polyno-

mial equation that best fits the data can be determined.

Finally, Figs 5–7 show scatter diagrams of R2 in relation to AIC and BIC for the models ana-

lyzed, both for the values obtained by linear regression and the Bootstrap corrected values.

Additionally, the region of what is considered a good fit is indicated: between 0.8 and 1 for R2

and between 0 and -inf for AIC and BIC. In both figures it can be clearly observed how in the

Hyperbolic Tangent Function model the data sets are mostly grouped in the region considered

as having the best fit.

Discussion

In this study, five general controlled drug release models and four polynomial equations, from

the second to the fifth degree, were statistically analyzed. The main objective was to find a

mathematical expression that can describe the release mechanism of an active compound

observed in PLGA nanoparticles synthesized by nanoprecipitation method.

While it is true that mathematical models are tools that help to understand the dynamics of

a drug release, and to save time and money [115], it is important to note that these also have

shortcomings in terms of predictive power and in explaining and addressing all the physical,

chemical and biological phenomena involved since they mainly describe the dominant event

[62]. Among them is the initial burst release, as the fraction released can sometimes approach

80% of the total encapsulated agent [116] in a time that may be less than 10% of the duration

of the entire release process [48, 52]. In addition, very few models described in the literature

Table 1. (Continued)

No Drug Polymer Lactide:

Glycolide

ratio

MW [kDa] or

Inherent

viscosity [dL

g-1]

NP shape NP size

[nm]

Surface

modification

Release

medium

Time

range

[hours]

Total Release

percentage

[%]

Year Ref.

40 Olmesartan

medoxomil

PLGA (75:25) 4–15 kDa Spherical 97.8±6.3 - HCl 24 35 2016 [45]

Notation: MW: molecular weight, NM: Not mentioned in the source, “-”: Not applicable, PLGA: poly (lactic-co-glycolic acid), PVA: polyvinyl alcohol; PEG:

polyethylene glycol, TPGS; Dil: 1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine perchlorate, MTPC: N0-(2-Methoxybenzylidene)-3-methyl-1-phenyl-H-Thieno

[2,3-c]Pyrazole-5-arbohyd-razide, PBS: Phosphate buffer saline, PB: Phosphate buffer, STF: Simulated body fluids, FBS: Fetal bovine serum, HCl: hydrochloric acid.

https://doi.org/10.1371/journal.pone.0264825.t001
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consider the effect of drug properties, especially acids, on the degradation rate of polymer par-

ticles [117]. It should not be forgotten that mathematical models are approximations of reality

where assumptions are made, so they should always be accompanied by experimental data that

can support these assertions [118–120]. Empirical and semi-empirical mathematical models

tend to have limited predictive power, so it is recommended that these theories be applied, and

be of great use, when you want to compare release profiles using a specific parameter [121].

On the other hand, the coefficient of determination “R2” is one of the most widely used cri-

teria to determine whether or not a model is a better fit to a release curve. However, it has been

widely demonstrated that R2 can increase, i.e., tends more to one, if more variables are added

to the equation, even if they are completely irrelevant to the model [122]. This problem is

more accentuated when the number of observations is insufficient [123]. Similarly, R2 is not

considered an appropriate goodness-of-fit criterion when analyzing multi-parameter models,

as our study. Therefore, taking into account the adjusted coefficient of determination R2
a is

the most appropriate, although in a limited way, since its value only increases when a relevant

variable is added to the model, otherwise it decreases [124]. Since there is no perfect correla-

tion between the variables, special care should be taken in the interpretation of the results

when R2 or R2
a take the value of 1 [125]. In addition, it is recommended to accompany these

criteria with statistical procedures such as t-test, F-test, and prediction intervals to know the

quality and influence of individual observations in the estimation [126].

Since the Bayesian and Akaike criteria are based on the addition of statistical errors cor-

rected by a penalty function proportional to the number of parameters, they can be a good

alternative to determine which model offers the best fit. In addition, these criteria help to

determine whether the inclusion of a term, or increased complexity in the equation, results in

better fit [127]. It is important to emphasize that models with more negative values of AIC and

Table 3. Best fit for each data set according to R2, R2
a, AIC and BIC.

No. R2—R2
a AIC—BIC No. R2—R2

a AIC—BIC

1 Korsmeyer-Peppas 60% Korsmeyer-Peppas 60% 21 Hyperbolic Tangent Hyperbolic Tangent

2 Korsmeyer-Peppas 60% Hyperbolic Tangent 22 Hyperbolic Tangent Hyperbolic Tangent

3 Weibull Hyperbolic Tangent 23 Hyperbolic Tangent Hyperbolic Tangent

4 Hyperbolic Tangent Hyperbolic Tangent 24 Weibull Hyperbolic Tangent

5 Hyperbolic Tangent Hyperbolic Tangent 25 Hyperbolic Tangent Hyperbolic Tangent

6 Hyperbolic Tangent Hyperbolic Tangent 26 Hyperbolic Tangent Korsmeyer-Peppas 100%

7 No model No model 27 Weibull Korsmeyer-Peppas 100%

8 No model No model 28 Hyperbolic Tangent Hyperbolic Tangent

9 No model No model 29 Weibull Hyperbolic Tangent

10 Hyperbolic Tangent Hyperbolic Tangent 30 Weibull Hyperbolic Tangent

11 Hyperbolic Tangent Hyperbolic Tangent 31 Weibull Hyperbolic Tangent

12 Weibull Hyperbolic Tangent 32 Weibull Hyperbolic Tangent

13 Weibull Hyperbolic Tangent 33 Hyperbolic Tangent Hyperbolic Tangent

14 Weibull Hyperbolic Tangent 34 Korsmeyer-Peppas 60% Korsmeyer-Peppas 60%

15 Weibull Korsmeyer-Peppas 100% 35 Korsmeyer-Peppas 60% Korsmeyer-Peppas 100%

16 Korsmeyer-Peppas 60% Korsmeyer-Peppas 100% 36 Weibull Korsmeyer-Peppas 100%

17 Korsmeyer-Peppas 60% Korsmeyer-Peppas 60% 37 Hyperbolic Tangent Hyperbolic Tangent

18 Hyperbolic Tangent Hyperbolic Tangent 38 Hyperbolic Tangent Hyperbolic Tangent

19 Korsmeyer-Peppas 60% Korsmeyer-Peppas 60% 39 Hyperbolic Tangent Hyperbolic Tangent

20 Hyperbolic Tangent Hyperbolic Tangent 40 Hyperbolic Tangent Hyperbolic Tangent

https://doi.org/10.1371/journal.pone.0264825.t003
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Table 4. Evaluation of the p-value of the intercept, last term, and F-statistic of the data sets.

Model is rejected if: 2nd order 3rd order 4th order 5th order

|t|<1,96 |t|<1,96 p>0,05 |t|<1,96 |t|<1,96 p>0,05 |t|<1,96 |t|<1,96 p>0,05 |t|<1,96 |t|<1,96 p>0,05

p>0,05 a p>0,05 LT Est F p>0,05 a p>0,05 LT Est F p>0,05 a p>0,05 LT Est F p>0,05 a p>0,05 LT Est F

1 A X - A X - A X - RC A A

2 A X - A X - A X - A X -

3 A A A A A A A A A A A A

4 RC A A RC X - Insufficient data Insufficient data

5 RC A A RC X -

6 A A A RC X - RC X - RC X -

7 Insufficient data Insufficient data Insufficient data Insufficient data

8

9

10 RC A A A A A

11 RC A A RC X -

12 A X - A X - A X - A X -

13 A A A A A A A X - A X -

14 A A A A A A A X - A X -

15 A A A A X - A X - A X -

16 A A A A A A A X - A A A

17 A A A A X - A A A A X -

18 RC A A RC X - RC X X Insufficient data

19 RC A A A A A A X - RC A A

20 A A A A A A A X - A X -

21 A A A A A A A X - A X -

22 A A A A X - A X - A A A

23 A A A A X - A X - A X -

24 A A A A X - A X - A X -

25 A A A A X - A X - A X -

26 A X - A A A A A A A X -

27 A X X A X X A X X Insufficient data

28 A X - A A A RC X -

29 A X - RC X - RC A A

30 A X - A A A A X -

31 A A A A X - A X - A X -

32 A A A A X - A X - A X -

33 RC X - RC X - RC X - Insufficient data

34 A A A A A A RC A A RC X -

35 A A A A X - A X - RC X -

36 RC A A RC A A RC X - Insufficient data

37 RC A A Insufficient data Insufficient data

38 RC A A RC X - RC X - RC X -

39 RC X - RC X - A X - RC X -

40 RC X - RC X - RC X - RC X -

Notation: “LT”: Last term of the polynomial equation; “RC”: Recalculated; “A”: Accepted model; “X”: Rejected model; “-”: Rejected by the previous criterion.

https://doi.org/10.1371/journal.pone.0264825.t004
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BIC are likely to minimize information loss, which translates into a more appropriate choice

of the model with the best fit [128].

The zero-order model is usually employed to assume a single-phase ideal condition in

which the release kinetics is continuous and can be explained as a function dependent on time

and independent of the dissolved concentration in the release medium [48]. In addition, zero-

order behavior can be observed in materials capable of swelling [129], yet due to complicated

bulk erosion and surface erosion and diffusion processes, most studies on the sustained release

of hydrophilic drugs have failed to achieve a release profile that conforms to zero-order kinet-

ics for a prolonged time [130]. This conclusion was verified in this study, in which the data sets

had a biphasic behavior far from zero-order according to the low values of R2 and R2
a and the

high averages of the calculated AIC and BIC [131]. Likewise, the results obtained showed rejec-

tion of the first-order model for all data sets, demonstrating that the data sets do not follow a

model that is dependent on the initial drug concentration [78, 132].

The Korsmeyer-Peppas equation also called "power law" is a semi-empirical model based

on the diffusion phenomenon [133] that is used to describe in a general way the main trans-

port phenomena involved in the release, either by diffusion or swelling [134]. Although a good

fit has been achieved with this model, several authors have shown that Korsmeyer-Peppas is

applicable only to the first 60% of the release profile and is not an appropriate equation to

describe the complete release profile [73, 76, 134]. By examining only the first 60% of the data

sets, some problems could be detected, such as the small number of observations in some sets,

which made it difficult and even impossible to fit the data to the models [135]. It was found

that 4 data sets presented a more negative AIC value when 60% of the curve was analyzed, and

6 when 100% was analyzed. This demonstrates that although the model is more complex than

the previous ones, this does not result in a better description of the release process.

The empirical Weibull model is an expression that tries to find a linear relationship between

the logarithm of drug release and the logarithm of time [136]. Despite not having a kinetic

nature, nor parameters physically related to the release phenomena, the ability of the

Fig 4. Average of R2—R2
a of the data sets fitted to the second to fifth order polynomials.

https://doi.org/10.1371/journal.pone.0264825.g004
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Table 5. Comparison of R2 and AIC criteria of data sets using Bootstrap resampling of empirical/semiempirical models and polynomial equations.

No. Zero order First order Korsmeyer-

Peppas 100%

Korsmeyer-

Peppas 60%

Weibull Hyperbolic

Tangent

2nd order 3rd order 4th order 5th order

R2 AIC R2 AIC R2 AIC R2 AIC R2 AIC R2 AIC R2 AIC R2 AIC R2 AIC R2 AIC

1 0.68 52.37 0.36 -13.25 0.87 -22.41 0.97 -15.19 0.91 -19.73 0.87 -30.68 0.68 51.5 0.88 49.26 0.68 52.37 0.99 43.16

2 0.68 49.29 0.4 -16.81 0.87 -26.1 0.93 -17.39 0.91 -23.15 0.85 -33.52 0.68 48.32 0.89 45.61 0.68 49.29 1 34.25

3 0.8 57.58 0.54 -23.17 0.98 -55.41 0.97 -52.27 0.99 -58.6 0.96 -67.24 0.8 47.17 0.95 41.68 0.97 34.76 0.97 34.76

4 0.94 23.08 0.85 -11.21 0.98 -15.09 0.95 -16.98 0.99 -20.95 0.9 -23.3 0.97 16.52 1 15.91 Insufficient

data

Insufficient

data5 0.9 22.02 0.79 -11.23 0.88 -14.28 0.88 -14.28 0.96 -15.43 0.98 -23.3 0.94 16.73 1 18.36

6 0.85 41.55 0.57 -4.86 0.96 -19.35 0.97 -16.73 0.99 -25.41 0.99 -40.32 0.91 40.17 0.72 35.17

7 0.81 11.62 1 -14.96 0.81 -18.13 Insufficient

data

Insufficient data

8 0.65 20.41 1 -3.8 0.65 -5.61

9 0.79 19.35 1 -3.45 0.79 -5.71

10 0.74 31.81 0.6 -2.4 0.92 -8.9 0.96 -9.23 0.98 -19.73 0.99 25.93 1 -12.11

11 0.9 28.02 0.72 -3.73 0.97 -13.21 0.99 -12.99 0.98 -14.29 0.92 -23.07 0.99 19.53 1 16.45

12 0.88 55.86 0.59 -14.24 0.94 -28.71 0.83 -13.82 0.96 -22.1 0.96 -34.88 0.88 55.86 0.88 55.86 0.95 53.42 0.99 55.05

13 0.84 51.58 0.61 -20.64 0.98 -46.53 0.98 -46.53 0.98 -44.79 0.95 -58.51 0.84 36.89 0.98 23.08 0.84 51.58 0.99 24.32

14 0.78 43.26 0.59 -19.31 0.97 -37.38 0.97 -20.61 0.99 37.02 0.96 -34.36 0.78 35.05 0.78 35.05 0.78 43.26 0.78 43.26

15 0.73 43.82 0.52 -20.38 0.95 -35.01 1 -15.4 0.98 -33.11 0.94 -30.69 0.73 43.82 0.73 43.82 0.73 43.82 1 17.25

16 0.81 38.89 0.63 -24.77 0.97 -43.47 1 -21.1 0.99 -41.73 0.97 -40.7 0.81 38.89 0.81 38.89 1 28.45 1 19.47

17 0.74 39.87 0.55 -26.04 0.96 -41.2 1 -26.82 0.98 -38.34 0.94 -33.19 0.74 35.13 0.96 32.44 1 22.35 1 9.29

18 0.62 43.12 0.34 2.89 0.6 2.19 Insufficient

data

0.47 3.38 0.82 -3.66 0.54 40.22 0.78 42.18 1 40.35 Insufficient

data

19 0.68 49.6 0.32 4.16 0.63 2.7 1 -2.91 0.57 3.32 0.86 -4.56 0.55 46.33 0.97 28.38 1 22.12 1 12.73

20 0.88 48.86 0.65 -28.16 0.98 -64.15 0.98 -64.15 0.98 -62.8 0.99 -100.1 0.88 10.63 0.99 -1.9 0.79 48.86 0.99 1.79

21 0.94 30.67 0.78 -4.34 0.98 -69.71 0.98 -69.71 0.98 -64.97 0.99 -121.2 0.94 -30.87 0.99 -34.67 0.94 30.67 0.94 30.67

22 0.92 40.25 0.73 -38.65 0.98 -66.99 0.98 -66.99 0.98 -61.11 0.99 -104.6 0.92 7.98 0.92 40.25 0.99 8.37 0.99 -2.97

23 0.93 45.66 0.77 -43.02 0.98 -74.29 0.98 -74.29 0.98 -64.26 0.98 -103.8 0.93 -2.83 0.93 45.66 0.99 -3.81 0.93 45.66

24 0.9 42.3 0.71 -38.52 0.99 -81.26 0.99 -81.26 0.99 -79.78 0.98 -109.2 0.9 12.9 0.9 12.9 0.9 12.9 0.9 12.9

25 0.95 43.41 0.79 -41.53 0.98 -74.89 0.98 -74.89 0.98 -63.79 0.98 -107.4 0.95 3.08 0.95 43.41 0.95 43.41 0.95 43.41

26 0.92 27.36 0.79 -46.52 0.95 -54.72 Insufficient

data

0.92 -32.7 0.98 -38.03 0.92 27.36 0.92 27.36 0.92 27.36 1 8.18

27 0.85 27.68 0.7 -21.56 0.96 -31.3 0.98 -27.57 0.98 -26.98 0.85 26.4 0.88 21.39 1 5.42 Insufficient

data28 0.85 32.68 0.66 -11.72 0.96 -21.91 1 -16.76 0.97 -20.11 0.97 -23.01 0.85 27.86 0.99 10.53 1 22.83

29 0.86 29.37 0.67 -13.71 0.95 -22.55 0.98 -15.33 0.97 -22.12 0.95 -29.74 0.86 27.44 0.95 32.93 1 21.04

30 0.9 24.04 0.72 -16.39 0.98 -29.01 0.98 -29.01 0.98 -28.44 0.96 -35.77 0.9 21.42 0.9 24.04 1 -5.4

31 0.86 33.03 0.69 -26.95 0.97 -40.84 0.94 -23.68 0.98 -38.61 0.95 -44.25 0.86 33.03 0.86 33.03 1 26.09 1 24.84

32 0.84 34.88 0.66 -24.77 0.96 -37.54 0.93 -16.67 0.97 -35.32 0.94 -41.95 0.84 34.88 0.84 34.88 1 27.35 1 26.26

33 0.93 22.81 0.8 -9.06 0.97 -19.02 0.97 -19.02 0.98 -20.4 0.99 -41.9 0.93 22.81 0.99 17.67 1 8.1 Insufficient

data

34 0.66 55.04 0.41 -15.52 0.87 -24.93 0.99 -22.07 0.92 -20.17 0.93 -22.17 0.92 -20.17 0.97 46.08 0.98 28.11 0.99 -30.1

35 0.97 31.63 0.87 -25.13 0.99 -56.11 0.99 -27.24 0.96 -21.88 0.63 -13.82 0.97 14.9 0.97 31.63 1 6.42 1 15.4

36 0.9 33.26 0.75 -13.22 0.96 -22.25 Insufficient

data

0.67 -6.83 0.94 -10 0.91 33.16 0.98 26.31 0.98 28.11 Insufficient

data

37 0.99 4.43 0.99 -19.04 0.98 -19.04 0.98 -19.04 0.98 -17.37 0.94 -33.26 0.92 13.43 Insufficient data

38 0.88 30.05 0.65 -11.62 0.96 -23.28 0.96 -23.28 0.87 3.96 0.94 -43.54 0.94 17.63 0.95 16.92 0.99 18.77 1 14.79

39 0.87 30.89 0.66 -11.81 0.97 -25.36 0.97 -25.36 0.84 4.52 0.94 -44.54 0.8 30.89 0.8 30.89 1 4.6 1 7.4

40 0.77 33.1 0.49 3.2 0.9 -4.81 0.9 -4.81 0.91 -4.8 0.94 -42.81 0.77 33.1 0.77 33.1 0.99 17.96 1 15.92

https://doi.org/10.1371/journal.pone.0264825.t005
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Fig 5. AIC / BIC vs. R2 plots obtained from linear regression fitting (left) and AIC versus R2 obtained from

Bootstrap fitting (right) for the zero-order (top) and first-order (bottom) mathematical models.

https://doi.org/10.1371/journal.pone.0264825.g005

Fig 6. AIC / BIC vs R2 plots obtained from linear regression fitting (left) and AIC vs R2 obtained from Bootstrap

fitting (right) for the mathematical models of Korsmeyer-Peppas fitted to the entire release curve (top) and

Korsmeyer-Peppas fitted to the first 60% of the release curve (bottom).

https://doi.org/10.1371/journal.pone.0264825.g006

PLOS ONE Comparative statistical analysis of the release kinetics models for nanoprecipitated PLGA nanoparticles

PLOS ONE | https://doi.org/10.1371/journal.pone.0264825 March 10, 2022 17 / 28

https://doi.org/10.1371/journal.pone.0264825.g005
https://doi.org/10.1371/journal.pone.0264825.g006
https://doi.org/10.1371/journal.pone.0264825


logarithmic form to dampen the abrupt changes in drug concentration rate over time as they

pass from one phase to another, has allowed this model to be successfully applied in several

release studies [58, 131, 135, 137, 138]. In this study, the Weibull equation was able to fit 12

data sets adequately according to the R2 and R2 adjusted, however, when studying the value of

AIC and BIC, the model failed to have the best fit in any of the sets, probably because as an

empirical model, its predictive power is poor [58, 62, 137]. Weibull has two geometric parame-

ters. The first one is the scale factor "α" which is part of the intercept with the vertical axis,

expressed as "ln(α)". The second one is the slope of this equation, usually called "β", is a shape

factor of the release curve. Thus, if β = 1, the curve maintains an exponential shape, if β<1 it is

considered parabolic and in the case of having a β>1, the shape of the curve is sigmoidal [139].

When analyzing this parameter in the collected data sets (S6 File), a tendency towards a para-

bolic shape could be observed by obtaining an average of β = 0.71. Sets 8, 9, 18,19, 33, 38 and

39 were the only ones with a sigmoidal curve (β>1) [78]. In order to relate the Weibull model

to the predominant transport mechanism in drug release, relationships between the Weibull

parameter “β” and the Korsmeyer-Peppas parameter “n” have been proposed [140]. Following

this theory, Fickian diffusion would be demonstrated when β�0.75, anomalous transport (dif-

fusion and swelling) when β is between 0.75 and 1, case II type transport when β = 1 and case

II type transport which is the combination of phenomena such as diffusion, erosion and mac-

romolecular ratio of polymer chains for the case of cylindrical tablets with β>1 [141, 142].

Doing this analysis with "n" and "β" obtained in this study (S6 File) we obtain a value of “β” to

check Fickian diffusion of 0.75, while the transport type case II is explained by β = 1.45. The

differences in the ranges could be explained by the difference in the geometry of the DDS

[143]. This analysis together with the Korsmeyer-Peppas "n" parameter tests the influence of

Fickian diffusion on drug release from PLGA nanoparticles [135].

Fig 7. AIC / BIC vs R2 plots obtained from linear regression fitting (left) and AIC vs R2 obtained from Bootstrap

fitting (right) for the mathematical models of Weibull (top) and Hyperbolic Tangent Function (bottom).

https://doi.org/10.1371/journal.pone.0264825.g007
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The hyperbolic tangent function model was the one with the best fit to the experimental

data analyzed. This mathematical expression was proposed by Eltayeb et al. in 2016 and is

derived from the Korsmeyer-Peppas model, considering diffusion as the main transport phe-

nomenon involved in drug release from nanoparticles [78]. This equation uses the hyperbolic

tangent of time as a way to mitigate the abrupt effect of the released drug concentration when

its phase changes, similar to the effect of the logarithm in the Weibull model. Unlike Kors-

meyer-Peppas, this model can be fitted to the complete release profile and not just to its first

60%. Besides, it is applicable to homogeneous matrices, where the ratio of drug and polymer is

equal [73, 76]. From the data sets analyzed, 18 sets were fitted to the hyperbolic tangent model

by R2 and R2
a and 27 sets considering the AIC and BIC, indicating the model’s ability to

describe and predict the drug release profile from PLGA nanoparticles synthesized by nano-

precipitation. Being a relatively new model, the physicochemical significance of its parameters

is still not fully understood, however, its authors consider that they are related to particle size

and diffusion constant [76]. Furthermore, to our knowledge, this model has not been used by

other research groups, however, through the analysis performed in this project it is demon-

strated that it can be a useful and statistically proven tool to describe release profiles.

As for the four polynomial equations, the importance of the statistical tests to reject the

models was evident. Although they showed a good fit measured by R2 and R2
a, the increase of

these does not indicate a good fit of the model since they tend to increase with the number of

variables analyzed in the equation, as shown in Fig 2 [143]. Also, when working with polyno-

mial models, we always try to minimize the number of parameters used in the model since, if

the number of parameters is equal to n-1, where n is the number of points to be analyzed, we

would obtain an error of fit equal to zero, which is described as an overfitting [144]. Equally,

the values of AIC and BIC were more positive compared to the mathematical models. Since

AIC and BIC are a measure of goodness-of-fit conditional on the number of parameters used

in the model, this result is congruent, and indicates the inability of the expressions to predict

the future behavior of the system [131, 145]. Pourtalebi Jahromi and collaborators (2020) used

the second degree polynomial equation in their analysis of the release kinetics from nanoparti-

cles, obtaining results similar to those of this study [58]. Nevertheless, no literature was found

in which the third-, fourth- or fifth-degree equations were used as a mathematical model in

drug release.

On the other hand, the number of observations per set limited in some cases the application

of the mathematical models and their statistical tests, especially in sets 7, 8 and 9. In these sets

the authors reported the release of 100% of the encapsulated drug in 3 observations. According

to Jenkins and Quintana-Ascencia (2020), having a minimum of 8 observations would allow

significant statistical conclusions to be reached; however, to increase reproducibility, it is rec-

ommended that a minimum of 25 observations be used [146]. From the data sets collected,

50% of them have 8 or more observations, with sets number 20–25 having the most number of

observations (14 each set).

When Bootstrap resampling was performed, it was possible to determine the model that

best fit the data sets 7, 8 and 9. It proves that this technique can be a powerful tool when there

is a limited number of observations. The results with this method were similar to the raw data,

obtaining that 70% of the data sets fit the Hyperbolic Tangent model.

Conclusions

This study demonstrated that, although they are tools that help to understand drug release

dynamics, there is no general empirical/semiempirical mathematical expression that can

describe, in all cases, the release profile of drugs encapsulated in PLGA nanoparticles
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synthesized by nanoprecipitation methods. In addition, it was found that although R2 and R2
a

are the most commonly used criteria to determine whether or not a model fits the data

obtained in an experiment, they are not the most appropriate. It was also shown that the

Akaike and Bayesian criteria can better reflect the fit of a model since the results are not influ-

enced by the inclusion of new terms or an increase in the complexity of the equation. It was

also revealed that the number of observations per set is a limiting factor for the application of

different models and the subsequent statistical analysis. Therefore, the Bootstrap resampling

technique becomes a very useful technique to solve this drawback. In the specific case of this

study, 50% of the sets studied do not meet the requirement of at least 8 observations for the

construction of the release curve, therefore these results are not very reproducible and have

low statistical significance.

Furthermore, the analysis employed in this project provided significant statistical evidence

to consider the Hyperbolic Tangent Function model as the most adequate and general model

to describe the drug release kinetics. This model, unlike the mathematical expression of Kors-

meyer-Peppas, could be adjusted to the complete release curve. Since it has kinetic parameters,

it acquires greater predictive power than the Weibull model. However, a more exhaustive

study of this model is required in order to understand the chemistry, physics, and biology

behind it.
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