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Abstract

Agent-based models (ABMs) have become a common tool for estimating demand for hospi-

tal beds during the COVID-19 pandemic. A key parameter in these ABMs is the probability

of hospitalization for agents with COVID-19. Many published COVID-19 ABMs use either

single point or age-specific estimates of the probability of hospitalization for agents with

COVID-19, omitting key factors: comorbidities and testing status (i.e., received vs. did not

receive COVID-19 test). These omissions can inhibit interpretability, particularly by stake-

holders seeking to use an ABM for transparent decision-making. We introduce a straightfor-

ward yet novel application of Bayes’ theorem with inputs from aggregated hospital data to

better incorporate these factors in an ABM. We update input parameters for a North Carolina

COVID-19 ABM using this approach, demonstrate sensitivity to input data selections, and

highlight the enhanced interpretability and accuracy of the method and the predictions. We

propose that even in tumultuous scenarios with limited information like the early months of

the COVID-19 pandemic, straightforward approaches like this one with discrete, attainable

inputs can improve ABMs to better support stakeholders.

Introduction

A significant challenge of the COVID-19 pandemic has been accurately estimating demand

for hospital beds. Hospital beds are generally needed by patients with severe COVID-19 to

manage symptoms like shortness of breath, confusion, or hemoptysis, or to manage common

complications of severe COVID-19 including pneumonia, hypoxemic respiratory failure/acute

respiratory distress syndrome, and sepsis [1,2]. Patients with severe COVID-19 can also rap-

idly deteriorate, requiring prompt admission to an intensive care unit (ICU) [2]. The increase

in demand for hospital beds resulting from the COVID-19 pandemic may strain hospital sys-

tems that have traditionally used just-in-time supply management to minimize empty beds

[3]. Evidence suggests that the pressure of a high volume of patients with severe COVID-19

has a measurable independent impact on in-hospital mortality [4].
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Forecasts of hospital bed demand can help health care and public health officials plan for an

increased volume of patients, including preparation (e.g., increasing staffing) and acquiring

associated resources (e.g., ventilators, personal protective equipment) [5]. Agent-based models

(ABMs) have been among the tools used to develop these forecasts. ABMs can simulate the

behavior and experiences of a population of synthetic agents, such as becoming infected with

SARS-CoV-2, the causative agent of COVID-19, and then hospitalized.

The probability of hospitalization among agents with COVID-19 (i.e., COVID-19 agents) is

a key parameter in ABMs used to forecast hospital bed demand. Patient age and comorbidities

are known to be strong predictors of the probability of hospitalization among those with

COVID-19, although few published COVID-19 ABMs include these attributes [6]. Addition-

ally, few published COVID-19 ABMs consider the difference in probability of hospitalization

according to COVID-19 testing status. However, the discrepancy between tested infections

(i.e., laboratory-confirmed, reported COVID-19 cases) and untested infections (i.e., undiag-

nosed, unreported COVID-19 cases) varies greatly over time and place, with U.S. estimates up

to 10 times reported cases to infections [7,8]. Although aggregate hospital data can be used to

estimate the probability of hospitalization for tested COVID-19 cases, information on untested

infections is scarce, potentially resulting in underprediction of a COVID-19 ABM.

In this manuscript, we describe an ABM built to forecast the total demand for ICU beds

and non-ICU beds (i.e., regular inpatient hospital beds) in North Carolina (NC) where we ini-

tially assigned the same probability of hospitalization for all agents with COVID-19. We dis-

cuss a major limitation of this approach: the failure to account for substantial differences in

hospitalization rates by age, comorbidities, or COVID-19 testing status. Convincing our stake-

holders who sought to use the ABM for transparent decision-making to accept our ABM pre-

diction results was challenging; in particular, it was difficult to justify why all agents should

have the same probability of hospitalization when ample evidence contradicted this model

assumption. To overcome this limitation, we demonstrate that a straightforward Bayesian

method in the estimation of the model parameters can be used, which requires only aggregate

data from NC hospitals and the age and comorbidity status of agents in the synthetic popula-

tion underlying the ABM. We also show that the probability of COVID-19 testing can be

incorporated to allow for different hospitalization rates for tested and untested agents. Our

modeling results indicated that this approach could enhance the accuracy and interpretability

of model predictions and should be a useful technique in ABM development.

Materials and methods

Related work

ABMs have been used throughout the COVID-19 pandemic to forecast a variety of outcomes,

including demand for non-ICU beds and ICU beds, with varying levels of geographic specific-

ity. Examples include Donker et al. [9], who used data from Italy to provide early insights for

Germany; Weissman et al. [5], who developed the CHIME ABM tool for the Philadelphia

region; Tuomisto et al. [10], who developed an ABM called REINA to identify destructive pan-

demic policies for broad geographic areas; Fort et al. [11], who focused specifically on an ABM

for hospitals in the New Orleans region; and Truszkowska [12], who applied an ABM to the

outbreak in New Rochelle, New York (NY). In these ABMs, agents become infected with

SARS-CoV-2 and can be hospitalized for COVID-19. Model outputs, including estimates of

the non-ICU and ICU beds needed by the agents for the duration of the ABM, have been used

to inform decisions such as increasing hospital bed capacity and purchasing additional per-

sonal protective equipment [5].
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disaggregated by age group and COVID-19 status.
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A key parameter for estimating these outputs is the probability of hospitalization among

COVID-19 agents. This probability has a direct impact on the outputs because an increased

probability will lead to more hospitalizations. However, Gao and Dong [13] describe how this

probability is challenging to derive in practice. If the number of all positive SARS-CoV-2 infec-

tions were known, one could calculate the probability of hospitalization as the number of

COVID-19-associated hospitalizations among all SARS-CoV-2 infections. However, the true

number of SARS-CoV-2 infections is unknown; in July 2020, CDC estimated that there were

10 times as many SARS-CoV-2 infections as laboratory-confirmed and reported COVID-19

cases [7] An approximate hospitalization rate can be calculated as the number of persons hos-

pitalized with COVID-19 compared to the total number of reported COVID-19 cases, but this

number is likely a substantial overestimate of likelihood of hospitalization if used to estimate

the probability of hospitalization for all persons with COVID-19. Although Gao and Dong

[13] discuss how testing may impact the probability of hospitalization, the ABMs reviewed for

this analysis did not specifically use the probability of COVID-19 testing in determining the

probability of hospitalization associated with COVID-19.

The literature also strongly suggests that not all persons infected with SARS-CoV-2 have

the same probability of hospitalization with COVID-19; specifically, older individuals and

individuals with comorbidities (e.g., chronic obstructive pulmonary disease, obesity) appear to

have higher likelihoods of requiring hospitalization [6]. Attributes like age and comorbidities

can be assigned to agents in ABMs [14]. The parameter for probability of hospitalization can

be conditionally assigned for each COVID-19 agent according to the agent’s age and comor-

bidity status. Kashyap et al. [15] suggested that models that do not use patient age distribution

are more likely to overestimate the resource burden of COVID-19.

When specifying the parameter for the probability of hospitalization, several ABMs used

the same probability for all agents with COVID-19, regardless of age or comorbidities. Based

on data collected at Ochsner Health hospitals in New Orleans in March and early April 2020,

Fort et al. [11] used a 9% hospitalization rate. Weismann et al. [5] used internal March 2020

data from Pennsylvania to estimate a hospitalization rate of 2.5% (CI 1%– 5.1%). Donker et al.

[9] calculated the hospital admission rate as the cumulative number of hospital admissions

divided by the cumulative number of confirmed cases, although no numeric estimate was pro-

vided. Hoertel et al. [16] forecasted ICU occupancy and estimated it as four times the mortality

rate observed in the ICU.

In March 2020, Verity et al. [17] released age-specific probabilities of hospitalization given

SARS-CoV-2 infection. In the same month, Ferguson et al. [18] updated these probabilities to

account for non-uniform attack rates by age. When applied to the UK population, these esti-

mates suggested an overall hospitalization rate of 4.4%. Uncertainty estimates were not pro-

vided. Many subsequent ABMs throughout 2020 and into 2021 used the direct estimates or

modifications of the estimates by Verity et al. [17] or Ferguson et al. [18] as shown in Table 1,

including Tuomisto et al. [10], Silva et al. [19], Kerr et al. [20], and Truszkowska et al. [12].

Tuomisto et al. [10], Silva et al [19]. and Kerr et al. [20] models were location-agnostic, while

Truszkowska et al. [12] explicitly modeled the small town of New Rochelle, NY. Many models

recognized that importance of incorporating age-specific parameters, but also assumed appli-

cability across geographies which may not reflect regional realities.

Fewer models explicitly incorporated comorbidities into the probability of hospitalization.

Gao and Dong [13] explored which comorbidities were most highly related to the probability

of hospitalization and Qian et al. [21] estimated the profile of comorbidities among those hos-

pitalized. Only Kerr et al. [20] explicitly used the comorbidities of each agent to modify the

probability of developing severe COVID-19 symptoms that would require hospitalization.
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The models that considered age- or comorbidity-specific probabilities of hospitalization

generally relied on conditional probabilities alone. Gao and Dong [13,22] extended the use of

conditional probabilities by proposing a Bayesian framework with which to estimate the prob-

ability of hospitalization.

Throughout the COVID-19 pandemic, stakeholders including government officials have

utilized agent-based models for key policy decisions [23]. The re-use of age estimates and the

lack of use of comorbidity or testing attributes estimates in many of these models reflect the

lack of available information in the early months of the COVID-19 pandemic as well as a need

by stakeholders for rapid model development. However, these omissions conflict with a stake-

holder demand for interpretability to facilitate transparent decisions and the reuse of parame-

ters in different geographies may affect model reliability. A lack of interpretability and

reliability of COVID-19 ABMs have contributed to critiques of their use for policymaking

[24].

ABM design

We developed an ABM in Python to generate 30-day forecasts for the demand for ICU and

non-ICU beds for all agents (both with and without COVID-19) in North Carolina [25]. Esti-

mates were provided at the state level and for the 10 Local Health Director (LHD) regions in

North Carolina from March 2020 through December 2020. The ABM modeled agent move-

ment between the community, short term care facilities, long-term acute-care hospitals

(LTACHs), and nursing homes. The ABM utilized all agents from NC in the RTI SynthPop

[26]. The RTI SynthPop is a virtual, anonymized synthetic population that is representative of

real people and can be used for simulation efforts like this one. Each person in the synthetic

population is called an agent, and agent attributes included age and a binary flag for presence

of comorbidities that was previously developed for an ABM of Clostridioides difficile Infection

[14]. Note that one limitation of the comorbidity assignments is that they were only estimated

for three age ranges (0–49, 50–64, and 65+ years), with no agents under 50 being assigned

comorbidities [14]. The ABM utilized a susceptible-exposed-infected-recovered (SEIR) model

for SARS-CoV-2 with different probabilities of infection by age, and agents could be hospital-

ized with COVID-19 during the “Infected” stage.

When determining the probability of hospitalization with COVID-19, we initially used a

single point estimate for all infected agents similar to ABMs developed by Fort et al. [11],

Weismann et al. [5], Donker et al. [9], and Hoertel et al. [16]. This value was set to 2.2%. This

was half of the value estimated from Ferguson et al. [18] and was equivalent to the CDC esti-

mate of 4.6 hospitalizations per 100,000 persons [27]. However, literature contradicted the

Table 1. Age-specific probabilities of hospitalization given COVID-19 infection.

Age

Group

Verity et al. [17] and

Tuomisto [10]

Kerr et al. [20] adapted from Verity

et al. [17]

Truszkowska et al. [12], Silva et al. [19], & Ferguson et al. [18] adapted from

Verity et al. [17]

0 to 9 0 0 0.001

10 to 19 0.001 0.0004 0.003

20 to 29 0.021 0.011 0.012

30 to 39 0.067 0.034 0.032

40 to 49 0.085 0.043 0.049

50 to 59 0.163 0.082 0.102

60 to 69 0.236 0.118 0.166

70 to 79 0.332 0.166 0.243

80 plus 0.368 0.184 0.273

https://doi.org/10.1371/journal.pone.0264704.t001
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assumption that all infected agents should have the same probability of hospitalization with

COVID-19.

We started with age and comorbidity status, which were available in the underlying syn-

thetic population, as well as testing status which was estimated in the ABM. A testing status of

“tested” meant that a person had received any type of test for COVID-19, while a testing status

of “untested” meant that a person had not received any type of test for COVID-19. To incorpo-

rate these attributes in the probability of hospitalization with COVID-19, we proposed a Bayes-

ian framework. While Gao and Dong focus on approximating a Bayesian posterior with beta

distributions, we used a straightforward application of the Bayes’ theorem. We aimed to use

local NC hospital data to capture the conditional relationships between age, comorbidities,

and hospitalization from symptoms of COVID-19 while also accounting for unreported

SARS-CoV-2 infections. With this method, we were able to use NC-specific data rather than

relying on estimates derived from different populations that may not reflect NC.

Bayesian specification

Our proposed method was intentionally designed to require few inputs that were reasonably

accessible given the pandemic and to be interpretable for stakeholders. A similar method had

been used by Gao and Dong [13,22]. To estimate the conditional probability of hospitalization

associated with COVID-19 p(hosp) given an agent’s age and comorbidity status (i.e., presence

or absence of comorbidities), we use the following formula for Bayes’ theorem:

p hosp j age& comorbiditiesð Þ ¼
pðage& comorbidities j hospÞ � pðhospÞ

pðage& comorbiditiesÞ

The same equation can be used separately to obtain estimates for tested infections (i.e., labora-

tory confirmed and reported COVID-19 cases) and untested infections. It is important to note

that “untested” is not an official status in the ABM but is understood to mean “untested prior

to hospitalization” because it is likely that patients presenting with possible COVID-19 at a

hospital would be tested upon admission. This does not impact the model because the proba-

bility of hospitalization is what the ABM uses to identify agents for hospital admission, so sub-

sequent testing at the hospital would not impact this parameter. At the time that the model

was initially constructed in June 2020, it was estimated that 10% of SARS-CoV-2 infections

were reported as COVID-19 cases [7].

Table 2 highlights differences in the methods used to calculate each component of the

Bayesian equation between tested and untested infections. One key difference is that the prob-

ability of hospitalization for agents for COVID-19 agents is expected to be higher among tested

infections than untested infections. This is based on a comparison with the CDC overall esti-

mate of probability of hospitalization, and the suggested estimate that untested infections are

Table 2. Methods for calculating portions of Bayesian equation by COVID-19 testing status.

Tested and Reported Cases Untested Infections

p(age & comorbidities | hosp) Calculated using crosstabs of age & comorbidity status among

hospitalized with COVD-19 provided by NC DHHS

Assumed to be the same as for Tested and Reported Cases

p(hosp) Estimate of 8.5% in June 2020 provided by NC DHHS Estimated at 1.2% from expert input to calibrate with ~1.9% overall

hospitalization

p(age & comorbidities) Calculated from crosstab age and comorbidities among those

positive with COVID-19 and tested in synthetic population

Calculated from crosstab of age and comorbidities among those

positive with COVID-19 and untested in synthetic population

NC DHHS: North Carolina Department of Health and Human Services.

https://doi.org/10.1371/journal.pone.0264704.t002
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larger in number than tested infections, particularly in the early months of the pandemic in

2020 when testing was limited.

Another key difference is the joint probability of age and comorbidity status. These esti-

mates were calculated from those agents estimated to have COVID-19 in the ABM. The ABM

included a separate calculation of probability of SARS-CoV-2 infection through a SEIR model

that accounted for differences in likelihood of infection by age.

Data considerations

One important advantage of our method is that it requires few data inputs for ease of calcula-

tion and interpretation. We obtained the following aggregated data quickly from the North

Carolina Department of Health and Human Services (NC DHHS) which was crucial in a set-

ting where access to data was limited, and record-level patient data would have been extremely

difficult to access:

• Count of hospitalizations disaggregated by age group and COVID-19 status

• Count of hospitalizations disaggregated by comorbidities and COVID-19 status

• Count of COVID-19 tests by result and by age group

The results from the Bayesian calculation were used directly in the ABM. Each agent with

COVID-19 on a given day received a probability of hospitalization given their age and comor-

bidity status and was assigned a hospitalization status based on this probability. Disease pro-

gression including admission to the ICU was handled in the ABM itself.

Non-public, deidentified data were obtained and fully anonymized prior to access. The RTI

IRB reviewed this study and determined that informed consent was not required as it does not

constitute research with human subjects.

Results

The model parameters obtained by using our Bayesian method are presented in Table 3. These

values were calculated using hospitalization data from June 2020. These exact values should be

interpreted as the probability of hospitalization for agents in the NC synthetic population used

in the ABM, which has a slightly smaller total population than NC’s current population. The

results should not be extrapolated to represent the current NC population. The overall hospi-

talization rate was 1.93%.

The model parameters in Table 3 were used in our ABM run. As a comparison, we also ran

our ABM using a single point estimate of the overall hospitalization rate of 0.0193. The fre-

quency distributions of the NC synthetic population by age group and comorbidity status were

summarized in Table 4. When the overall hospitalization rate was used, among agents of the

age group 65+ 12.0% were hospitalized with COVID-19, and among agents with comorbidities

11.1% were hospitalized with COVID-19. When the hospitalization rates obtained by using

our Bayesian method were used, among agents of the age group 65+ 39.8% were hospitalized

Table 3. ABM probability of hospitalization from COVID-19 from Bayes calculations.

Tested and Reported COVID-19 Case Untested COVID-19 Infection

Age Range No Comorbidities Comorbidities No Comorbidities Comorbidities

0 to 49 0.037 NA 0.008 NA

50 to 64 0.035 0.461 0.007 0.098

65+ 0.121 0.411 0.026 0.087

https://doi.org/10.1371/journal.pone.0264704.t003
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with COVID-19, and among agents with comorbidities 56.5% were hospitalized with COVID-

19. The average age of hospitalized agents was 37.6 years for the single point estimate method

but 57.4 years for the Bayes method.

A critical parameter choice made to obtain the results in Table 3 was the assumption that

10% of positive SAS-CoV-2 infections were tested and reported as COVID-19 cases. This

parameter estimate was made using available literature but impossible to know with certainty.

Fig 1 highlights a sensitivity analysis of ABM results for a 30-day forecast of the total demand

for hospital beds needed by all agents (with and without COVID-19) under scenarios with dif-

fering percentages of tested SARS-CoV-2 infections reported as COVID-19 cases. This hypo-

thetical scenario is used only for the purposes of sensitivity testing and assumes a low effective

Table 4. Percentage of agents hospitalized with COVID-19 by subgroup in NC synthetic population when an

overall hospitalization rate (single point estimate) or age group and comorbidity-specific hospitalization rates

(Bayesian method) were used.

Age Range Single Point Estimate (0.0193) Bayes’ Method

With Comorbidities 0 to 49 NA� NA�

50 to 64 4.5% 24.6%

65+ 6.6% 31.9%

Without Comorbidities 0 to 49 69.0% 29.8%

50 to 64 14.5% 5.9%

65+ 5.4% 7.7%

Total (Hospitalized with COVID-19) 100% 100%

�Comorbidity status is not assigned to agents in the 0 to 49 age range in the NC synthetic population.

https://doi.org/10.1371/journal.pone.0264704.t004

Fig 1. Sensitivity analysis of ABM results of total demand for hospital beds to the parameter of percentage of SARS-CoV-2 infections tested

and reported as COVID-19 cases.

https://doi.org/10.1371/journal.pone.0264704.g001
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R range (1–1.2). The assumed value of 10% most closely approximates the likely expected sce-

nario with a low effective R range of a small increase in demand for hospital beds over a

30-day period. The larger parameters of 30% and 50% of positive SARS-CoV-2 infections

tested and reported as COVID-19 cases are associated with larger increases in hospital bed

demand that may be larger than expected for a low effective R range.

Discussion

We described an application of Bayes theorem that enhanced the prediction of hospitalization

with COVID-19 in an ABM and required few data inputs. Our modeling results showed that

this Bayesian approach yielded more accurate predictions that better aligned with observations

in the literature that older persons and persons with comorbidities are more likely to be hospi-

talized with COVID-19. This approach also can lead to improvements in other ABM outcomes

of interests that could use accurate age and comorbidity status for hospitalized agents such as

length of hospital stay, need for a ventilator, or disease progression. Our Bayesian approach

enabled us to provide more interpretable results to stakeholders who often questioned the

explainability of the single point estimate method and preferred more detailed prediction

results that could facilitate transparent decision-making.

In general, our results suggest that the conditional probability of hospitalization for those

with comorbidities is higher than those without comorbidities and potentially substantially

higher than the solely age-specific values used by other ABMs. Conversely, estimates for those

without comorbidities, even in higher age groups, may be lower than solely age-specific esti-

mates. Notably, the probability of hospitalization for untested infections with comorbidities

was suggested to be higher than the probability of hospitalization for tested infections without

comorbidities in the case of adults ages 50 to 64 years. These results again highlight the addi-

tional accuracy and interpretability of ABM results from using Bayes’ theorem.

Our sensitivity analysis indicated that this approach can be sensitive to the percentage of

COVID-19 infections that are tested and reported as cases. Available literature should be used

to select this parameter and be informed by expert input as appropriate.

The advantages of our proposed approach include allowing for use of additional details

such as age, comorbidity status, and testing status when calculating the probability of hospitali-

zation with COVID-19. It is flexible and can be updated when new data or updated expert

opinions are available. It enhances the geographic granularity of an ABM by more accurately

reflecting the probability of hospitalization given characteristics that are geographically repre-

sented in the ABM, and thus likely yielding more accurate regional and local estimates.

The practical applications of this approach can be extended frommodeling hospital bed

capacity to modeling other healthcare outcomes. A more accurate reflection of the age and

comorbidity characteristics of the patient population could be useful in models related to

improving the efficiency of healthcare systems [28] by supporting more granular information

related to patient needs for rehabilitation, nursing home, and long-term care facilities. Simi-

larly, information on these characteristics could also impact models related to the quality of

work experience for healthcare workers [29] by helping anticipate the broader age- and

comorbidity-specific needs of the patient population and preparing staff skills to align with

those needs.

This approach is also applicable to other diseases and epidemics. Bayes’ theorem required

few data inputs, and the necessary inputs were discrete, aggregated, and often accessible from

local or regional public health agencies. Its implementation is simple and straightforward. It is

well-suited to a tumultuous scenario with limited information such as the early months of the

PLOS ONE Enhancing the prediction of hospitalization from a COVID-19 agent-based model with a Bayesian method

PLOS ONE | https://doi.org/10.1371/journal.pone.0264704 March 1, 2022 8 / 11

https://doi.org/10.1371/journal.pone.0264704


COVID-19 pandemic and when prediction results with greater accuracy and interpretability

are desired.

Limitations

A variety of limitations exist for this work. First, as discussed in Section 4, the specific Bayesian

probabilities in this analysis should only be interpreted in the context of the NC synthetic pop-

ulation used in this project. Comorbidity status is only assigned to adults aged 50 and older in

the synthetic population, and the comorbidity status assignment was based on health care-

associated risk, which is slightly different than the one published by CDC for COVID-19 hos-

pitalization [6,14]. A second limitation is that in this initial analysis, separate probabilities of

age given hospitalization with COVID-19 and comorbidity status given hospitalization with

COVID-19 were provided by NC DHHS. The calculation of the joint probability of age and

comorbidity status given hospitalization with COVID-19 assumed that the underlying proba-

bilities were independent, an assumption that may not be true. In later versions of the ABM,

we subsequently made updates to this calculation and used data that included the joint distri-

bution of age and comorbidity status given hospitalization with COVID-19. A third limitation

is that the calculations did not account for differences in specificity and sensitivity for different

types of COVID-19 tests and may overestimate the quality of testing results. Finally, the

assumption was made that although age impacted the likelihood of infection with COVID-19,

neither age nor comorbidity status influenced the likelihood of receiving a COVID-19 test

once infected with SARS-CoV-2.

Conclusion

We used Bayes’ theorem to estimate the probability of hospitalization with COVID-19, given

age, comorbidity, and testing status of agents with COVID-19 in a NC ABM forecasting

demand for non-ICU and ICU beds. We demonstrated that the analysis was sensitive to the

percentage of infections that are tested and reported as cases and the selection of the likelihood

of hospitalization for untested infections. This straightforward yet innovative approach

enhanced accuracy and interpretability of model predictions for stakeholders seeking trans-

parent decision-making tools and may be useful for scenarios with limited information similar

to the early months of the COVID-19 pandemic.

The findings and conclusions in this publication are those of the authors and do not neces-

sarily represent the views of the North Carolina Department of Health and Human Services,

Division of Public Health or the Centers for Disease Control and Prevention (CDC).
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