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Abstract

Product category management (PCM) plays a pivotal role in today’s large stores. PCM man-

ages to answer questions such as assortment planning (AP) and shelf space allocation

(SSA). AP problem seeks to determine a list of products and suppliers, while SSA problem

tries to design the layout of the selected products in the available shelf space. These prob-

lems aim to maximize the retailer sales under different constraints, such as limited purchas-

ing budget, limited space of classes for displaying the products, and having at least a certain

number of suppliers. This paper makes an attempt to develop an integrated mathematical

model to optimize integrated AP, SSA, and inventory control problem for the perishable

products. The objective of the model is to maximize the sales and retail profit, considering

the costs of supplier contracting/selecting and ordering, assortment planning, holding, and

procurement cost. GAMS BARON solver is hired to solve the proposed model in small and

medium scales. However, because the problem is NP-hard, an evolutionary genetic algo-

rithm (GA), and an efficient local search vibration damping optimization (VDO) algorithm are

proposed. A real case study is considered to evaluate the effectiveness and capabilities of

the model. Besides, some test problems of different sizes are generated and solved by the

proposed metaheuristic solvers to confirm the efficient performance of proposed algorithms

in solving large-scale instances.

1. Introduction

Assortment planning (AP), inventory management, and shelf-space allocation are the most

basic duties in retailing. Retailers have to decide on the set of products to carry in their assort-

ment, the amount of inventory to stock for each product, and the amount of shelf-space dedi-

cated to each product. They determine these variables such that their sales or total revenue is

maximized under a limited purchasing budget, limited holding space, limited space for dis-

playing the products, and other miscellaneous constraints like having at least two suppliers for

each product [1]. Of course, they should periodically revise their assortment because of the
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season change, the introduction of new products, the change in consumer taste, etc.; conse-

quently, they are continuously engaged in AP.

Obviously, in today’s industrial world, given the increasing diversity of inventory control

characteristics, inventory assortment planning seems necessary [2]. Traditional indicators are

not able to meet all the needs of the organization’s inventory control system, and it is possible

that new assortment planning indicators will be used with the help of the organization. There-

fore, criteria such as consumption rate, inventory costs, etc., are more important. Today, the

debate over inventory management and the creation of appropriate inventory control systems

for all organizations has become a major challenge, and this highlights the need for research in

this area [3]. On the other hand, today, a large percentage of the total capital of organizations

is inventory. In developed and developing countries, the capital held in inventories at any

given time is very high, so the lack of control and inventory control system and proper assort-

ment planning creates many problems for organizations, some of which are: all Organizations

are faced with inventory-related costs such as maintenance costs, ordering, shortages, etc. The

lack of a proper inventory control system can increase any of these costs. In some organiza-

tions, a shortage of inventory may cause the production process to stop, and the organization

may face the problem of not delivering the product to customers on time and thus increase the

cost of shortage. In some cases, the organization may face an excessive increase in inventory,

which in this case also increases the cost of maintaining inventory; so in both cases, the lack of

inventory control system and proper shelf space allocation will have negative effects on the

profits of organizations [4].

Since a substantial part of customers’ decisions is made at the point of sale (where only one-

third of the purchasing is the result of previous planning [5], a retailer should understand how

shelf-space decisions and better display of items in the store affect the purchasing behavior

and demand for a product [6, 7]. The more shelf space the retailer allocates to a product, the

more visible it will be, and consequently, the more demand it will face. This behavior shows

the space elasticity of the demand [8, 9]. The retailers are now fully aware that the availability

of the right products has a drastic effect on customer satisfaction, and an optimized assortment

can guarantee their superior position in the market. Through the right assortment and proper

display of the products, retailers can further improve their performance by directing customers

to have unwanted purchases or buy items with a high margin of profit [10]. However, the

retailers’ shelf space is limited, especially nowadays, where the diversity of products has

increased considerably. This increasing number of products, limited shelf space, narrow retail

margins, and intensified competition have substantially promoted the position of the assort-

ment and shelf-space planning [11].

An important parameter that significantly affects the modeling of the assortment problem

is substitution. When customers do not find their favorite product, they may substitute it with

another similar product [1, 2]. The willingness of customers to substitute a product with a sim-

ilar one within its category is an important factor in AP; when there is the willingness to substi-

tute a product, providing a great deal of inventory for that product is not so critical [12].

Another fundamental concern in AP is supplier selection. Selecting a good set of suppliers to

collaborate with is crucial to the retailer’s success. In this regard, understanding the expecta-

tions and purchasing behaviors of customers can be helpful. Generating a rich diversity in the

range of products increases customer satisfaction but, on the other hand, leads to more opera-

tional costs. Thus, the right assortment should make a tradeoff between these two factors [13].

All of the aforementioned materials take on added importance when it comes to perishable

products. A commodity is perishable if it is subject to deterioration in quality or quantity [14].

In dealing with perishable products, shelf-life plays an important role. Shelf life is the length of

time an item can remain salable on a retailer’s shelf and reflects its marketable life [15].
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Generally, retailers consider dynamic pricing, planning, and inventory control models for per-

ishable products.

As was said, assortment planning, space allocation, inventory management, and supplier

selection are the most important decisions made by retailers. Many previous studies have

addressed these decisions but not in an integrated manner. These determining parameters are

interdependent, and certainly, a model that considers them simultaneously can provide a

more workable and reliable solution. Accordingly, this paper develops an integrated mathe-

matical model for assortment planning, supplier selection, space allocation, and inventory

management of perishable products, in which the demand for a product depends on the

amount of space allocated to it. Besides, this model accounts for substitution.

The remaining of this research is organized as follows. Section 2 reviews the literature, and

Section 3 provides the statement of the problem and illustrates the modeling and research

assumptions. Section 4 presents the solving algorithm, with a detailed description of the

genetic operators. Section 5 provides the computational results and sensitivity analysis. Finally,

Section 6 concludes the paper.

2. Literature review

Retail store operations have been of interest in the previous two decades [16, 17]. In a review

paper by Mou, Robb, and DeHoratius, the related published works were categorized into

seven groups in terms of decisions they focused on, including demand forecasting, assortment

planning, and inventory management. Reviewing the works published up to 2016, they

reported that only a few papers addressed more than one area, with an average of 1.1 areas for

each paper. After that, however, researchers usually have addressed these decision areas jointly

to provide more reliable solutions [18]. We review in this section such works.

Kök and Fisher investigated an AP problem under substitution. To determine the best

assortment, they provided an algorithmic process that first specified the substitution behavior

and demand for each product and then solved the AP problem using an iterative optimization

heuristic [12]. In a more comprehensive model, Yücel et al. took into account demand substi-

tution, supplier selection, and shelf space limitations. To demonstrate the performance of their

proposed model, they developed three modified models, each of which ignored one of the

three mentioned factors. As was expected, the results showed that ignoring each of these deter-

mining factors might result in inefficient assortments [13]. Honhon, Gaur, and Seshadri deter-

mined the optimal assortment and inventory levels for a given set of products with varying

prices and costs and stochastic demand. They also considered customer preferences and mod-

eled by defining customer types, that determines an ordered ranking of potential products

[19]. Tan and Karabati investigated inventory management problem under demand substitu-

tion. They assumed that the substitution is made only once, and the demand is lost when the

second-choice product is not available [20]. Boada-Collado and Martı́nez-de-Albéniz investi-

gated the impact of inventory on the choices of the customers for a fashion retailer. Knowing

how inventory level affects the choices can help the retailer in adjusting its inventory to have

the maximum sales or profits [21].

Sainathan addressed pricing and inventory management for a perishable product with two-

period shelf life: in the first period, it is a new product and in the second one, it is considered

as “old”. The retailer should determine the price for each period and the order quantity for the

new product [22]. Piramuthu and Zhou assumed that how the products are handled in transit

and during storage affects the shelf life of perishable products, and established a direct relation-

ship between the demand of a product and its allocated space and quality. To track the quality

of the products, they used the information provided by RFID technology. Regarding the
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characteristics of new business trends making demand prediction more difficult, which in

turn complicates AP [23], Talebian, Boland, and Savelsbergh proposed a stochastic dynamic

programming model that simultaneously made assortment and pricing decisions. They inves-

tigated the effect of demand learning on retailers’ profitability [24]. Azadi, Eksioglu, Eksioglu,

and Palak addressed the inventory management and pricing of perishable products. Implying

that good pricing can help retailers in reducing waste and increasing profitability, they pro-

posed a two-stage stochastic optimization model for supplier selection, replenishment schedul-

ing, and price markdown planning [25].

Hariga, Al-Ahmari, and Mohamed presented a mathematical model for AP and shelf space

allocation. Considering shelf space and backroom storage constraints, they modeled this prob-

lem as a mixed-integer non-linear program. They also considered the impact of display loca-

tion on the demand. The product assortment, display locations, order quantities, and allocated

shelf space were the decision variables of their integrated model [26]. A. Hübner and Schaal

included substitution and space-elasticity effects in their optimization model. The substitution

was for products that were out-of-assortment or out-of-stock. They developed a specialized

heuristic method that could efficiently provide near-optimal solutions and outperform the

alternative approaches that sequentially planned the assortment and shelf space [8]. Flamand,

Ghoniem, Haouari, & Maddah assumed that in addition to the attractiveness of shelf segments,

the profitability of product categories, their expected demands, and their impulse purchase

potential are also determinant of the obtained profit. To solve the developed model, they pro-

posed a mixed-integer programming model [27]. Reisi, Gabriel, and Fahimnia presented a bi-

level model for optimizing the shelf-allocation and pricing problems for a supply chain net-

work consisting of two manufacturers at the top level and a common retailer at the bottom

level. They provided a closed-form approximate solution to the lower-level problem to deter-

mine the retail prices and allocated spaces. Then, to maximize the manufacturers’ profit, they

incorporated this solution into the objective function of the top-level problem. The sensitivity

analysis revealed that price and shelf space are critical in increasing the manufacturers’ profit

[28]. Karki, Guthrie, and Parikh addressed the tradeoffs between the benefits of an appropriate

rack layout and product placement and the costs associated with floor space and restocking.

They developed a model that jointly determines rack decisions and product decisions [29].

Kim & Moon presented a mixed-integer non-linear programming (MINLP) model for

shelf-space allocation with product selection and replenishment decisions to maximize the

retailer’s profit. They considered space and cross-space elasticities and positioning effects on

each product demand. They proposed tabu search and genetic algorithms to solve the problem

[2].

To summarize, assortment planning, space allocation, inventory management, and supplier

selection are the most important decisions retailers make, and they are closely related to each

other. Demand substitution, space-elasticity demand, and product perishability make these

decisions more complicated in the real world [30, 31]. To the best of our knowledge, no studies

in the literature have considered all these aspects together. In this way, this paper develops an

integrated mix-integer non-linear mathematical model for assortment planning, supplier

selection, shelf space allocation, and inventory management. The proposed model considers

space elasticity and substitution behavior of customers.

In contrast, in most studies conducted, this study considers perishable products and perish-

ability costs for the retailer. The nonlinearity of the demand function makes the problem a

mixed-integer non-linear model. GAMS BARON solver is hired to solve the proposed model

in small and medium scales. An evolutionary genetic algorithm (GA) and an efficient local

search vibration-damping optimization (VDO) algorithm are proposed for large-scale

problems.
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3. Problem statement and formulation

In this section, we first describe the problem in detail, and then, propose a methodical optimi-

zation model to solve it.

3.1. Problem statement

Assortment planning is implied to the set of decisions for products carried in each store at

each point in time. The target of assortment planning optimization is to determine an assort-

ment that maximizes sales or gross subject to various constraints, such as a limited budget for

purchase of products, limited shelf space for displaying products, and a variety of multiple con-

straints such as a desire to have at least two vendors for each type of product.

Shelf-space mathematical models optimize the number of facings for items with space-elas-

tic demand to be allocated to limited shelf space. Respective approaches aid retailers in dealing

with the trade-off between more shelf space (and thus demand enhancement due to a higher

number of facings) for specific items and less available space (and therefore demand decreases

due to a lower number of facings) for other products.

Multi-item inventory problems are also highly relevant to the assortment planning prob-

lem. The inventory management of multiple products under shelf space limitations or budget

constraints can be a critical issue that needs consideration.

Assortment, shelf-space allocation, inventory management, and supplier selection are

among the most important decisions in retailing. While each one of these decisions affects the

optimal value of the others, previous models have not addressed them integratedly. Accord-

ingly, we develop a model that simultaneously addresses these factors. This model also consid-

ers the effect of inventory and display on demand for the products. The problem can be

described as follows:

We have a retailer selling the products through a physical channel. The customers assess the

product and buy it if it is available in the store, or they leave the store without buying if it is

unavailable or undesirable. The demand for a product is a function of its inventory and the

space in which it is displayed. The retailer is also involved in selecting the appropriate suppliers

who can provide the products with desirable requirements. The problem deals with perishable

products with a limited and fixed lifetime; when they reach the end of their life, they perish,

and the retailer incurs the perishability cost. Considering these, we formulate a mathematical

optimization model aiming at maximizing the sales and the retailer’s profit.

This model considers these assumptions:

• The customers’ demand for a product depends on the space considered for its display.

• In case of not finding the desired product, a part of the customers substitutes another

product.

• The shelf space for the product assortment and display is limited.

• The costs of supplier selection, fixed cost of ordering, assortment, purchase, transport, sub-

stitution, perishability, and not satisfying the demand are included.

• The products are perishable with a limited and fixed lifetime beyond which the retailer

incurs the perishability cost.

3.2. Proposed mathematical model

In this section, mathematical modeling along with its assumptions is described.
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Sets:

symbol Definition

i Index of the product number

j Index of supplier number

k Index of the substituted product number

t Index of time

g Index of product lifetime

N Set of available products;N ¼ f1; 2; . . . ; i; . . . k; . . . ; Ig

M Set of suppliers;M ¼ f1; 2; . . . ; j; . . . ; Jg

Gi Set of lifetimes of product i;G ¼ f1; 2; . . . ; g; . . . ;Gig

T Planning horizon

Parameters:

symbol Definition

Wik Percentage of customers who choose product k if product i is not available

Ci Unit cost of buying and transporting product i

OCj Fixed cost of ordering from supplier j

SSCj Selecting cost of supplier j

dnormit Normal=usual demand for product i at time t

S Total shelf space available

aij The binary parameter is 1 if product i is supplied by the supplier j; otherwise it is zero:

hi Unit holding cost for product i

V0g
i Initial amount of product i with lifetime g at the store

bri The width of each unit of producti in the selected display

bi spatial elasticity of product i

Pi Sales price of each unit of product i

Gi Maximum lifetime of product i

sk Penalty cost of substitution for product k

ai Unit cost of destroying product i

di Maximum number of product i in each allocated display

lci Unit cost of non � responding to the demand of product i

Wik Percentage of customers who choose product k if product i is not available

Ci Unit cost of buying and transporting product i

OCj Fixed cost of ordering from supplier j

PLOS ONE An integrated optimization model for retail category management of perishable products: A real application

PLOS ONE | https://doi.org/10.1371/journal.pone.0264186 March 8, 2022 6 / 30

https://doi.org/10.1371/journal.pone.0264186


Decision variables:

symbol Definition

yi Binary variable : it is 1 if product i is chosen; otherwise; it is 0:

yyti Binary variable : it is 1 if product i is present in period t; otherwise; it is 0:

ojt Binary variable : it is 1 if supplier j is ordered at time t; otherwise; it is 0:

zj Binary variable : it is 1 if supplier j is chosen; otherwise; it is 0:

xt
i Required amount of product i at time t

mg
ikt Amount of product i with lifetime g allocated to the demand of product k at time t

Vg
it Amount of inventory of product i with lifetime g at the end of period t

fit Number of displays that can be allocated to product i at time t

dt
i Total demand for product i at time t

qit Unsatisfied demand for product i at time t

MAX TP ¼ TR � TCO � TCSS � TCP � TCI � TCS � TCU � TCLS ð1Þ

TR ¼
X

i2I

X

k2K

X

g2Gi

X

t2T

pi:ðm
g
iktÞ ð2Þ

TCO ¼
X

j2J

X

t2T

ocj:ojt ð3Þ

TCSS ¼
X

j2J

sscj:zj ð4Þ

TCP ¼
X

i2I

X

t2T

ci:xit ð5Þ

TCI ¼
X

i2I

X

g2Gi

X

t2T

Vg
it

2
:hi ð6Þ

TCS ¼
X

i6¼k2I

X

k2K

X

g2Gi

X

t2T

mg
ikt:sk ð7Þ

TCU ¼
X

i2I

X

t2T

ðci þ aiÞV
G
it ð8Þ

TCLS ¼
X

i2I

X

t2T

lci:qit ð9Þ
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s.t:

zj � aij:yi 8j; i ð10Þ

Vg
it ¼ Vg� 1

iðt� 1Þ �
X

k2K

msg
ikt 8i; 8g 2 Gi; g � 2; 8t ð11Þ

Vg
it ¼ xit �

X

k2K

msg
ikt 8i; 8g 2 Gi; g ¼ 1; 8t ð12Þ

Vg
it ¼ V0g

i 8i; 8g; t ¼ 0 ð13Þ

X

i2I

X

g2Gi

ðmg
iktÞ þ qkt ¼ dkt 8k; 8t ð14Þ

X

g2Gi

mg
ikt � ðdkt �

X

g2Gi

X

i¼k2I

mg
iktÞwik 8i; 8k 6¼ i; 8t ð15Þ

X

i2I

fit:bri � S 8t ð16Þ

dit ¼ dnormitð1 � yyitÞ þ dnormitðfit:briÞ
b
8i; t ð17Þ

X

g2Gi

ðVg
it þ xit þ Vg

iðt� 1ÞÞ

2di
¼ fit 8i; t ð18Þ

X

t2T

ojt � M:zj 8j ð19Þ

X

t2T

xit � M:yi 8i ð20Þ

X

t2T

xit � yi 8i ð21Þ

xit:aij � M:ojt 8i; j; t ð22Þ

fit � Myyit 8i; t ð23Þ

fit � yyit 8i; t ð24Þ

mg
ikt; v

g
it; fit; dit; xit � 0 8i; g; k;m; t ð25Þ

ojt; zj; yi; yyit ¼ f0; 1g 8i; t ð26Þ

The objective function in Eq (1) represents the profit of operations during the period under

study. Eq (2) calculate sales income, it should be noted in cases i = k it consider the direct sale

of product i and in cases i6¼k consider the sale of product i that is allocated to the demand of
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product k, (3)–(9) show respectively the amount of fixed cost of ordering, cost of supplier

selection, purchase costs, average inventory holding costs, penalty cost for substituting another

product instead of the desired product, cost incurred due to the expired date and the corrup-

tion of the product, and penalty cost of not responding to the demands.

Where supplier selection costs explain contract registration costs and ordering costs show

supplying products costs from a specific supplier. Another hand, the penalty cost for substitut-

ing is a cost based on creating customer distrust. The penalty cost of not responding to the

demands represents demand loss cost.

Constraint (10) refers to the allocation of products to the supplier (displaying which suppli-

ers supply what products). Constraints (11) to (13) show the inventory capacity and its transfer

to subsequent periods. Constraint (14) ensures that the demand can be satisfied as much as the

inventory (there is no possibility of allocating more than the inventory to the demand).

Constraint (15) shows the substitution constraint for the desired product: if product k is

not selected, its demand is responded by another product according to the substitution matrix

at the first level. This constraint ensures that the amount of product i used for satisfying the

demand for k (based on the substitution matrix) is less than the unsatisfied demand for k

(inventory of k in each period is subtracted from its demand).

Constraint (16) is the shelf space constraint. Constraint (17) is the dependence of the prod-

uct demand on the display allocated to that product. Constraint (18) calculates the average

amount of product displayed in each period. Constraints (19)–(22) ensure the product selec-

tion and supplier selection if it’s ordered. Constraint (23) and (24) ensure the product have a

face if it’s presented in each period. Constraints (25) and (26) also specify the type of decision

variables.

4. Metaheuristic solution approaches

Due to including large-scale binary programming, assortment planning (AP) and shelf space

allocation (SSA) is an NP-hard problem [1, 27, 32]. Therefore, it is obvious that the integrated

AP-SSA problem with the inventory control problem of this study is an NP-hard problem.

Therefore, to solve the problem in large-scale instances, we propose two metaheuristic solvers,

one of which is a population-based genetic algorithm (GA) and the other is single-based local

search vibration-damping optimization (VDO).

To apply the proposed GA and VDO methods, in the following, we firstly explain solution

encoding and decoding strategy, initial solution generating mechanism, and neighborhood

search operators, and then, we provide the flowchart of the metaheuristic solution method.

4.1. Solution encoding/decoding and fitness

For solution representation, we consider a seven-part structure including 1) a vector of size N

for product selection, 2) a vector of size M for supplier selection, 3) a matrix of size N�T for the

ordering period of each product, 4) a matrix of size N�T for the ordering amount of each prod-

uct in the order period, 5) a matrix of size N�M for the fraction of each product order allocated

to the suppliers, 6) a vector of size N for the space allocated to each selected product, and

finally, 7) a matrix of size N�G�T for the amount of product supply/sales in each lifetime to sat-

isfy demand in each period. It is necessary to explain that variables such as shortage, inventory,

and substitution rate are functions of the above decisions and product demand.

Part 1) A vector (named P1) of size N for product selection. This vector includes continuous

real numbers between 0 and 1. The numbers are rounded, and then the products corre-

sponding to the values 1 on vector cells are selected (See part 1 of Fig 1).
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Part 2) A vector (named P2) of size M for supplier selection. This vector includes continuous

real numbers between 0 and 1. The numbers are rounded, and then the suppliers corre-

sponding to the values 1 on vector cells are selected (See part 2 of Fig 1).

Part 3) A matrix (named P3) of size N�T for the product ordering periods. This matrix

includes continuous real numbers between 0 and 1. For each raw (product), the numbers

Fig 1. The proposed solution encoding and decoding to apply the metaheuristic search.

https://doi.org/10.1371/journal.pone.0264186.g001
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are rounded and then, the column (period) with values 1 are considered as ordering periods

(See part 3 of Fig 1). Note that if a cell of the vector P1 is 0, the corresponding value in rows

of this matrix is also 0.

Part 4) A matrix (named P4) of size N�T for the products’ economic order at the ordering peri-

ods. This matrix includes positive real numbers limited by shelf space capacity (See part 4

of Fig 1). Note that if a cell of matrix P3 is 0, the corresponding value in matrix P4 is also 0.

Part 5) A matrix (named P5) of size N�M for order allocation to the selected suppliers. This

matrix includes continuous real numbers between 0 and 1, where the sum of values in each

row of this matrix is equal to 1 (See part 5 of Fig 1). Note that if a cell of matrix P1 or P3 is

0, the corresponding row and column in matrix P5 are also 0.

Part 6) A vector (named P6) of size N for the space allocated to each selected product. This vec-

tor includes continuous real numbers between 0 and 1, where the sum of vector cells is

equal to 1 (See part 6 of Fig 1). Note that if a cell of vector P1 is 0, the corresponding value

in vector P6 is also 0.

Part 7) A matrix of size N�G�T for determining the amount of product supply/sale rate in each

lifetime. Each row of this matrix includes continuous real numbers between 0 and 1, where

their sum is equal to 1. In this matrix, we define G as the maximum of Gi concerning all

products or G = T (See part 7 of Fig 1). Note that if a cell of vector P1 is 0, the corresponding

value in this matrix is also 0. It is obvious that the sale of a product with a life bigger than Gi

is equal to 0 because the product deteriorates.

After encoding (See Fig 2), we first determine the value of decision variables such as prod-

uct selection, supplier selection and order allocation, shelf space allocation, ordering period

and quantity, etc., and then with the consideration of active demand and product availability,

the dependent variables such as product substitution are determined to reduce shortage vari-

ables. Finally, the inventory level of all products without demand and the objective function

value are determined. In other words, fitness evaluation can be calculated by the following

procedure:

Step 1) Do encoding.

Step 2) Find the value of the decision-making variables as Fig 2.

Step 3) Calculate the objective function value, temporally.

Step 4) Check the constraint satisfaction.

If it is possible, reduce their violation and shortage using the dependent vari-

ables such as substitution and product inventory.

Else, add shortage cost to the objective function.

Step 5) Calculate the inverse value of the final objective function as the fitness of the solu-

tion (Note that the objective function is cost minimization).

4.2. Initial solution generation

To generate the initial solution, the cells of matrixes and vectors P1, P2, . . ., P7 are filled ran-

domly in their authorized ranges. Note that we repair some vectors or matrixes if some
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constraint be violated. For example, the summation of the cells in vector P6 should be equal 1,

and if a cell of vector P1 is 0, the corresponding value in this vector should also be 0.

4.3. Neighborhood searching

Since we used continuous representation in the proposed encoding, we apply linear convex

neighborhood search operators� and⊛ as crossover (globally) and mutation (locally) search

Fig 2. The flowchart of the proposed GA solver in solving the problem.

https://doi.org/10.1371/journal.pone.0264186.g002
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strategies. For each part of the seven-part solution structure, we define these operators as fol-

low:

P1ðiÞ � P2ðiÞ ¼ nP1ðiÞ þ ð1 � nÞ P2ðiÞ j v ¼ randomð0; 1Þ; i ¼ 1; 2; . . . ; 7

⊛P1ðiÞ ¼ ð1þ sÞP1ðiÞ j s ¼ randomð� 0:1; 0:1Þ; i ¼ 1; 2; . . . ; 7

P1ðiÞ � P2ðiÞ ¼ ð1 � nÞP1ðiÞ þ n P2ðiÞ j v ¼ randomð0; 1Þ; i ¼ 1; 2; . . . ; 7

⊛P2ðiÞ ¼ ð1þ sÞP2ðiÞ j s ¼ randomð� 0:1; 0:1Þ; i ¼ 1; 2; . . . ; 7

8
>>>><

>>>>:

in which, P1(i) and P2(i) are the ith part of two different solution structures.

4.4. GA mechanism and flowchart

Genetic Algorithms (GA)s refer to a family of computational models inspired by evolution

that encode a potential solution to a simple chromosome-like data structure and apply recom-

bination/reproduction operators, named crossover and mutation, to these structures to pre-

serve critical information. In the management or engineering optimization [33, 34]. GA is the

most well-known metaheuristic function optimizer that has been used in various fields such as

selection, scheduling, etc. In general, this method is one of the most efficient ways to solve

optimization problems with pure or mixed-binary programming formulation. Population Size

(PS), Crossover Rate (CR), and Mutation Rate (MR) are some of the main affecting factors of

GA. Fig 2 illustrates the flowchart of the proposed GA mechanism to search the solution space

of the research problem.

4.5. VDO mechanism and flowchart

In physics, vibration can be defined as the repetitive motion of an object around an equilib-

rium position. Vibration damping is a reduction process of the amplitude of oscillation, tend-

ing to zero over time [35]. There is a useful relation between the vibration damping process

and optimization solvers. In the solving methodologies area, Mehdizadeh, Tavakkoli-Moghad-

dam and Yazdani firstly developed a new metaheuristic algorithm, namely Vibration Damping

Optimization/Optimizer (VDO). VDO is a local search iterative method inspired by the Simu-

lated Annealing (SA) algorithm and is created based on the concept of the vibration damping

phenomena. To optimize an optimization problem, the VDO method is affected by four main

factors consisting of initial amplitude (A), the number of iteration at each amplitude (N),

damping coefficient (γ), and vibration standard deviation (σ). These factors should be tuned

by a systematic method as Taguchi to improve searching performance. Fig 3 illustrates the

flowchart of the proposed VDO mechanism to find the best problem solution [36].

5. Numerical result and computational analysis

The proposed mathematical model has a profit objective function for assortment planning,

shelf space allocation, and inventory management of perishable products. It is solved with the

GAMS 24.1.2 (BARON Solver) and Matlab 2019(b) software using a core i5 CPU (2GHz fre-

quency), 8 GB RAM processor. Table 1 displays the parameters of a small-sized problem.

5.1. A small-sized instance

In this section, we solve a small-scale problem. The example we consider includes four differ-

ent products along with four substituting products, two suppliers, and four periods. The life

cycle of the product is five periods.
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The model of this sample problem was solved using GAMS BARON Solver, whose results

including different cost values and the total profit are given in Fig 4.

According to Fig 4, the total profit is 101219.688 obtained from total sales as large as

$184477.51. The total cost of this problem is derived by fixed ordering cost $39, supplier selec-

tion cost $18, purchasing cost $77727.69, holding cost $273.51, penalty cost for the substitution

due to not selecting the product $3512.98, cost of product expiration and destroying $466.83,

and finally cost of not responding the demand $1219.52. In this problem, two potential suppli-

ers were selected, for which the ordering scheme has been shown for different periods in

Table 2.

Fig 3. The flowchart of the proposed VDO solver in solving the problem.

https://doi.org/10.1371/journal.pone.0264186.g003

PLOS ONE An integrated optimization model for retail category management of perishable products: A real application

PLOS ONE | https://doi.org/10.1371/journal.pone.0264186 March 8, 2022 14 / 30

https://doi.org/10.1371/journal.pone.0264186.g003
https://doi.org/10.1371/journal.pone.0264186


From this table, it is found that only in period 2 and for supplier 2 there is no order. The

demands for the products at each period are shown in Table 3. Then, the total demands for dif-

ferent products and their available displays at each period are shown in Table 4.

According to this table, the total demands are different from the usual demands for the

products. This is due to the spatial elasticity of the products and the width of each product at

the allocated display.

5.2. Some parameter sensitivity analysis

To investigate the effect of changing the parameters on the output variables and profit func-

tion, we conduct the sensitivity analysis (SA) of the problem under the changes of the demand,

the purchasing and transportation costs, the spatial elasticity of the product, the maximum

Table 1. The parameters of sample problem.

dnormt
i t = 1 t = 2 t = 3 t = 4 wik k = 1 k = 2 k = 3 k = 4

i = 1 60 40 30 6 i = 1 0 0.269 0.700 0.160

i = 2 90 20 45 23 i = 2 0.170 0 0.113 0.200

i = 3 30 50 15 10 i = 3 1 0.252 0 0.228

i = 4 25 60 15 9 i = 4 0.234 0.187 0.172 0

ci δi αi hi lci bri βi pi Gi si

i = 1 10 10 1 1 60 8 0.2 50 2 30

i = 2 90 20 2 2 110 15 0.1 180 5 28

i = 3 60 5 2 3 100 26 0.3 140 3 17

i = 4 80 4 2 2 50 12 0.1 110 5 25

ocj sscj aji k = 1 k = 2 k = 3 k = 4

j = 1 5 10 j = 1 0 1 0 1

j = 2 6 8 j = 2 1 0 1 0

https://doi.org/10.1371/journal.pone.0264186.t001

Fig 4. The different cost values and total profit of the small-scale sample problem.

https://doi.org/10.1371/journal.pone.0264186.g004
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number of products at each display, the total capacity of the shelf, and price. In these analyses,

we changed the values of these parameters by 10, 30, and 50 percent from their nominal values

(Table 1). The results of these changes are given in their corresponding tables.

5.2.1 Demand SA. Table 5 displays the changes made in costs and sales profits for the

changes in the demand parameter. The behavior of these changes can be seen well in Fig 5.

According to Table 5 and Fig 5, the sales income and profit increased by the increase in

demand. By the demand increase, the amount of inventories at the end of periods reduced and

thus the purchasing costs increased. On the other hand, due to the limited space of the shelves

to be allocated to the products, the shortage and its associated costs increased.

5.2.2 Price SA. Table 6 displays the changes in the costs and sales profits due to the

changes in the price parameter. The behaviors of these changes are shown in Fig 6.

Table 4. The total demands and their available displays at each period.

fit dit

t = 1 t = 2 t = 3 t = 4 t = 1 t = 2 t = 3 t = 4

i = 1 12 3 3 2 150 77 57 11

i = 2 5 1 3 1 138 25 65 28

i = 3 31 37 19 3 223 392 96 38

i = 4 20 1 4 1 35 67 22 12

https://doi.org/10.1371/journal.pone.0264186.t004

Table 5. The costs and sales profits for the changes in demand.

dnormt
i -50% -30% -10% 0 10% 30% 50%

TP 50107.4 72000.35 92923.72 101219.6 108488.8 122676.5 135254.32

TR 98891.9 142911.2 176387.12 184477.5 201180.0 233681.9 263001.46

TCO 28 39 44 39 44 44 44

TCSS 18 18 18 18 18 18 18

TCP 42740.92 63333.19 77931.34 77727.69 84867.36 99481.24 111693.39

TCI 574.13 405.35 245.03 273.51 277.58 225.78 193.39

TCS 4569.59 6245.98 4776.19 3512.98 5202.16 8211.81 11735.001

TCU 853.91 869.36 448.82 466.83 526.995 650.48 762.837

TCLS 0 0 0 1219.52 1755.15 2374.08 3300.517

https://doi.org/10.1371/journal.pone.0264186.t005

Table 2. The ordering for the suppliers at different periods.

ojt t = 1 t = 2 t = 3 t = 4

j = 1 1 0 1 1

j = 2 1 1 1 1

https://doi.org/10.1371/journal.pone.0264186.t002

Table 3. The demand quantity for each product at each period.

Xit t = 1 t = 2 t = 3 t = 4

i = 1 214 37 42 0

i = 2 159 0 90 8

i = 3 273 343 173 20

i = 4 5 0 29 5

https://doi.org/10.1371/journal.pone.0264186.t003
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According to Table 6 and Fig 6, by the increase in the prices, the sales income and conse-

quently the profit of the whole network increased. Besides, due to the price increase, the final

inventories and their associated costs increased. On the other hand, due to the limited space of

the shelves to be allocated to the products, the shortage and its associated costs increased. This

is while due to the increased income from the sales, the purchasing price and penalty cost for

not selecting the product has increased. Thus, the customers in this system look for substitut-

ing products.

5.2.3 Shelf space capacity SA. Table 7 displays the changes in the costs and sales profits

due to the changes in the total available shelf space. Fig 7 shows the behaviors of these changes

well.

It is observed that by the increase of the shelf space, the amount of storable products has

increased, increasing consequently the holding cost. Moreover, with the increase of the prod-

ucts on the shelves, the shortage cost reduces. On the other hand, the order amount of the

Fig 5. The costs and sales profits behavior for the changes in the demand parameter.

https://doi.org/10.1371/journal.pone.0264186.g005

Table 6. The changes in the costs and sales profits due to the changes in the price.

pi -50% -30% -10% 0 10% 30% 50%

TP 13012.8 47615.72 82932.88 101219.6 120145.4 159277.4 199134.21

TR 85997.7 121918.08 163894.0 184477.51 212831.7 257358.18 300451.756

TCO 38 39 39 39 44 38 38

TCSS 18 18 18 18 18 18 18

TCP 70313.8 71928.38 76362.24 77727.69 83460.68 87694.75 90584.413

TCI 198.97 207.49 250.38 273.51 275.11 360.48 426.42

TCS 1274.3 1116.02 2976.009 3512.98 6920.00 7750.28 7990.646

TCU 0 0 322.049 466.83 596.89 879.33 1171.401

TCLS 1141.78 993.45 993.454 1219.52 1371.51 1339.86 1088.661

https://doi.org/10.1371/journal.pone.0264186.t006
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products to be stocked on the shelves increases because of the increased space. More goods on

the shelves with a fixed cost increase the sales and therefore the income and profit.

5.2.4 Lifetime SA. Fig 8 shows the behaviors of the changes in the sales profits due to the

changes in the current lifetime products. Generally, It is observed that the amount of sales

profits has increased by the increase of the lifetime. Sales profit decreases with a steeper slope

for reducing product lifetime due to growing perishable costs. Sales profits have increased by

the rise in the lifetime, but it has a lower pitch because the inventory costs are growing.

5.3. Evaluation of the proposed GA and VDO metaheuristic solvers

In the first step in evaluating the proposed GA and VDO solution approaches, the case of the

DRCFJSS problem is solved using these algorithms and their results are compared with the

Fig 6. The trend of changes in the costs and sales profits due to the changes in the price.

https://doi.org/10.1371/journal.pone.0264186.g006

Table 7. The costs and sales profits obtained by the changes in the total shelf space parameter.

S -50% -30% -10% 0 10% 30% 50%

TP 77885.81 88715.46 97295.73 101219.68 104377.0 108526.04 110923.30

TR 149837.4 166814.95 178764.4 184477.51 194669.4 213713.90 223811.28

TCO 44 44 39 39 44 39 39

TCSS 18 18 18 18 18 18 18

TCP 62102.90 69803.60 74932.84 77727.69 85007.86 96045.73 101507.47

TCI 85.009 164.512 249.449 273.51 287.303 391.253 523.355

TCS 7465.516 5897.446 4320.034 3512.98 4016.207 7769.028 9445.784

TCU 408.428 466.876 467.114 466.83 469.526 924.849 1354.367

TCLS 1827.82 1705.057 1442.25 1219.52 449.492 0 0

https://doi.org/10.1371/journal.pone.0264186.t007
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global optimum solution obtained by GAMS. To this purpose, first, utilizing Taguchi method

and sensitivity analysis, the GA effective parameters such as Population Size (PS), Crossover

Rate (CR), and Mutation (MR) were tuned as [PS = 120, CR = 0.85, MR = 0.15], and the VDO

parameters including initial amplitude (A), number of iteration at each amplitude (N), damp-

ing coefficient (γ), and vibration standard deviation (σ) were tuned as [A = 15, N = 100, γ =

0.2, σ = 2.5].

Fig 7. The trend of changes in the costs and sales profits due to the changes in the total shelf space.

https://doi.org/10.1371/journal.pone.0264186.g007

Fig 8. The trend of changes in the sales profits due to the changes in the lifetime.

https://doi.org/10.1371/journal.pone.0264186.g008
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5.3.1 Small-sized test problem. After tuning the parameters of the metaheuristic algo-

rithms, we solved some small-sized test problems by the GA and VDO algorithms to explore

the results of the initial chromosome and compare the relative percentage difference. Fig 9 dis-

plays the convergence of these algorithms in 150 consecutive iterations.

Fig 9. The convergence of the metaheuristic algorithms in 150 consecutive iterations.

https://doi.org/10.1371/journal.pone.0264186.g009
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The best values of the objective function and computational time for five different runs of

the small-sized test problem are given in Table 8.

In the following, the other variables and related costs from the solving of the small-sized

test problems by the GA and VDO algorithms. Table 9 and Fig 10 display the costs of design-

ing this system with different solving methods.

We observe that in solving the small-sized problems the gap for the GA is 0.6726% and for

the VDO algorithm is 0.5974%. The computational time is 4.03 seconds for the GA and 2.37

for the VDO algorithm. Thus, these algorithms can be employed in solving larger and real

problems.

5.3.2 Large-sized test problem. In this subsection, we evaluate the efficiency of the two

algorithms in solving large-sized test problems. For this, we designed and solved 15 problems

of different sizes (Table 10) by the GA and VDO algorithm.

The averages of the sales profit and computational time are reported in Table 11. Besides,

Figs 11 and 12 display the behavior of the objective functions and computational time for

these problems solved by these two algorithms.

Fig 12 shows that the average computational time has increased exponentially by the size of

the problem. This demonstrates the problem complexity (NP-hardness). Besides, the average

objective functions for the different test problems are close to each other (with a slight differ-

ence) for both algorithms. However, we should select the most efficient algorithm when solv-

ing a real problem. For this, we first test the significance of the difference between the average

objective functions and computational times in the 15 test problems at confidence level 0.95. A

statistic score lower than 0.05 identifies the significance of the differences. Table 12 reports the

results of the t-test performed for this purpose.

According to Table 12, the average profit for the large-sized problems for the GA is greater

than that for the VDO algorithm, while the average computational time is smaller for this algo-

rithm. Besides, the results of the t-test indicate that there is no significant difference between

Table 9. The costs and incomes of designing the system with different solving methods.

Solution Method GA VDO GAMS (Baron Solver)

TP 100538.86 100614.94 101219.68

TR 184267.47 185347.15 184477.5

TCO 39.0 39.0 39.0

TCSS 18.0 18.0 18.0

TCP 78156.75 75156.64 77727.7

TCI 246.46 315.61 273.5

TCS 3216.75 3452.03 3513.0

TCU 426.64 416.15 466.8

TCLS 1625.01 5334.78 1219.5

https://doi.org/10.1371/journal.pone.0264186.t009

Table 8. The comparison of the exact and metaheuristic algorithms for the small-sized test problems.

Solution Method Objective Function Cpu-Time (sec) Gap (%)

GA 100538.86 4.03 0.6726

VDO 100614.95 2.37 0.5974

GAMS (Baron Solver) 101219.68 763.15 -

https://doi.org/10.1371/journal.pone.0264186.t008
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the average objective functions and computational times of these two algorithms. Thus, to

select the more efficient algorithm to be used in solving large-sized problems, we used the

TOPSIS method, which a multi-criteria decision making method. By considering the weight of

0.8 for the objective function and 0.2 for the computational time, the results indicate the selec-

tion of the VDO algorithm with utility weight 0.6986.

Fig 10. The comparison of the costs and incomes of designing the system with different solving methods.

https://doi.org/10.1371/journal.pone.0264186.g010

Table 10. The size of the designed test problems.

Sample Problem I = K T G J

1 6 6 6 4

2 8 6 6 4

3 10 6 7 5

4 12 8 7 5

5 14 8 7 5

6 16 8 8 6

7 18 8 8 6

8 20 10 8 6

9 23 10 8 7

10 27 10 9 7

11 30 10 9 8

12 35 12 10 8

13 40 12 10 9

14 45 14 12 9

15 50 15 12 10

https://doi.org/10.1371/journal.pone.0264186.t010
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Table 11. The averages of the objective function and computational time in solving the large-sized problems by metaheuristic algorithms.

Problem Instances VDO GA

Objective function Cpu-Time (sec) Objective function Cpu-Time (sec)

1 174243.31 9.97 179916.48 11.95

2 242026.93 13.28 232210.80 18.93

3 270094.30 19.60 275238.83 22.63

4 328096.73 27.39 333150.11 32.29

5 376288.80 38.66 393615.39 45.30

6 437334.81 53.08 457229.13 61.17

7 470518.60 68.71 480430.59 81.13

8 515879.02 85.95 554769.85 103.20

9 560557.88 105.32 568024.45 129.89

10 613858.83 124.47 625099.28 157.77

11 685489.81 153.90 716325.35 191.91

12 715829.38 182.44 746326.12 228.60

13 795440.00 210.83 767983.45 268.66

14 830562.89 243.28 824861.61 311.22

15 871235.85 278.33 924757.91 359.19

https://doi.org/10.1371/journal.pone.0264186.t011

Fig 11. The trend of the objective function for the large-sized test problems.

https://doi.org/10.1371/journal.pone.0264186.g011
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5.4. A real case study

To implement and analyze the developed model, we use the data of a real case in Iran. Ofogh

Koorosh chain stores with 14000 personnel and 2180 store established to provide fast deliver-

ing products through grocery retailing. They offer agility and speed to serve as the basis for

creating a dynamic and stable competitive advantage and based their competitive strategy on

strict adherence to business ethics. They provide permanent discounts on all products as com-

pared to the price labeled on the product, where these products are mainly used for daily,

weekly, or monthly consumption of the Iranian household. We considered for our problem

the data for dairy products consisting of 423 items, supplied by 37 suppliers, in a 30-day

interval.

Fig 12. The trend of computational time for the large-sized test problems.

https://doi.org/10.1371/journal.pone.0264186.g012

Table 12. The results of T-test for the significance testing of the differences between the considered criteria in solving large-sized problems.

Algorithms criteria Mean Estimate for difference 95% CI for the difference T-Value P-Value

VDO Objective Function 525830 12832 (-156459, 182123) 0.16 0.878

GA 538663

VDO Cpu-time 107.7 27.2 (-49.1, 103.6) 0.73 0.470

GA 135

https://doi.org/10.1371/journal.pone.0264186.t012
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The VDO algorithm solved the problem in 5795.24 seconds and reached a profit as large as

3741508298.35 in 150 consecutive iterations. In the obtained solution, only suppliers 9, 12, 15,

35, and 37 were not selected. Fig 13 displays the other related costs and Fig 14 displays the con-

vergence of the VDO algorithm in getting the maximum profit for this real problem.

Besides, Figs 15 and 16 shows the shelf average inventory for each group of products for 30

days. According to this figure, the most inventory is for milk items.

Table 13 gives the results for each product group in the real problem, where the most pur-

chased items belong to cheese and after that to high-fat yogurt and low-fat milk. The most dis-

play at each period has been allocated on average to cheese group of products and after that to

high-fat yogurt and flavored milk. The most shelf-space at each period has been allocated on

average to cheese, high-fat yogurt, and flavored milk groups.

6. Conclusions

In this research, we considered a retailing problem seeking for maximizing its profit from the

sales of the principal or substituting products. This problem considers the perishability of the

products and it incurs a cost for destroying the products if they are not sold. Before we solved

large-sized problems, we analyzed the problem in small-sized cases, whose results indicated

the high computational time of the problem by the exact methods. The sensitivity analysis

showed that changes in the product demand, transportation cost, and price had a direct impact

on the total profit. Due to the failure of exact methods in solving large-sized problems, we used

Fig 13. The costs and total profit of the real case problem.

https://doi.org/10.1371/journal.pone.0264186.g013
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Fig 15. The average inventory for the products in the real problem.

https://doi.org/10.1371/journal.pone.0264186.g015

Fig 14. The convergence of the VDO algorithm in reaching the maximum profit.

https://doi.org/10.1371/journal.pone.0264186.g014
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two metaheuristic algorithms, GA and VDO. The results of these algorithms for small-sized

problems verified the efficiency of both algorithms in obtaining near-optimal solutions in a

short time, such that the maximum relative difference was less than one percent. To select the

most efficient algorithm, we designed 15 test problems of different sizes and solved by the two

algorithms. The results of the statistical test on the averages of the objective function and

computational time showed that there was no significant difference between these two criteria.

Therefore, we used the TOPSIS method for the selection of the most efficient algorithm, indi-

cating the superiority of the VDO algorithm in solving large-sized problems. To implement

this problem in a real world case, we considered Ofogh Koorosh chain stores in Iran. The

results confirmed the applicability of the proposed model and metaheuristic algorithms.

The model proposed by this study has several opportunities for expansion, first it is

assumed that the usual demand of each product is known in each period. However, this detail

Fig 16. The average inventory for the products in the real problem.

https://doi.org/10.1371/journal.pone.0264186.g016
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is unknown and uncertain. Therefore, considering the uncertainty in demand could signifi-

cantly improves the retailer’ planning. Second, another important decision for category man-

agers in retail industries is pricing. Seting price of each product included in the assortment

effect on other retail category management decision aspects such as assortment planning, shelf

space allocation and inventory planning. Therefore introducing a model that addressed all

aspect a retail.

Third, COVID-19 pandemic has had a huge impact on the retail industry, Social distancing

has become commonplace, and the world’s leading retailers are using some of their offline

stores as dark stores, so implementing a model for assortment planning, shelf space allocation

and inventory management in Omni channel retailing can be considered. Also, developing a

multi-objective model with sale losses and lead time consideration can be attractive topics for

future research.
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Table 13. The results of the real problem solved by VDO algorithm.

Product groups Product

availability

Number of

selected

Number of

supplier

Average of periodic

demand

Average of display

number

Average of shelf space

allocation

Cooking cheese 20 8 18 63 13 1,889

Breakfast cheese 86 38 84 210 60 7,906

Simple cream 13 7 13 127 12 1,113

Chocolate

cream

4 3 4 47 4 282

Honey cream 6 4 6 26 7 497

Dough 44 20 44 311 34 3587

Lactose-free

milk

1 1 1 4 1 76

Full-fat milk 35 21 35 202 29 2,889

Flavored milk 39 13 36 169 34 3,317

Low fat milk 38 24 38 335 30 3,098

Semi-fat milk 2 0 2 61 2 192

Butter 24 11 23 86 17 2,173

Margarine 3 1 3 3 2 288

Curd 4 2 4 1 5 333

Full-fat yogurt 53 25 53 248 37 4,630

Flavored yogurt 12 7 12 42 9 1,053

Low fat yogurt 36 17 36 204 27 3,256

Semi-fat yogurt 3 3 3 12 3 272

https://doi.org/10.1371/journal.pone.0264186.t013
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