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Abstract

We survey the network properties and response to damage sustained of road networks of

cities worldwide, using OpenStreetMap (OSM) data. We find that our primary damage

response variable t1:0 , which is the average shortest time needed to reach all nodes in a

road network (which stand in for locations within a metropolitan area) from an initial node

(which stands in for the location of a center for disaster relief operations), is strongly line-

arly–correlated with pd, the fraction of the road network segments damaged. We find that

this result, previously reported for a city’s road network as opposed to grid and scale-free

idealizations, is widely present across the road networks we have examined regardless of

location. Furthermore, we identify three families of road networks according to their damage

response, forming a typology by which we can classify city road networks. Using this typol-

ogy, we identify the family of road networks which may be of most concern from a humani-

tarian standpoint. We also find that, of the properties of the road networks we examined, the

average shortest path length, hlmini and the average node degree, hki, proxies for city road

network size and complexity respectively, are very significantly–correlated with damage

susceptibility. In addition to forming a damage response typology by which city road net-

works could be classified, we consider five cities in detail, looking at risks and previous

disaster events. Our results offer a generalizable framework in evaluating the feasibility of

coursing relief efforts within disaster–affected areas using land–based transportation meth-

ods. They also provide, albeit in retrospect, a glimpse of the time difficulties which occurred,

and the stakes of life involved in the humanitarian crisis which developed in the Kathmandu

area due to the earthquakes of April and May 2015.

Introduction

The death toll and property losses from natural disasters number in the thousands of lives and

millions in US dollars annually. In 2018 alone, there were 315 natural disasters reported by the

Centre for Research on the Epidemiology of Disasters (CRED), affecting 68.5 million people,

causing 11,804 deaths, and US$ 132 billion in economic losses. While lower than the annual
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averages over the previous decades, the losses are still significant in a year dominated by storms

and flooding [1].

Natural disasters, and disaster events in general, cause massive loss of life and property

when they occur, losses which mount in the aftermath unless relief measures are promptly set

in motion, and much—needed supplies reach those affected. The need for quick action and

transportation of supplies is well—recognized among those involved in such efforts; the exis-

tence of a time window is commonly—held, ranging from 36 [2] to 72 hours [3, 4] for search,

rescue and emergency relief efforts to take effect in the immediate aftermath of a disaster

before death tolls rise (and after which emergency response efforts shift to restoration and

recovery, and are no longer considered immediate). Without substantial commitment of aerial

assets (and/or riparian and marine assets when the disaster location is sufficiently—close to

rivers or the sea), such relief efforts necessarily have to make do with the existing land—based

road networks. Even with the commitment of such capabilities, the road network infrastruc-

ture will still be needed, to a degree, for transportation of relief goods and supplies. Previous

results [5, 6] indicate that idealizations of road networks to standard network types like grids

or power law distributions result in significant variations in computed parameters for logistical

operations during disasters. Hence, there is a need to incorporate the empirical distribution of

an actual network, including its capacity during an emergency situation.

Relief efforts for a metropolitan area affected by a disaster presents a particularly—impor-

tant case. A significant fraction of a nation’s population, wealth, and creative forces is typically

concentrated in its urban areas. In 2018, 4.2 billion of the global population (55%) resided in

urban settlements [7], a proportion which is projected to reach 68% by 2050—nearly the

reverse of what it had been in 1950. Also in 2014, the world’s 300 largest metropolitan areas

accounted for 20% of its population and 47% of its economic output [8]. As such, disasters

affecting such areas are likely to cause losses of life and wealth far more significant than what

would otherwise be the case. While many of these metropolitan areas (including many of the

world’s capital cities and conurbations), for historical reasons, are situated by rivers or seas

which may facilitate the delivery of emergency supplies, such rivers and seas are also potential

sources of disaster events: either hydrological (flooding), meteorological (cyclone landfalls) or

seismic (tsunamis) in origin. An additional source of concern is that many cities worldwide,

for similar historical reasons, grew up in, or near to, geologically—active regions, which pose

the risks of disasters stemming from volcanic eruptions and earthquakes. Major cities located

on the rim of the Pacific Ocean are especially at risk, due to the rim coinciding for the most

part with the Pacific Ring of Fire.

It may be expected that the road networks in urban locations may be more developed than

those of the countryside, the rural areas, in the sense of the presence of more roads. However

this may not suffice to ensure speedy transportation of relief supplies within the urban area

spanned by its road network. It thus becomes necessary and natural to treat the road infra-

structure from a network or graph perspective. Several characteristic quantities can be com-

puted from a network representation of the road infrastructure, quantities which may

contribute to the response and resilience of transportation using that road network to damage

brought on by disaster. Network-theoretic perspectives have been used previously to probe

road networks in general [9, 10] and specifically, questions of robustness, resilience and recov-

ery in the face of disaster events [5, 11–24].

In a previous work [5], we examined the robustness of the capability of centrally-sourced

relief operations to reach disaster-affected areas via roads from a network—theoretic perspec-

tive, with the city of Tacloban in the Philippines (hit by Typhoon Haiyan in November 2013),

and two idealized networks of the same size (a scale—free network and a two—dimensional

grid) serving as case studies. We found that tq , the average time to reach a fraction q of the
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nodes in the road network from a randomly—chosen starting node (serving as a relief center),

increases linearly with the degree of damage the network sustained, pd for Tacloban’s road net-

work, in contrast with the two idealizations, under a variety of road damage scenarios. In this

paper, we perform a similar analysis (robustness of tq to road damage) for the road networks

of cities around the world at two different times: 2014 (201 cities) and 2019 (194 cities). In

addition, we characterize families of urban road networks according to their damage response,

forming a typology by which we can classify such networks.

For each road network, we calculate several network properties, as well as its response to

damage sustained by its road segments. Thus, we are able to identify which network properties

significantly contribute to the ease (or difficulty) of channeling relief efforts through a road

network. In addition, we identify key network characteristics of cities which may stand to lose

the most, both in terms of lives and wealth, to delays in the relief effort in the aftermath of a

disaster. Finally, we compare the network characteristics so identified between 2014 and 2019,

in order to determine whether there have been shifts.

Our proposed typology of urban road networks thus complements others which rely more

on spatial characteristics, such as the distribution of the shape factor of bounded city blocks

[25] or road segment orientations [26]. For planners involved with disaster preparedness,

response and resilience planning, identifying families of city road networks with similar dam-

age response may aid in the formulation on the strategic level of disaster mitigation and

response plans widely applicable within a given family of city road networks.

Materials and methods

Geospatial data

2014 and 2018 map data for cities around the world were downloaded from OpenStreetmap

(OSM) snapshots. OpenStreetMap [27] is the largest existing open and user-driven geospatial

project covering the entire world. Extracts (subsets of OSM data covering smaller areas) for

the cities were downloaded from two Metro Extracts websites: 2014-vintage extracts for 201

cities through Mapzen [28] (which shut down in February 2018 [29]), and 2019-vintage

extracts for 194 cities through Nextzen [30], which provides the same framework as Mapzen.

In both cases, all city extracts available at the time of data download (2014 for the Mapzen

extracts and 2019 for the Nextzen extracts) were downloaded. Fig 1 shows the locations of the

city extracts for both datasets (2014 and 2019).

The data sets both contain several maps which refer to adjoining city units, such as the map

data for the Samara and Tolyatti agglomeration in Russia and Kansas City, Lawrence and

Topeka in the United States, while others, such as the data for the San Francisco Bay Area,

refer to the extended urban agglomeration containing a central city (San Francisco in this

case), whose data is also separately present in the datasets. Fig 2 shows the map datasets

obtained from the first two urban areas mentioned.

The data contained in each map is organized as nodes, which represent points on the map,

with latitude and longitude coordinates, ways, which connect any two nodes together, and

relations, which group nodes and ways into map components, such as highways, buildings and

other points of interest. From each map we extract the road networks by taking only those

ways that are tagged as “highway” (which in OSM refers to any road [33], which may be tagged

as anything from a trail to a trunk highway).

Demographic data was taken from the 11th and 15th editions of the survey of urban areas

around the world collated and published by Demographia [34, 35]: specifically, the cities’

urban area in square kilometers, estimates of current population (based on projections by the

United Nations agencies), and estimates of population density rounded to the nearest hundred
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Fig 1. World map showing locations of downloaded city extracts for 2014 and 2019. The geodata used to render the plot is from OpenStreetMap [27] by way of

Mapzen’s MetroExtracts (2014, [28]) and Nextzen’s MetroExtracts (2019, [30]) The figure was rendered using Python’s geopandas package [31].

https://doi.org/10.1371/journal.pone.0264546.g001
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Fig 2. Conurbations of Samara-Tolyatti (Russia) and Kansas City-Lawrence-Topeka (USA) showing their road

networks. The geodata used to render the plot is from OpenStreetMap [27] by way of Mapzen’s MetroExtracts [28]. The

road networks were rendered using Python’s pyrosm package [32].

https://doi.org/10.1371/journal.pone.0264546.g002
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persons per square kilometer. The survey took a city’s urban area as equal to its built—up area,

and excluded rural land that otherwise fall within its administrative jurisdiction; on the other

hand the built—up area may extend beyond the city’s formal bounds, such as the case of the

city of Manila in the Philippines, whose built—up area not only covers its associated conurba-

tion (the “National Capital Region”) but also extends substantially north, south and east into

the latter’s adjoining administrative units. Out of the 201 metropolitan areas forming our 2014

OSM dataset, 185 have demographic data from the 2014 survey; Of the 194 in the 2019 OSM

dataset, 188 have corresponding 2019 data.

Per-capita gross domestic product (GDP) for 2014 was taken from the report published by

the Brookings Institution [8], containing the 300 cities around the world with the highest GDP

per capita, adjusted according to purchasing power parity (PPP), which facilitates comparison

across cities. Of the 201 areas in the 2014 OSM dataset, 130 are present in this report. More

recent per-capita GDP estimates for cities are unavailable; however, the 2018 Brookings Insti-

tution report [36] presents GDP growth rates over two years, from 2014 to 2016.

In the following sections, the procedures we describe were applied to each dataset (2014

and 2019), unless stated otherwise.

Road network damage response

Each road segment in OSM has a tag denoting its road type, which determines the speed at

which vehicles are to traverse it and the time needed to do so. Following our previous work

[5], we assign characteristic speeds for each road type to be able to estimate the time needed to

traverse road segments of that type.

The road networks thus extracted have a substantial fraction of their nodes connected to

only two others, representing two connected segments of a single road. As we want to examine

the properties of the graph underlying this road network, we remove those nodes; thus, the

nodes that are left in the graph represent the intersections present in the original road network.

Fig 3 shows a schematic diagram of the process. We then obtain several network properties of

each road network, using the approximate times to travel between nodes as edge weights.

These are:

• The number of nodes, N;

• The number of edges, E;

• The average degree, hki;

• The network density, D;

• The average shortest path length, hlmini, measured in time units;

• The average global clustering coefficient, hCglobali; and

• The average local clustering coefficient, hClocali

These properties serve as the feature variables of the dataset.

To determine the damage response of the road networks, we determine tq , the average

shortest time needed to reach a given proportion, q, of the nodes of a network from a ran-

domly—chosen initial starting node, when a certain fraction pd of road segments (also ran-

domly—chosen) have sustained damage. The damage to a road segment is modeled as a

reduction of 95% in the segment’s characteristic speed, and may represent the presence of

debris littering the segment, or else structural damage. We find that the resulting damage
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response is approximately linear across all the cities we examined this way, and so we then

obtain the slope, intercept and the square of the Pearson correlation coefficient of tq against

the pd for q = 0.2, 0.4, 0.6, 0.8, and 1.0 for each road network. Here, the slope represents how

sensitive the needed travel time is to the damage the network has sustained, and can thus be

treated as the measure of susceptibility of the road network to damage. The intercept is the

travel time in the absence of damage, while r2 can be treated as a measure of the predictability

of the network’s damage response as given by the trend line.

Across the road networks the results for q = 0.2, 0.4.0.6 and 0.8 are close to each other; this

has significant implications further on. Fig 4 illustrates this result for five cities chosen without

loss of generality and road networks taken from the 2014 dataset: Rome in Italy, Kathmandu

in Nepal, Dar es Salaam in Tanzania, and from the United States, Miami and the San Francisco

Bay Area.

Thus, we only take the slope, y—intercept and correlation coefficient for the q = 1.0 case,

which is the average time needed to go from an initial starting node to all others by the shortest

path. Incidentally, it can be shown that, under a mean—field approximation, this quantity, t1:0 ,

is exactly the reciprocal of the average closeness centrality of the network, Ccloseness , and thus the

latter should scale with p� 1
d .

Clustering and model fitting

We obtain Zslope, Zintercept and Zr2 , the standardized values of each road network’s damage

response variables—slope, intercept and r2 of t1:0 against pd, and do similarly for each road net-

work’s feature variables (as enumerated previously). After standardization, we perform

Fig 3. Schematic of a road network before (left) and after (right) application of the reduction process.

https://doi.org/10.1371/journal.pone.0264546.g003
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Fig 4. Dependence of tq , the time needed to reach a percentage q of nodes, on pd, the fraction of road segments

damaged, for five sample city road networks. The road segments damaged were chosen at random. Averages were

computed for 100 randomly—chosen trial locations for a relief center.

https://doi.org/10.1371/journal.pone.0264546.g004
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complete—linkage hierarchical clustering on the three damage response variables. The choice

of the number of clusters for our purposes is a balance between exposing the desired amount

of fine structure from the hierarchy of clusters, and the need for as few explanatory variables as

possible (parsimony). We thus examine the hierarchical structure produced by the clustering

algorithm using Tibshirani’s gap statistic [37].

For a choice of the number of clusters k, Tibshirani’s gap statistic, Gapn(k) is a measure of

comparison between the intracluster dispersion obtained when the clustering algorithm is

applied to the observed data, and that when the same algorithm is applied to a sample drawn

from a null-hypothesis reference distribution (e.g. a spatially-uniform distribution). Gapn(k) is

given by Eq 1:

GapnðkÞ ¼ hlogðW�
k Þin � logðWkÞ ð1Þ

where (Wk) and ðW�
k Þ are the intra-cluster dispersions (for k clusters) obtained from the

observed data and a bootstrap sample generated from the null distribution, respectively, and

h.in means the average over a set of bootstrap samples, each of size n. Thus, for a given k a high

value of Gapn(k) indicates the presence of k well-separated clusters. Fig 5 shows gap statistic

plots for the damage response variables (Zslope, Zintercept and Zr2 ) of 2014 and 2019 city map

datasets.

Parsimony is commonly-enforced using the following heuristic: the minimum value of k is

chosen such that Gap(k)� Gap(k + 1) − sk+1, where sk+1 is the standard deviation (taken from

the boostrapped samples) of Gap(k + 1). However, motivated by the need to expose more fine

structure while still keeping the number of clusters low, we also look into the values of Gap(k).

This leads us to choose k = 5 (2014) and k = 4 (2019) instead of k = 1 and k = 2 expected when

we consider parsimony alone.

We then obtain a projection of the road networks’ standardized damage response using

principal component analysis (PCA). The cumulative variance of first two principal compo-

nents is approximately 0.96; thus two dimensions are sufficient for the projection. Table 1

shows the principal component loadings and cumulative variance of the three standardized

damage response variables.

The component loadings for PC1 and PC2 are consistent across year, which allows us to use

a common interpretation for each. The component loadings of the slope and intercept for PC1

have the same sign, while r2 has a smaller loading, with a sign opposite those of the slope and

intercept. PC1 simultaneously encodes the damage response of a road network and its base

“effective radius”; broadly speaking, it can be thought of as the susceptibility of a road network.

Fig 5. Gap statistic plots for standardized damage response variables (Zslope, Zintercept and Zr2 ) of world cities in

2014 (a) and 2019 (b). The number of clusters, k, chosen for each dataset is marked by a dashed line. Clusters were

generated using complete—linkage hierarchical clustering. The generation of clusters, gap statistics and plots were

generated using implementations within R’s factoextra package.

https://doi.org/10.1371/journal.pone.0264546.g005
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PC2 has its highest loading from r2, along with a negative sign and minor contributions from

the remaining two variables; as r2 encodes the closeness of the damage response to a linear fit,

and thus the independence of t1:0 from the starting location on the road network, PC2 then

encodes the location-dependence of t1:0 . A higher value of PC2 implies greater variations in the

damage response, and thus it can be thought of as the unpredictability of the road network’s

damage response behavior.

We then fit a multiple linear regression model, separately for each combination of principal

component (PC1 and PC2) and year (2014 and 2019), using the seven standardized network

properties as predictor variables. Doing so allows us to run tests for each regression coefficient

obtained, and thus to identify which network property has a significant association with a road

network’s damage susceptibility (PC1) and unpredictability of damage response behavior

(PC2).

Results

Road network response

Table 2 includes the mean and standard deviation of the quantities we computed in this work,

including those of the response variables (slope, intercept and r2) for both 2014 and 2019 road

network datasets. It is interesting to note that the average time to reach all locations on a road

network from a starting point, t1:0 varies linearly with the fraction of the road segments dam-

aged, pd regardless of the location of the city, with r2 values all very high (�0.98 on average).

Table 1. Principal component loadings and cumulative variance of the standardized damage response of city road networks: Slope (Zslope), intercept (Zintercept) and

r2 (Zr2 ). In both sets of city road networks, the damage response can effectively be reduced from three to two dimensions. The first component simultaneously encodes a

road network’s susceptibility to damage; the second component, smaller in contribution than the first, encodes the unpredictability of the network’s damage response.

PC1 PC2 PC3

2014 2019 2014 2019 2014 2019

Zslope 0.671 0.681 -0.353 -0.272 0.652 -0.680

Zintercept 0.718 0.707 0.091 0.002 -0.690 0.707

Zr2 -0.184 -0.191 -0.931 -0.962 -0.315 0.193

Cumulative variance 0.604 0.622 0.960 0.956 1.000 1.000

https://doi.org/10.1371/journal.pone.0264546.t001

Table 2. Mean and standard deviation for the computed network properties and damage response variables (slope, intercept and r2) for the road networks of 201

(2014) and 194 (2019) cities worldwide. Data extracted from OpenStreetMap (OSM) through the Metro Extracts services of Mapzen (2014) and Nextzen (2019).

Metric Mean Standard Deviation

2014 2019 2014 2019

hlmini 280.695 499.534 236.648 282.841

hCglobali 9.790 × 10−3 1.809 × 10−3 6.921 × 10−3 1.278 × 10−3

hClocali 6.533 × 10−3 7.612 × 10−4 6.261 × 10−3 6.617 × 10−4

D 0.0104 2.481 × 10−5 0.0503 1.035 × 10−4

hki 2.249 2.177 0.197 0.113

N 179015.1 368403.6 217516.8 388489.5

E 202236.6 397464.3 242111.2 413205.6

Slope 32.759 34.833 22.853 24.593

Intercept 1.689 1.698 1.390 1.382

r2 0.986 0.990 0.020 0.017

https://doi.org/10.1371/journal.pone.0264546.t002
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For the 2014 dataset, 0.985 is the average, with Campo Grande in Brazil being the city with the

lowest value at 0.838. For the 2019 dataset, 0.990 is the average r2, with the Egyptian capital

Cairo having the lowest, at 0.826.

Fig 6 shows the dendrograms obtained from hierarchical clustering of the cities by distance

in the three—dimensional space given by the standardized damage response variables Zslope,
Zintercept and Zr2 . As discussed in the Methodology, we used Tibshirani et al.’s gap statistic to

select particular values for the number of clusters: we selected five clusters for the 2014 road

networks and four for the 2019 road networks, motivated by fine structure and parsimony

considerations.

For the 2014 dataset, the union of Clusters 3 (Miami, Bucharest and Riyadh) and 4 (Dar es

Salaam and Campo Grande) is the first to branch off, followed by the combined Clusters 2 (23

cities) and 5 (7 cities), which itself subsequently resolves into the two clusters. The remaining

cities (166 in total) comprise Cluster 1, the largest cluster among the five in this dataset. For

2019, Cluster 2 (Liverpool, Vancouver, Luanda and Amsterdam) along with the singleton

Cluster 3 (Cairo) are the first to branch off, followed by Cluster 4 (7 cities), with the vast major-

ity under Cluster 1.

The consistently high r2 values we obtained for the damage response of city road networks

for both datasets and shown above indicate that we have recovered a common, shared property

of the road networks. In the following sections, we will ground our generalization of a typology

of damage response upon this result.

Damage response typology of urban road networks

The principal components of Zslope, Zintercept and Zr2 are shown in Table 1. In both datasets

(2014 and 2019), PCA yields two components accounting for 96% of the data variance, with

PC1 encapsulating the contributions of the slope and the intercept and PC2 that of r2. The two

variables with the strongest component loadings for PC1 (the linear dependence of the average

time needed to reach all nodes in a road network from an initial starting point t1:0 on the frac-

tion of the road network segments damaged pd (the slope), and the average time to reach all

nodes from an initial location in the absence of damage (the intercept)) are of most interest

from the viewpoint of disaster relief operations, as they determine how fast any potentially—

affected locations can be reached by relief efforts. The same sign of the coefficients of the two

variables in PC1 also confirm the properties of the clusters we obtained, in which road net-

works with low (or high) Zslope will also have low (or high) Zintercept. PC2, for its part, mostly

encapsulates deviations from the linear trend as defined by the slope and the intercept and

thus a measure of the unpredictability of the road network’s damage response, as observed

previously.

In terms of damage response characteristics, we find three families of city road networks

common to both datasets. This is justified by the fact that both dendrograms (2014 and 2019)

in Fig 6 can be cut into three groups at a higher level than the actual number of clusters found

(5 for 2014, 4 for 2019). In terms of the clusters obtained in the previous section, the corre-

spondences between 2014 and 2019 are as follows: Clusters 1 and 2 (2014) to Cluster 1 (2019),

Cluster 5 (2014) to Cluster 4 (2019), and more loosely, the outlying Clusters 3 and 4 (2014) to

the outlying Clusters 2 and 3 (2019).

Fig 7 shows how the cities in the two datasets are distributed according to population den-

sity (2014 and 2019 datasets), 2014 GDP per capita (2014 dataset) and per-capita GDP growth

over 2014-2016 (2019 dataset), for those with obtainable data. We find no noticeable relation-

ship between membership in the obtained clusters on one hand, and population density, per-

capita GDP and GDP growth on the other, meaning that damage susceptibilities cut across
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Fig 6. Road networks of 201 (2014) and 194 (2019) cities around the world. These are hierarchically clustered

according to their standardized damage response variables: slope (Zslope), y—intercept (Zintercept) and r2 (Zr2 ). The

number of clusters chosen for each set of road networks (5 for 2014, 4 for 2019) was selected taking parsimony and fine

structure considerations into account, as discussed in the Methodology.

https://doi.org/10.1371/journal.pone.0264546.g006
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population densities and wealth, and thus are of great concern to cities worldwide, wealthy or

not, densely-populated or not.

The first family of cities, consisting of Cluster 1 (both 2014 and 2019) contains the majority

of the city road networks, and are characterized by low Zslope, low Zintercept, and (generally)

high Zr2 , corresponding to low values for both PC1 and PC2. These span a wide range in both

population density (as an example for the 2014 set Dhaka, Mumbai and Hong Kong are the

Fig 7. Frequencies for examined cities according to population density (2014 and 2019 datasets), 2014 GDP per capita (2014 dataset) and per-

capita GDP growth from 2014 to 2016 (2019 dataset). For each road network dataset, the clusters obtained are colored as in their respective

dendrograms in Fig 6.

https://doi.org/10.1371/journal.pone.0264546.g007
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densest urban areas while Mobile, Chattanooga and Macon, all in the United States of Amer-

ica, are the least dense) and GDP per capita (the American cities Boston, Houston and the

Washington DC—Baltimore metropolitan area having the highest and Kolkata, Bengaluru and

Chennai, all in India, having the lowest per-capita GDP in 2014 PPP-adjusted US dollars).

For these cities, points within their road networks need less time to be accessed in the

absence of road damage (low Zintercept), and moreover, this ease of access is not very susceptible

to increases in the damage (low Zslope); relief efforts can be conducted in them more easily in

case of disaster events. This family of cities are of least concern, from the point of view of dam-

age susceptibility.

The second family, consisting of Clusters 2 and 5 (2014) / Cluster 4 (2019), contains cities

with both high Zslope and Zintercept (equivalently, high values of PC1), and low Zr2 (equivalently,

low values of PC2). Similar to the first family, membership in this family is invariant of popula-

tion density (with Canberra in Australia and Kathmandu in Nepal lying at the lower and

upper ends in 2014) 2014 GDP per capita (Porto Alegre in Brazil and San Francisco in the

United States), or 2014-2016 per-capita GDP growth (the Bay Area growing by 4.1% while

Riyadh remained nearly-static at 0.2% over the same period). In contrast to the first family,

this one contains cities within which locations are less readily—accessible even in the lack of

disaster events, and become even less so with the increase in the level of damage the road net-

work sustains. In the event of disasters affecting cities in this family, the use of their road net-

works to deliver relief within are bound to be highly—cumbersome and prone to delays,

delays which workers can ill afford. Thus, these cities present the most concern.

The third family, consisting of the remaining clusters in both datasets, contains city road

networks with very low Zr2 (high PC2), such as Campo Grande (2014) and Cairo (2019). These

cities can collectively be considered as outliers which need more examination. The three fami-

lies of city road networks can easily seen in Fig 8, which shows the projection of each city’s

damage response variables (Zslope, Zintercept and Zr2 ) onto the first two principal components

obtained, PC1 and PC2. The cities of the first family have low Zslope and Zintercept, thus clustering

around the origin, while the cities of concern form a tail extending towards the bottom right,

towards the region of high susceptibility to damage; the outliers are found elsewhere.

Road network properties and damage response

Let us examine the damage response of the five sample cities previously mentioned, each

belonging to a 2014 cluster: Rome (Cluster 1), Kathmandu (Cluster 2), Miami (Cluster 3), Dar

es Salaam (Cluster 4) and the San Francisco Bay Area (Cluster 5). As seen previously in Fig 4,

tq , the time to reach a q percentage of nodes in a network from an initial node representing a

relief center, is only weakly dependent on the fraction of damaged road segments pd for q up

to around 80% to 90%. Thus, Fig 9 shows the time to reach the remaining, most inaccessible

nodes (and thus, the entire network), t100 for the five cities, along with their respective road

networks.

We see that the damage response of each city road network is approximately linear. Despite

the response of Rome (Cluster 1 / “least concern”) and Dar es Salaam (Cluster 3 / “outlier”)

tracking closely with each other, they are in different clusters, the small size / extent of Dar es

Salaam compensates for the relative sparseness of its road network, in comparison with the

bigger and more-connected network of Rome. Higher up are Kathmandu (Cluster 2, “of con-

cern”) with its relatively sparse road network, and Miami (Cluster 3, “outlier”), whose road

network is both larger and denser than that of Kathmandu, and have higher values for both

susceptibility (PC1) and unpredictability (PC2). Finally, the road network with the steepest

damage response (and thus, highest susceptibility) is that of the San Francisco Bay Area, which
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is also the biggest and densest road network of the five cities. This is no coincidence; as dis-

cussed below, a city road network’s size and complexity are the strongest significant predictors

of its damage susceptibility.

We then fit multiple linear regression models to PC1 and PC2, using the standardized values

of the seven computed network parameters as feature variables. The maximum likelihood esti-

mates for the regression coefficients are shown in Table 3, along with the standard error and

the result from a two—tailed t—test on each coefficient.

Among the coefficients of the regression models for PC1, those for Zhlmini
, associated with

the average shortest path length are significant at α = 0.01 for both 2014 and 2019. The coeffi-

cient of Zhki, the (standardized) average degree, is significant at α = 0.01 for 2014, but is signifi-

cant at α = 0.05 for 2019. We fail to find statistically-significant associations between both

clustering coefficients and PC1 for 2014; however we pick up a statistically-significant

Fig 8. Principal-component projections of standardized damage response variables for the road networks of 201

(2014) and 194 (2019) cities worldwide: Slope (Zslope), intercept (Zintercept) and r2 (Zr2 ). For each road network

dataset, the clusters obtained are colored as in their respective dendrograms in Fig 6.

https://doi.org/10.1371/journal.pone.0264546.g008
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association between ZhClocali and PC1 at α = 0.05 for the 2019 dataset. Interestingly, the strength

of the associations of Zhlmini
and Zhki, while remaining statistically significant at varying extents

between 2014 and 2019, both drop, from 0.585 and 0.513 to 0.377 and 0.390, respectively, par-

alleled by the appearance of a strong negative (-0.793) and statistically significant (at α = 0.05)

association between ZhClocali and PC1 in the 2019 road network dataset.

As PC1 encapsulates in the main the damage response properties of a road network in

accordance with our clustering results, we thus identify hlmini, hki, which are proxies for a city

Fig 9. Damage response of five sample cities, together with their respective road networks. Each city and road network was selected from one 2014

cluster each.

https://doi.org/10.1371/journal.pone.0264546.g009
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road network’s size and complexity, respectively, as the primary contributors to the suscepti-

bility of a road network to damage: a road network with higher average path length and (to a

slightly-lesser extent) higher average node degree will tend to require longer times to reach the

most inaccessible locations within them, times which are moreover highly—dependent on the

amount of damage the road network has sustained. For the 2019 dataset, hClocali, the average

local clustering coefficient, is a measure of the “small-worldness” of a network; high values

imply ease of accessibility from one node in the road network to another; as well as more

redundant connections and thus decreased susceptibility to damage, something borne out by

the negative sign of its regression coefficient.

For PC2 and the 2014 dataset, we find five network properties with significant regression

coefficients: hlmini (-0.251), D (0.328), hki (0.791), N (4.299) and E (-4.377) Of these, the coeffi-

cients of Zhlmini
and ZE are both negative, indicating that their contributions have the effect of

lowering PC2, and thus the unpredictability of the road’s damage response, while those of the

other three serve to increase the latter. The 2019 dataset differs drastically from the 2014 one in

this regard: only the coefficient of the average shortest path length (-0.294), remains statisti-

cally significant: hlmini, and thus the network’s size, has a consistent negative contribution to

damage response unpredictability (equivalently, a consistent positive contribution to the dam-

age response r2, since the latter’s component loading for PC2 is negative) across datasets.

Discussion

Universality of small—Scale and large—Scale damage response

In a previous work [5], we reported that tq increases linearly with the degree of damage the

network sustained, pd for a real road network, in contrast with two idealizations of a road net-

work (a scale—free network and a two—dimensional grid). This implies that for a real road

network, there is no equivalent to a percolation threshold for pd which divides the response of

tq into two regimes (as was for the two idealizations). Furthermore, we reported that the time

needed to reach lower percentages of the road network (q below 80% to 90%) has a weaker

dependence on pd (and thus exhibit stronger robustness to damage), in contrast to when

q = 100, or equivalently, when the most inaccessible locations are also needed to be served.

With this survey of two metropolitan road network datasets, we further find that these two

Table 3. Regression coefficients of generalized linear models for the principal components PC1 and PC2 for 2014 and 2019 city road networks. The standard error for

each coefficient is in parentheses. Coefficients exhibiting statistical significance under a two-tailed t-test are marked with asterisks.

Feature PC1 PC2

2014 2019 2014 2019

Zhlmini
0.585(0.110)��� 0.377(0.136)��� −0.251(0.080)��� −0.294(0.102)���

ZhCglobali −0.079(0.312) 0.507(0.298) −0.052(0.225) −0.052(0.223)

ZhClocali −0.173(0.322) −0.793(0.355)�� −0.180(0.232) 0.095(0.266)

ZD 0.210(0.124) −0.063(0.104) 0.328(0.089)��� 0.077(0.078)

Zhki 0.513(0.174)��� 0.390(0.197)�� 0.791(0.126)��� 0.041(0.147)

ZN 0.408(2.181) −3.698(2.919) 4.299(1.573)��� 0.928(2.189)

ZE −0.565(2.168) 3.812(2.896) −4.377(1.564)��� −0.892(2.172)

(intercept) −0.000(0.088) −0.000(0.092) −0.000(0.063) 0.000(0.069)

�� p<0.05

��� p<0.01

https://doi.org/10.1371/journal.pone.0264546.t003
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insights are not unique to the city road network previously studied (Tacloban City in the Phil-

ippines, which was hit by Typhoon Haiyan in November 2013), but is also found in others

worldwide. We conjecture that this is a universal property of the damage response of road net-

works, something which is supported by typological commonalities we found across the two

road network datasets.

This combination of small-scale robustness combined with variable susceptibility at the

greater scale of the entire city has important implications for disaster preparations: it means

that for any city, there exists a minimum number of optimally—positioned relief centers that

can robustly service places in its vicinity using the road network, such that the entire city can

be robustly served by these centers when a disaster occurs. Any lower than this threshold and

the existing centers will not be able to robustly—serve an entire city, with the most inaccessible

places taking a much longer time to reach via the road network. Conversely, centers which are

intended to serve an entire city’s extent will find the use of the road network impractical if they

are to reach the farthest locations in a low enough time, and thus will have to use alternate

means of service delivery (such as air or sealifts).

Damage response and risks

By using hierarchical clustering of the (transformed) damage response variables of these road

networks, we are ultimately able to classify cities into one of three types, according to the dam-

age response characteristics of their road networks. The classification of cities is invariant of

population density, GDP per capita or per-capita GDP growth, meaning that both low-and

high-risk cities could be found at both extremes of each.

The five sample cities we have examined face a variety of risks: seismic (Rome, Kathmandu

and the San Francisco Bay Area), hurricane (Miami) and floods (Dar es Salaam). Rome,

belonging to the “least concern” family, is the most robust of the five, yet still has cause for con-

cern, as it is near the Mt. Vettore fault in the Apennines, which in Classical and Late Antiquity

caused substantial damage to its buildings and most recently strong earthquakes in 2016 [38].

The San Francisco Bay Area, which is of concern due to its large size / spatial extent, is near

the San Andreas fault system, which is at risk for strong earthquakes and had caused the 1906

San Francisco earthquake and fire. Miami, on the east coast of the United Stats, faces a high

risk of hurricanes, while Dar es Salaam perenially suffers from floods. Finally, Kathmandu lies

within a seismically active region, where ongoing tectonic collision has led to the formation of

the Himalayan belt. As mentioned below, this city, belonging to the “of concern” family in

2014, suffered massive loss of life and property when an earthquake struck in April 2015.

In addition, we have identified the relative contributions of various network properties to

the damage response of road networks. Among these three families we have identified, it is the

second type (characterized by both high base t1:0 and also high susceptibility of the latter to

varying pd) which may offer the most concern, from the disaster relief viewpoint. Road—based

relief efforts within the cities in this cluster are bound to be the most susceptible to the amount

of damage the road network has sustained. Among the metropolitan areas of this type, the San

Francisco Bay Area has the highest purchasing power—adjusted GDP per capita in 2014

($75,382), followed by Seattle ($73,012), Portland ($67,639), Los Angeles ($65,082), and the

cross—border San Diego and Tijuana ($62,295). Of these five areas, all except Portland lie on

the seismically—active Pacific Ring of Fire, with the Bay Area, Los Angeles and San Diego—

Tijuana in the vicinity of the San Andreas fault system; in case of a major earthquake these cit-

ies stand to sustain considerable impacts on life and wealth, and road—based relief efforts

likely to suffer large delays. In such situations, alternatives to land—based relief delivery sys-

tems would be preferable. It must be said, however, that with per—capita GDP in these areas
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being high, the frameworks and infrastructure for these areas may be well—developed, and the

actual impact due to a disaster event may be much less. Of the five mentioned metropolitan

areas, only Seattle has moved out of this “of-concern” grouping as of 2019 data; per-capita

GDP growth between 2014 and 2016 has also been positive except for San Diego area, which

contracted by 0.4% over the same period [36].

In terms of the risk to populations, Kathmandu in Nepal had the highest population density

among the cities of the second type in the 2014 dataset (19,800 persons per square kilometer)

followed by Kabul (17,900), Chongqing (7,700), Athens (6,000) and Bangkok (5,800). Land—

based relief efforts undertaken within these cities would suffer considerable delays in transpor-

tation. With the time window to reach affected populations being limited, more of the latter

stand to lose if these cities are hit. Thus in April and May 2015, when earthquakes devastated

Kathmandu and its environs, the relative remoteness of the area, compounded by the state of

its roads, made transportation very difficult, and contributed to a grave humanitarian crisis.

The 2019 dataset has the following cities of concern with the highest population densities: New

Delhi (12,600 per square kilometer), Baghdad (10,900), Yangon (9,400), Sofia (6,400) and Rio

de Janeiro (6,300), all of which are at risk from a variety of natural disasters such as earth-

quakes and flooding.

Conclusion

In this work we have examined world urban areas at two different points in time (2014 and

2019), according to the response of their road networks to increasing amounts of damage. We

show that a linear damage response behavior of a road network (as opposed to grid or scale-

free idealizations of it) is widespread, and may be universal to city road networks. Thus, we

sought, and are successful, in obtaining a typology of city road networks according to their

damage response characteristics.

Using principal component analysis, we have identified two variables which characterize

the damage response of city road networks: susceptibility and unpredictability. Thus, we are

able to classify the road networks of cities we examined into three families. The majority of the

city road networks belong to the first family, which exhibit low susceptibility (corresponding

to both a low average time to reach all points on the network from a random starting point in

the absence of damage, and a weak response to varying amounts of damage) and low unpre-

dictability of damage response (equivalently, a high degree of consistency of the damage

response to a linear pattern). These road networks thus are resilient to damage, and thus will

facilitate quick deployment of relief efforts and distribution of emergency goods and services

during times of disasters. The second family of city road networks, the vulnerable ones, is char-

acterized by high damage susceptibility and low unpredictability, which makes this family of

particular concern from a disaster response standpoint. For several cities in this family, having

high population densities and already at risk from natural calamities such as earthquakes and

flooding, high susceptibility of road networks to damage presents a complicating factor for

emergency response and rescue efforts. The third, and smallest family of cities contains outli-

ers, of which more information is needed.

Among the network properties we examined, we find that a city road network’s average

shortest path length, hlmini and the average degree, hki are significantly-associated with its

damage susceptibility for both datasets we examined (2014 and 2019), while only hlmini has a

significant association with damage response unpredictability across datasets. Thus, we con-

tend that these two properties, which are proxies for a city’s size (hlmini) and the complexity of

its road network (hki) are the strongest predictors of a road network’s vulnerability to damage.
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Thus, a network-based assessment of a city’s road infrastructure may offer valuable insights

and identify systemic weaknesses—weaknesses which have to be taken into account when

planning for emergency relief. For one city in particular, however, this report could only offer

a post-mortem of sorts: Nepal’s capital Kathmandu had the highest population density among

the vulnerable cities we identified in the 2014 road network dataset, something borne out by

massive loss of life when the country was hit by an earthquake in early 2015.
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