PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Taub S, Pianykh OS (2022) An alternative
to the black box: Strategy learning. PLoS ONE
17(3): €0264485. https://doi.org/10.1371/journal.
pone.0264485

Editor: Diego Oliva, Universidad de Guadalajara,
MEXICO

Received: July 17, 2021
Accepted: February 12, 2022
Published: March 18, 2022

Copyright: © 2022 Taub, Pianykh. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Data used in this
work has been posted with Harvard Dataverse, and
you can be accessed with the following link and
DOI: https://doi.org/10.7910/DVN/CQHRTJ.

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE
An alternative to the black box: Strategy
learning

Simon Taub®', Oleg S. Pianykh®?*

1 Department of Computer Science, University of California, Los Angeles, CA, United States of America,
2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United
States of America

* opiany @ gmail.com

Abstract

In virtually any practical field or application, discovering and implementing near-optimal deci-
sion strategies is essential for achieving desired outcomes. Workflow planning is one of the
most common and important problems of this kind, as sub-optimal decision-making may
create bottlenecks and delays that decrease efficiency and increase costs. Recently,
machine learning has been used to attack this problem, but unfortunately, most proposed
solutions are “black box” algorithms with underlying logic unclear to humans. This makes
them hard to implement and impossible to trust, significantly limiting their practical use. In
this work, we propose an alternative approach: using machine learning to generate optimal,
comprehensible strategies which can be understood and used by humans directly. Through
three common decision-making problems found in scheduling, we demonstrate the imple-
mentation and feasibility of this approach, as well as its great potential to attain near-optimal
results.

1. Introduction

The need for optimal decision-making can be seen in many applied problems, ranging from
operational planning in manufacturing to risk factor management in healthcare and finance
[1-4]. However, in most industries the decision process is still done manually and without
optimal design, and is further aggravated by two principal challenges:

o Process Complexity: Decisions, processors and resources with different properties can be
assigned to each other in many different ways, leading to an exponential number of possible
combinations.

« Variability and Randomness: Natural deviations and random events (such as emergencies
and delays) may disrupt the optimal decision logic, creating long-term bottlenecks and
implementation failures.

This makes many decision-rule-learning problems NP-hard, and their solutions-nontrivial.
As a result, complex optimization techniques have been intensively studied for decades, and
many different algorithms have been developed to find effective solutions. For example, linear
programming [5, 6] can be used to create globally-optimal solutions if their cost and constraint

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022

1/15

https://orcid.org/0000-0002-1880-3165
https://orcid.org/0000-0002-9107-5432
https://doi.org/10.1371/journal.pone.0264485
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264485&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264485&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264485&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264485&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264485&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264485&domain=pdf&date_stamp=2022-03-18
https://doi.org/10.1371/journal.pone.0264485
https://doi.org/10.1371/journal.pone.0264485
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/CQHRTJ

PLOS ONE Discovering optimal strategies with machine learning

functions are linear, while genetic programming [7, 8] and simulated annealing [9, 10] may
not attain globally-optimal results, but can work with non-linear problems.

More recently, machine learning (ML) has also been explored to develop even more effi-
cient rule-learning solvers. Common ML approaches include reinforcement learning [11-17],
in which one or more agents are trained to make task management decisions (both pro-
actively and reactively), and dispatching rules [18, 19], which are often trained with genetic
algorithms to assign priorities to upcoming tasks, typically in real time [20, 21].

However, even though each of these pre-ML and ML approaches have yielded remarkable
results, they share one fundamental limitation: using complex and humanly incomprehensible
“black boxes” (BB), to produce “optimal instance” (OI) solutions. While this approach is wel-
come in many areas of machine learning, it runs into several serious problems when applied to
real-life decision-making:

o Accountability is necessary for many fields where both the solution and the logic behind it
needs to be fully understood and trusted. This is particularly true for industries such as
healthcare, where mistakes can be fatal [22, 23] and training data can be partial or biased (a
flaw that often goes undetected by BBs [12, 24, 25]).

BB implementation and maintenance can be expensive, as they require extensive model (re)train-
ing and complex data interfaces, both of which may not be feasible under many real-world con-
straints. For example, integrating a clinical schedule optimizer or patient risk classifier with the
entire electronic patient record data, in real time, presents a serious challenge on its own. Thus,
the cost of BBs—and Al solutions in general-often becomes prohibitive in dynamic and time-
constrained projects, where constant changes require frequent solution retraining.

“Optimal instance” solutions (Ols) cannot be updated without rerunning them through the
same expensive BB cycle. For example, a BB solution cannot be changed by a human to
accommodate new or unexpected information because the BB decision logic is too complex
and unknown. This renders OIs impractical in most operational environments, where adapt-
ability and speed are imperative.

« Although interpretable models have been used in decision planning before, their primary
focus was on identifying certain attributes of the problem, such as the probability of patient
no-shows and or clinical risks, rather than creating strategies that help make optimal deci-
sions proactively [26-29].

As a result of these challenges, black box “optimal instance” (BB-OI) solvers are hard to
integrate with operational environments, where practitioners frequently need to make critical
decisions under severe time constraints. Moreover, precomputed Ols provide no information
to guide improvements; they can’t be generalized or converted to human knowledge. It is evi-
dent that a different framework is required, one that is flexible enough to survive in a dynamic
environment, and interpretable enough to be used by humans.

Therefore, in this work we would like to propose a new approach, which replaces rigid
black box incomprehensible solution instances with optimal comprehensible strategies (OCS).
By OCS we understand a set of rules, satisfying two major criteria:

o Humanly-comprehensible, which means that the rules can be easily remembered and used by
an average human. As such, the rules should be short, few, and avoiding any complex expres-
sions (therefore reduced to Boolean logic as much as possible).

o Optimal, meaning that for a given rule size or complexity limit (such as a set of Boolean deci-
sions), the rule should produce the best possible result.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 2/15

https://doi.org/10.1371/journal.pone.0264485

PLOS ONE Discovering optimal strategies with machine learning

To discover the optimal rules, we propose to convert the classical “data fitting” ML problem
into a new format of a decision-logic learning ML problem, and then solve this problem with
an exhaustive (i.e., globally-optimal) algorithm. The latter, although associated with exponen-
tial complexity, becomes possible because we are intentionally searching for small-sized deci-
sion rules to ensure comprehensibility. As a result, we learn OCS from the data in a similar
fashion to humans, by converting multiple observations into experience, but we do this much
faster by harnessing the computational power of ML. Finally, we demonstrate the practical
advantages of OCS over the old black box solutions, which include an increase in OCS accu-
racy, adaptivity, and resistance to noise.

In this work, we illustrate our results with scheduling problems, as one of the most typical
and widespread examples of non-trivial decision making. However, the same exact approach
can be applied to any type of decision-making problem, where historical data on decision out-
comes is available or can be simulated.

2. Methods and materials

Optimal scheduling is one of the most common challenges in practical application execution.
One example is patient appointment scheduling, which is known as one of the most inefficient
and expensive parts of the United States’ healthcare system [30, 31]. To study the applicability
of OCS “strategy learning,” we used our experience in healthcare scheduling to consider three
very common types of scheduling problems, in which diverse tasks (jobs) need to be optimally
assigned to a few standard time slots. Matters are further complicated by the presence of noise
(e.g., random deviations from expected task durations). As a result, while each problem state-
ment is easy to understand, their OIs are difficult to compute, especially in the presence of
noise. Instead, we want to solve these problems by discovering their OCS rules, which elimi-
nate the need for the black box Al setups, and enable humans to make optimal decisions “on
the fly”.

The three principal classes of scheduling problems we considered are:

o Problem P1: Scheduling s short tasks (such as 30 minutes) and ! long tasks (such as 60 min-
utes) into uniform timeslots (for example, 45-minute slots). Note that some tasks may take
longer than their slots (such as long tasks in our example), which is commonplace in many
scheduling problems, and creates the need for optimization. In the noise-free case, the opti-
mal solution to P1 is fairly intuitive: alternate between short and long tasks, to remain on
schedule as much as possible, and to minimize wait time. Therefore, we use P1 to compare
the OCS discovered by our approach to this intuitively optimal strategy.

Problem P2: Based on P1, this problem adds a time buffer (penalty) for switching between
different job types. One common example in real life is the time required to reset a device
for performing a different task: for instance, change an MRI scanner coil for a different body
part scan. The buffer incentivizes batch scheduling, when same-type jobs are put together to
save time. This makes P2 more challenging because it subverts the intuitive task-alternating
strategy of P1. It also forces the rule-searching algorithm to perform a priority calculation on
a scale already unattainable for humans.

o Problem P3: Making P2 even more realistic and complicated, P3 should provide up to two
60-minute breaks (one real-life example is mealtimes). Additionally, up to 15 minutes of
each break time can be used to finish the current task if it runs late-resulting in a certain
“break elasticity,” which is very common in real life scenarios.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 3/15

https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

With all three problems, we want to avoid the rigid BB schedule solvers, replacing them
with humanly-comprehensible strategies. These strategies should answer the main question:
given all we know about already scheduled tasks, which task should we schedule next?

2.1. Feature selection

As mentioned earlier, we define an OCS strategy as a set of logical rules, which prescribe the
next optimal decision (step, move) based on currently known information. Therefore, we need
to create a set of features to express this information in the way most manageable for humans.
To do so, we defined a variety of features, which can be easily observed and “computed” by a
human decision-maker in real operational environments. Table 1 describes the main feature
classes we used.

2.2. Schedule cost function

In our work we followed the most common definition of scheduling cost [32]. Every schedule
instance is comprised of n sequential tasks (or jobs). Each job j is assumed to have a certain set
of known properties, such as estimated (expected) duration time d;, and true (observed) com-
pletion time #j.

The cost of a scheduled task sequence can be then evaluated with several standard choices
of cost functions:

o Makespan C,,,,,: The total expected time a schedule requires to be executed [33]:

j=1

« Average Tardiness Ciarainess: The average idle time produced by a given schedule instance:
1 n
Ctardiness = Z Z max (0, dj — tj)
=1

Crardines represents server inefficiency, as longer idle times result in higher staffing and
machinery costs.

Table 1. Main feature classes used to train the OCS algorithm for task-scheduling problems.

Feature Class Description
Task Processing Features that reflect current progress in schedule creation, such as current “Step” number,
Progress which represents the number of tasks that have been processed so far.
Measures of Delay Features that describe current, recent, and imminent delays in task processing. Examples

include “Currently delayed”, which represents whether or not the schedule is currently
delayed, and “Significantly Delayed,” meaning that the schedule will remain delayed for any
choice of the next step (job).

Previous Steps Features that describe the most recent jobs completed, such as “Previous job is. . .” and
“Second-to-Previous job is. . .” Similarly, many other feature classes also use the “second”
descriptor to add additional depth to the information they give.

Remaining Steps Features which describe the jobs that are left to be scheduled, such as “Is a break available”.
Note that such features don’t account for unexpected events.

Comparative Features | Features that involve comparisons of other classes and their values, such as “Previous job is
longer than / shorter than / equal to Second-to-Previous job”.

https://doi.org/10.1371/journal.pone.0264485.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 4/15

https://doi.org/10.1371/journal.pone.0264485.t001
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE Discovering optimal strategies with machine learning

o Maximum lateness Cy,.: The longest delay produced by a given schedule instance:

Clare represents client dissatisfaction, as longer delays waste their time and may create bot-
tlenecks that they are unwilling or unable to tolerate.

In practical applications, it is particularly important to increase job timeliness without
introducing significant idling (for example, to improve client satisfaction without crippling
server efficiency). Therefore, we focus on minimizing both Ci,yiness and Ciar by minimizing
their combined cost:

Coz = (xcmrdiness + (]‘ - a)c 0 <a<]‘

late?

The weight coefficient o defaults to 0.5, but we will briefly discuss the effects of changing o
in the results section.

2.3. Rule-learning scheduling problem formulation

The main goal of our approach was to re-formulate the classical scheduling problem (finding
the optimal schedule instance OI) into a rule-learning scheduling problem (discovering opti-
mal comprehensible rules to build optimal instances OI). To do so, we modeled human sched-
uling behavior, observing k already scheduled tasks, and calculating which task should be
scheduled next to minimize the overall schedule cost.

We illustrate this approach in Fig 1, where a scheduling decision-maker, after making the
first k scheduling assignments, needs to decide between two possible task types, A and B, to be

C(A) — average cost after scheduling
task A as the next task

€ TaskA <7 N
Deciding on the ? o
next best task A JaskA N -
TaskB -
A

| TaskA —» TaskB | ... | TaskB ——»< '
¢ J Y C(B) — average cost after scheduling
‘ : task B as the next task
\ 2% / ‘\ / v N
k tasks scheduled 4 TaskA <7
[r—— A
A TaskB
@) |4 TaskB -
% T
\ %,- A)
S\ @
& %
%) \ =
. % NS
" %
N <
A N
[[[A
A
ML decision L
learning
A

B
Fig 1. Converting scheduling problem into the optimal decision-making ML classification problem.
https://doi.org/10.1371/journal.pone.0264485.g001

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 5/15

https://doi.org/10.1371/journal.pone.0264485.g001
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE Discovering optimal strategies with machine learning

scheduled as the next (k+1)* task, to minimize the predefined cost function. To do so, we need
to consider all possible branching “tails” of remaining tasks, and compute the average cost C
associated with each choice. The task with the lowest-cost tail is then prescribed as the next to
be scheduled (“best decision”). Associating this best next step with the information (features) F
observed from k already scheduled tasks creates a map from the feature space to the best task
choice. Consequently, “learning” this association with ML rule model discovers the best OCS
rules to predict the next best task selection as accurately as possible.

2.4. Model selection

We used the following ML models to learn decision logic from the data described above:

o M1: Exhaustive Decision Tree, which finds the globally-optimal tree by exhaustively search-
ing through all possible trees with the same number of leaves (Fig 2). The advantage of this

global trees = [] # List of all possible decision trees

global tree = Tree() # New instance of a unique decision tree class
global acc = 0 # acc = Accuracy threshold for tree consideration
tree.grow(X, y, n, depth=0) # Recursively generate every potential tree

best_tree = trees[0] # The list will be sorted in the grow() function call

def grow_tree(X, y, n, depth):
X = Input features set
#y = Dictionary of feature classifications
n =Max number of trees kept for evaluation

depth = Counter for tree depth

if depth < max_depth:
Sor feature in X:
Find feature split thresholds
Sor threshold in generate_thresholds(X):
Trains the current decision node
tree.add _node(threshold, y[feature])

Grow the tree on both sides
tree.lefi.grow(X, y, n, acc, depth + 1)

tree.right.grow(X, y, n, acc, depth + 1)

get_acc = determines the percentage of optimal decisions through a sample test
else if get_acc(tree) > acc:

trees.append(iree)

if len(trees) == n:
trees.sort(key = get_acc())
trees = trees[:n/2]

acc = get_acc(trees[-1])

Fig 2. Pseudo code describing the process of generating an exhaustively optimal decision tree. All possible decision
trees of a small size are generated, to select the most accurate tree.

https://doi.org/10.1371/journal.pone.0264485.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 6/15

https://doi.org/10.1371/journal.pone.0264485.g002
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

model is that it always learns the best possible decision strategy. The disadvantage is the high
computational cost.

o M2: Exhaustive Binary Rule Learner, where, similarly to M1, the model exhaustively learns
the best Boolean form of a given complexity (defined as the total number of conjunctions
and disjunctions). Thus, M2 also finds globally-optimal strategies, and fits better into
human-like decision making (“to do or not to do” a certain task); it is also faster than an
exhaustive tree in M1. The disadvantage of M2 is that it can only be used in binary
outcomes.

With no exhaustive solvers readily available, we developed our own versions for the two
models, M1 and M2. Note that even though time-consuming exhaustive learning is very unat-
tractive in general ML problems, it becomes possible and important in OCS learning, where
we need to find only the smallest models (rules) to be easily understood and remembered by
the humans.

2.5. Constraints on interpretability

Our definition of OCS strategies relies on the concept of humanly-comprehensible decision
making, extensively studied in human phycology. According to this research, humans can
only process problems with up to four variables [34] before their underlying logic becomes
incomprehensible. As a result, a decision tree for OCS strategy representation must be limited
by three variables past the root node.

It has also been demonstrated that humans are more efficient when dealing with a few dis-
crete choices rather than continuous variables [35, 36]. Therefore, we intentionally limited
most of our decision features to simple Boolean expressions, such as “is current job delayed?”
instead of “how much is the current job delayed?” (Table 1). In the case of continuous variables
such as “step,” we categorized them by setting simple thresholds. For example, “step > n / 2
jobs” became “more than 50% of jobs scheduled” (“more than half of steps made”).

3. Results and discussion

In this section, we present the principal “strategy learning” results for the three classical sched-
uling problems stated above. For each problem, we created the training set by considering all
possible scheduling sequences, and determining the next optimal task at every step within each
sequence (such that it minimized the overall cost). Then we use globally-optimal ML classifica-
tion learner to discover the best strategy as predicting the optimal task choice (Fig 1). Addi-
tionally, based on our experience with the real scheduling data [37], we used 5% multiplicative
noise to distort the observed task durations ;.

3.1. Problem P1: Mix of long and short tasks

The decision tree in Fig 3 (top) displays the optimal decision-making strategy, discovered by
our exhaustive-tree ML algorithm M1, applied to the baseline problem P1 (scheduling of a mix
of long and short tasks). Interestingly enough, the strategy corresponds to the intuitive solu-
tion of alternating the tasks depending on the current delay, but suggests a more adaptive way
of implementing it, and adds one more optimizing decision split. Thus, the root node is not
“Previous Job is Short” (which may have been expected given the intuitively best strategy of
alternating between short and long tasks), but “Currently Delayed.” In this way the optimal
strategy learns to work with a variety of suboptimal schedules, where previous tasks might
have been scheduled in non-optimal ways (e.g., two long tasks instead of alternating long and

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 7/15

https://doi.org/10.1371/journal.pone.0264485

PLOS ONE Discovering optimal strategies with machine learning

Currently
delayed?

More than f
.oet BNl Short Task
jobs scheduled?
Long Task Short Task
Distribution of C, Scores for P1 solutions: OCS (with 5% Noise) vs Random (no strategy)
1
; 0ocs.
o 08
2 06
&
0.4
0.2
Random
0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
C, score, minutes
Random 1 Strategy

Fig 3. (Top) A simple OCS strategy learned by the ML model for problem P1 with two different job sizes. (Bottom)
Strategy efficiency histogram, comparing the cost C,, of OCS strategy (represented by the decision tree) to random
“strategy-less” scheduling.

https://doi.org/10.1371/journal.pone.0264485.9003

short). Such schedules can only be corrected through the “Currently Delayed” feature, which
focuses on constantly minimizing delay instead of simply alternating.

The second decision split is even more interesting, as it looks at whether more than half of
the tasks were scheduled already. This less trivial optimization ensures that long jobs, which
disrupt the schedule the most, are typically scheduled for the end of a workday, where their
impact on the remaining schedule is minimal. This addition optimization reduced costs by
8%.

To evaluate the overall efficiency of the OCS strategy, we computed a “strategy efficiency
histogram”, showing the probability distribution of each schedule cost C,, for two principal
scenarios: using our OCS strategy represented by the optimal decision tree, and using random
“strategy-less” scheduling. As one can observe in Fig 3 (bottom), the OCS strategy achieves sig-
nificantly better performance: the average OCS schedule cost corresponds to the near-optimal
93" percentile of the overall schedule cost distribution (we will further refer to this metric as
“percentile efficacy”). This means that a human armed with simple and interpretable OCS
decision logic can create highly optimal schedules even in the presence of noisy data and sub-
optimal task assignments. This also means that even the most complex BB solution will
improve this simple OCS strategy only marginally, but at a very high cost.

Since P1 problem was deciding between only two tasks, we also used our exhaustive search
binary model M2 to discover the best Boolean expressions for P1 scheduling rules. The most
powerful strategies learned by the model were to schedule short jobs when (“Currently
Delayed” and “Less Time Spent than Left) and (“Currently Delayed” and “More than 75% of

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 8/15

https://doi.org/10.1371/journal.pone.0264485.g003
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

Jobs Scheduled) rules are met, thus essentially reproducing the logic of the optimal decision
tree M1. Moreover, further increasing the number of variables included in each binary rule
did not yield significantly better results: the average instance percentile for the best combina-
tion of three features was still in the 93" percentile, indicating that the two-feature OCS strat-

egy is nearly optimal.

3.2. Problem P2: Mix of long and short tasks with batching

The optimal comprehensible strategy discovered for to the second scheduling problem P2 is
shown in Fig 4. The strategy is more complex than the baseline P1 solution, largely because the
problem itself is much less intuitive. The need for the buffer necessary for changing equipment
between different tasks subverts the most obvious task-alternating strategy as significantly
increasing the delay. To find a better strategy, the algorithm suggests alternating between cou-
ples of short tasks and then long tasks (e.g. [long] then [short, short] then [long] again-see the
right branch of the decision tree). This cuts down on the delay caused by alternating between
jobs while still trying to keep the overall schedule on time, and one can simplify this logic fur-
ther to: “if the previous two tasks were short, then choose a long job. Otherwise, choose a short
job.” In addition, the threshold for defaulting to long tasks has been extended from “More

More than 75% of
jobs scheduled?

Are we significantly Was previous job
delayed? Short?

SIOTIEES | ShortTask

Long Task y Was second-to-last
job Short?
Ye No
Long Task Short Task
Distribution of C, Scores for P2 solutions: OCS (with 5% Noise) vs Random (no strategy)
g ocs
20.¢
2o
0.4
0.2
Random
0
0 1C 25) C)
Randc Stra C,sc ore, minutes

Fig 4. (Top) OCS strategy learned by M1 for the problem P2 with two different job types and a penalty for switching
between job types. (Bottom) Performance of the OCS strategy compared to the random (no-strategy) scheduling.

https://doi.org/10.1371/journal.pone.0264485.g004

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 9/15

https://doi.org/10.1371/journal.pone.0264485.g004
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

than 50%” of Jobs Scheduled to “More than 75%,” primarily because, with the incentive to
batch similar jobs together, the risk for generating extreme delays is higher. Running our
exhaustive Boolean rule model M2 confirmed the same strategy as identified by the exhaustive
tree model M1.

One may fear that same-task batching, required in the optimal P2 solutions, might make it
more sensitive to noise. Because the threshold for defaulting to long tasks increases from
“more than 50% of jobs” scheduled to “more than 75%,” there is a higher risk that unexpected
events will force the scheduler to start the day with many more short jobs than long ones,
potentially leading to large bottlenecks at the end of the day. However, despite this risk, the
OCS strategy discovered for this problem results in a very efficient 95th-percentile solution
even when significant noise is present, thus resulting in a very robust and highly optimal deci-
sion rules.

3.3. Problem P3: Mix of long and short tasks with breaks

The optimal OCS strategy for the 3-job “brake scheduling” problem P3 is even less trivial, but
surprisingly effective (Fig 5). Similar to P1, the root node for the optimal strategy solution
refers to whether the schedule is significantly delayed (Fig 5, top): if a break is available, then it
can be used to minimize the current delay and potentially change equipment (which includes
a buffer) without increasing the delay further. Otherwise, the algorithm follows the previously

Are we significantly
delayed?

Yes

Is a break Was previous job
available? Short?

Break Short Task Was second-to-last

job not a break?

Was second-to-last
job Short?

Long Task

Short Task
Long Task Short Task

Distribution of C,, Scores for P3 solutions: OCS (with 5% Noise) vs Random (no strategy)

0ocs

Random

0 20 40 60 80 100 120 140 160 180 200

C, score, minutes

Fig 5. (Top) OCS strategy learned for the problem P3 with three different job sizes and a penalty for switching
between task types. (Bottom) Performance of the OCS strategy compared to the random (no-strategy) scheduling.

https://doi.org/10.1371/journal.pone.0264485.g005

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 10/15

https://doi.org/10.1371/journal.pone.0264485.g005
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

shown double-alternating strategy ([long, long], [short, short]), with the feature “Second-to-
Previous Job is Not a Break” used to distinguish between long jobs and breaks (instead of the
more simple “Previous Job is a Long Job”). Interestingly, setting o to 0.75 instead of 0.5 in the
C, equation (to favor the idle time minimization) has a significantly bigger impact on this
problem than others, decreasing efficacy significantly, from 91% to 82%. This is a much larger
shift than in any other problems; this may occur because prioritizing the reduction of idle time
is much more difficult when workers require breaks. Conversely, changing o to 0.25 increases
strategy efficacy beyond the 91 percentile, because it allows algorithm to absorb delays using
a natural “break elasticity” defined in the description of P3.

Even in the presence of 5% noise, schedules generated by the OCS P3 strategy fall, on aver-
age, in the 91%-best percentile of all possible instances, thus still resulting in highly optimal
solutions. This confirms, once again, how ML can be used to discover very efficient, concise,
and comprehensible decision rules, which can be then used by humans to make optimal deci-
sions without “black boxes”.

3.4. The effect of noise

One of the principal benefits of optimal strategy learning, in comparison with the current opti-
mal instance learning, lies in its ability to remain applicable to the suboptimal scenarios, when
the schedule execution may differ from the prescribed. Shorter rules provide a better generali-
zation of what needs to be done to achieve the best goal; and this generalization makes them
more resistant to disruptions.

We illustrate this by studying the effects of noise—as variability in the actual task execution
time-as one of the principal sources of real-life schedule disruption. Fig 6 shows the perfor-
mance of optimal strategies under various levels of noise in the underlying data (horizontal
axis). Percentile efficacy (vertical axis) represents the performance of a given schedule instance
relative to all possible instances; thus, an instance with a percentile efficacy of 73% has cost bet-
ter than 73% of possible schedules, while randomly generated schedule corresponds to 50%.

As one can see, all three optimal strategy models continue to produce significant gains even
when exposed to massive 100% noise. This resistance to noise is likely caused by the fact that
the OCS strategies were trained on noisy data. The ability to incorporate such noise into the
OCS model training represents another advantage of our approach. On one side, adding vari-
ous noisy samples significantly increases the number of training records, and obscures the

Optimal, Random, and Dynamic Performance vs Noise

Al Optimal Comprehensible
~Te Strategies under noise

30 Random (No strategy)

0% 10% 20 30 409 50% 60 70% 80 90 100¢

Noise in the data, %

= Random eeeeee P1:2-Job, no Buffer P2: 2 Job, with Buffer e= = P3:3-Job, with Buffer

Fig 6. The performance of optimal strategies under various levels of noise in the underlying data. Percentile
efficacy represents the performance of a given schedule instance relative to all possible instances.

https://doi.org/10.1371/journal.pone.0264485.g006

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 11/15

https://doi.org/10.1371/journal.pone.0264485.g006
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

Table 2. The relative performance of the CART and exhaustive scheduling algorithms.

Problem Exhaustive tree optimization M1 Greedy tree optimization
P1 93% 91%
P2 95% 87%
P3 91% 81%

https://doi.org/10.1371/journal.pone.0264485.t1002

optimal processing strategy, making it impossible for the human observers to discern. But on
the other side, this challenge can be perfectly handled by ML learning algorithms. By delegat-
ing optimal strategy extraction to the computationally efficient models, we eliminate human
trial and error, and the time it takes to arrive at a similar result.

3.5. The benefits of globally-optimal ML

As described previously, the OCS “comprehensibility” requirement justified the use of exhaus-
tive (globally-optimal) ML models M1 and M2, instead of more conventional, but suboptimal.
“greedy” ML. To evaluate the benefits of this approach, we compared our exhaustive tree-
based model M1 to the standard “greedy” tree classifier algorithm (CART decision tree classi-
fier as implemented in Python [38]):

As one can observe from Table 2, the exhaustive models visibly outperform the greedy, and
this becomes more pronounced as problem complexity increases. Thus, learning the “best pos-
sible” OCS rules can still be done efficiently when the model size is small, resulting in signifi-
cant gains in decision logic quality.

4. Conclusions

The main goal of our work was to demonstrate that in decision-making problems, one can effi-
ciently replace complex, uninterpretable, and hard to maintain “black box” solutions with a
different type of machine learning: Optimal Comprehensible Strategies (OCS). These strategies
help us achieve several principal goals:

« Discover decision rules that can be easily understood and used by humans.

o Learn from the data in a human-like way, yet completely eliminating expensive and risky
human trial-and-error.

o Create stable solutions in the presence of most typical decision disruptors, such as noise or
suboptimal choices.

« Achieve significant decision quality gains at the minimal possible effort.

We demonstrated these properties through a case study with three scheduling problems,
although our OCS approach is completely general and can be applied to other areas requiring
human decision-making (such as healthcare, manufacturing, finance, game theory). We also
explored the natural connection between the OCS and globally-optimal ML models, when
exhaustive searches become very affordable as the model size is reduced.

Although we did not directly compare the effectiveness of BBs and supervised models in
this work, we built upon previous research that had already outlined the trade-oft between the
accuracy and interpretability of machine learning models [22, 39]. It is also important to note
that the OCS considered in our work have produced solutions with higher that 90™ quality
percentiles. As a result, at least in our case study, even if further improvements through BBs
are possible, they will be minor, and will hardly justify the loss of comprehensibility, lack of
adaptiveness, and high implementation cost of black boxes.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 12/15

https://doi.org/10.1371/journal.pone.0264485.t002
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

Thus, we find these results very encouraging, both numerically and conceptually, with great

potential to improve many real-life applications. We firmly believe that using Al to discover
the optimal comprehensible strategies should eliminate expensive human trial-and-error, and
provide the best example of human-computer interaction. OCS can open a new way to convert
data analysis and machine learning into the humanly-interpretable knowledge, which can be
directly applied, understood, and refined to advance our understanding of the world around

us.

Author Contributions
Conceptualization: Oleg S. Pianykh.

Data curation: Simon Taub, Oleg S. Pianykh.

Formal analysis: Simon Taub, Oleg S. Pianykh.

Investigation: Simon Taub, Oleg S. Pianykh.

Methodology: Simon Taub, Oleg S. Pianykh.

Project administration: Oleg S. Pianykh.

Resources: Oleg S. Pianykh.

Software: Simon Taub, Oleg S. Pianykh.

Supervision: Oleg S. Pianykh.

Validation: Simon Taub, Oleg S. Pianykh.

Visualization: Oleg S. Pianykh.

Writing - original draft: Simon Taub, Oleg S. Pianykh.

Writing - review & editing: Simon Taub.

References

1. Parunak H. D., "Characterizing the Manufacturing Scheduling Problem," Journal of Manufacturing Sys-
tems, vol. 10, no. 3, pp. 241-259, 1991.

2. Shen W, "Distributed Manufacturing Scheduling Using Intelligent Agents," IEEE Intelligent Systems,
vol. 17, no. 1, pp. 88-94, 2002.

3. EastonF. F.and Mansour N., "A Distributed Genetic Algorithm for Deterministic and Stochastic Labor
Sheduling Poblems," European Journal of Operational Research, vol. 118, no. 3, pp. 505-523, 1999.

4. Burgy R., Michon-Lacaze H. and Desaulniers G., "Employee Scheduling with Short Demand Perturba-
tions and Extensible Shifts," Omega, vol. 89, pp. 177-192, 2019.

5. "Linear Programming," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Linear
programming. [Accessed 23 11 2020].

6. T.E.o.E.Britannica, "Linear Programming," Encyclopaedia Britannica, 18 7 1998. [Online]. Available:
https://www.britannica.com/science/linear-programming-mathematics. [Accessed 23 11 2020].

7. "Genetic Programming," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Genetic_
programming. [Accessed 23 11 2020].

8. W.L.Hosch, "Genetic Algorithm," Encyclopaedia Britannica, 19 4 2017. [Online]. Available: Encyclopae-
dia Britannica. [Accessed 23 11 2020].

9. Crowe K. A,, "An Evaluation of the Simulated Annealing Algorithm for Solving the Area-Restricted Har-
vest-Scheduling Model Against Optimal Benchmarks," Canadian Journal of Forest Research, vol. 35,
no. 10, pp. 2500-2509, 2011.

10. Dhingra A., "Multi-Objective Flow Shop Scheduling Using Hybrid Simulated Annealing," Measuring

Business Excellence, vol. 14, no. 3, pp. 30—41,2010.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 13/15

https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://www.britannica.com/science/linear-programming-mathematics
https://en.wikipedia.org/wiki/Genetic_programming
https://en.wikipedia.org/wiki/Genetic_programming
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Taveira-Gomes T. S. d. M., "Reinforcement Learning for Primary Care Appointment Scheduling," Facul-
dade de Engenharia da Universidade do Porto, 2017.

Samorani M. and Blount L. G., "Machine Learning and Medical Appointment Scheduling: Creating and
Perpetuating Inequalities in Access to Health Care," American Journal of Public Health, vol. 110, no.
4, pp. 440-441, 2020. https://doi.org/10.2105/AJPH.2020.305570 PMID: 32159974

G. Koulinas, A. Xanthopoulos, A. Kiatipis and D. Koulouriotis, "A Summary Of Using Reinforcement
Learning Strategies For Treating Project And Production Management Problems," in International Con-
ference on Digital Information Management (ICDIM), 2018.

Cai Q., Hang W., Mirhoseini A., Tucker G., Wang J. and Wei W., "Reinforcement Learning Driven Heu-
ristic Optimization," ArXiv, 2019.

Gabel T. and Riedmiller M., "Adaptive Reactive Job-Shop Scheduling with Reinforcement Learning
Agents," International Journal of Information Technology and Intelligent Computing, 2008.

Liang S., Yang Z., Jin F. and Chen Y., "Data Centers Job Scheduling with Deep Reinforcement Learn-
ing," Advances in Knowledge Discovery and Data Mining, vol. 12085, pp. 906-917, 2020.

S. U. S. U. Shuhui Qu Center for Sustainable Development & Global Competitiveness, T. Chu, J.
Wang, J. Leckie and W. Jian, "A Centralized Reinforcement Learning Approach for Proactive Schedul-
ing in Manufacturing," in International Conference on Emerging Technologies and Factory Automation
(ETFA), 2015.

Nguyen S., Mei Y. and Zhang M., "Genetic Programming For Production Scheduling: a Survey with a
Unified Framework," Complex & Intelligent Systems, vol. 3, p. 41-66, 2017.

Nguyen S., Zhang M., Johnston M. and Tan K. C., "A Computational Study of Representations in
Genetic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem," IEEE Trans-
actions on Evolutionary Computation, vol. 17, no. 5, pp. 621-639, 2012.

Nguyen S., Zhang M., Johnston M. and Tan K. C., "Automatic Design of Scheduling Policies for
Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming,"
IEEE Transactions on Evolutionary Computation, vol. 18, no. 2, pp. 193-208, 2014.

Yin W.-J., Liu M. and Wu C., "Learning Single-Machine Scheduling Heuristics Subject to Machine
Breakdowns with Genetic Programming," in The 2003 Congress on Evolutionary Computation, 2003.

Rudin C., "Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use
Interpretable Models Instead," Nature Machine Intelligence, vol. 1, p. 206—215, 2019.

Barnes M. R., Bruce I. N., Floridi L., Griffiths C. E., Krutzinna J., Mclnnes |. B. et al., "Clinical Applica-
tions of Machine Learning Algorithms: Beyond the Black Box," The BMJ, vol. 364, no. 8191, 2019.
https://doi.org/10.1136/bm;.1886 PMID: 30862612

Datta A., Tschantz M. C. and Datta A., "Automated Experiments on Ad Privacy Settings," Proceedings
on Privacy Enhancing Technologies, no. 1, pp. 91-112, 2015.

Buolamwini J. and Gebru T., "Gender Shades: Intersectional Accuracy Disparities in Commercial Gen-
der Classification," Proceedings of Machine Learning Research, vol. 81, pp. 1-15,2018.

Bollerman T. J., Curtis C., Liu C. and Pianykh O. S., "Machine Learning for Predicting Patient Wait
Times and Appointment Delays," Journal of the American College of Radiology, vol. 15, no.9, pp.
1310-1316, 2017. https://doi.org/10.1016/j.jacr.2017.08.021 PMID: 29079248

Coyne S., Denney J. and Rafigi S., "Machine Learning Predictions of No-Show Appointments in a Pri-
mary Care Setting," SMU Data Science Review, vol. 2, no. 1,2019.

Chiang M. F., Goldstein |. H., Hribar M. R., Lin W.-C. and Sanders D. S., "Predicting Wait Times in Pedi-
atric Ophthalmology Outpatient Clinic Using Machine Learning," in AMIA Annual Symposium Proceed-
ings, 2020. PMID: 32308909

Ravindran A. R. and Srinivas S., "Optimizing Outpatient Appointment System using Machine Learning
Algorithms and Scheduling Rules: A Prescriptive Analytics Framework," Expert Systems with Applica-
tions, vol. 102, pp. 245-261, 2018.

Parekh N., Rogstad T. L. and Shrank W. H., "Waste in the US Health Care System Estimated Costs
and Potential for Savings," JAMA Network Open, vol. 322, no. 15, p. 1501-1509, 2019. https://doi.org/
10.1001/jama.2019.13978 PMID: 31589283

Gier J., "Missed Appointments Cost the U.S. Healthcare System $150B Each Year," Healthcare Innova-
tion, 2017.

R. L. Graham, E. L. Lawler, J. Lenstra and A. Rinnooy Kan, "Survey, Optimization and Approximation in
Deterministic Sequencing and Scheduling: a," in Proceedings of the Advanced Research Institute on
Discrete Optimization and Systems Applications of the Systems Science Panel of NATO and of the Dis-
crete Optimization Symposium, 1979.

"Makespan," [Online]. Available: https://en.wikipedia.org/wiki/Makespan

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 14/15

https://doi.org/10.2105/AJPH.2020.305570
http://www.ncbi.nlm.nih.gov/pubmed/32159974
https://doi.org/10.1136/bmj.l886
http://www.ncbi.nlm.nih.gov/pubmed/30862612
https://doi.org/10.1016/j.jacr.2017.08.021
http://www.ncbi.nlm.nih.gov/pubmed/29079248
http://www.ncbi.nlm.nih.gov/pubmed/32308909
https://doi.org/10.1001/jama.2019.13978
https://doi.org/10.1001/jama.2019.13978
http://www.ncbi.nlm.nih.gov/pubmed/31589283
https://en.wikipedia.org/wiki/Makespan
https://doi.org/10.1371/journal.pone.0264485

PLOS ONE

Discovering optimal strategies with machine learning

34.

35.

36.

37.

38.

39.

Halford G. S., Baker R., McCredden J. E. and Bain J. D., "How Many Variables Can Humans Process?,"
Psychological Science, vol. 16, no. 1, pp. 70-76, 2005. https://doi.org/10.1111/j.0956-7976.2005.
00782.x PMID: 15660854

Quinlan J., "Decision Trees and Decision-making," IEEE Transactions on Systems, Man, and Cybernet-
ics, vol. 20, no. 2, pp. 339-346, 1990.

Catlett J., "On Changing Continuous Attributes Into Ordered Discrete Attributes," Lecture Notes in Com-
puter Science, vol. 482, 2005.

Rosenthal D. and Pianykh O. S., Efficient radiology: How to optimize radiology operations, Springer,
2021.

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., et al., "Scikit-learn: Machine
Learning in Python," Journal of machine learning research, vol. 10, no. 12, pp. 2825-2830, 2011.

Tollenaar N. and Heijden P. G., "Which Method Predicts Recidivism Best?: A Comparison of Statistical,
Machine Learning and Data Mining Predictive Models," Journal of the Royal Statistical Society: Series
A (Statistics in Society), vol. 176, 2012.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264485 March 18, 2022 15/15

https://doi.org/10.1111/j.0956-7976.2005.00782.x
https://doi.org/10.1111/j.0956-7976.2005.00782.x
http://www.ncbi.nlm.nih.gov/pubmed/15660854
https://doi.org/10.1371/journal.pone.0264485

