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Abstract

Electroencephalography (EEG) has been commonly used to measure brain alterations in

Alzheimer’s Disease (AD). However, reported changes are limited to those obtained from

using univariate measures, including activation level and frequency bands. To look beyond

the activation level, we used multivariate pattern analysis (MVPA) to extract patterns of

information from EEG responses to images in an animacy categorization task. Comparing

healthy controls (HC) with patients with mild cognitive impairment (MCI), we found that the

neural speed of animacy information processing is decreased in MCI patients. Moreover,

we found critical time-points during which the representational pattern of animacy for MCI

patients was significantly discriminable from that of HC, while the activation level remained

unchanged. Together, these results suggest that the speed and pattern of animacy informa-

tion processing provide clinically useful information as a potential biomarker for detecting

early changes in MCI and AD patients.

1 Introduction

Mild Cognitive Impairment (MCI) is a condition in which an individual has a mild but mea-

surable decline in cognitive abilities. This decline is noticeable to the person affected and to the

family members and friends, but the individual can still carry out everyday activities [1, 2]. A

systematic review of 32 cohort studies shows an average of 32 percent conversion from MCI to

Alzheimer’s Disease (AD) within a five-year follow-up [3]. 5–15% of people with MCI have

also been shown to develop dementia every year [4].

Electroencephalography (EEG) is widely used to study the resting-state neural activity in

the brain of patients with MCI and mild AD [5–14]. A few studies have also used EEG to
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associate abnormalities in memory function with cognitive impairment during both encoding

and decoding stages of working memory [7, 15–17] as well as episodic memory tasks [18].

The relationship between cognitive impairment and visual system changes has recently

gained attention [19]. Several studies have linked deficiencies in different parts of the visual

system with AD [20–22]. There are several documented cases in which visual function prob-

lems are the initial and dominant manifestation of dementia [23, 24]. A few studies have also

used a visual task to report changes in the EEG responses of patients with MCI and AD [25,

26].

Several studies of the visual system in primates and healthy human subjects have demon-

strated that images are categorized by their animacy status (i.e., animate vs. inanimate) in the

higher-level visual areas, i.e., inferior temporal (IT) cortex [27–32]. The neural activity under-

lying the animacy information processing of briefly flashed images was also studied in healthy

adults [33, 34]. Studies have shown that animacy information emerges in the brain of healthy

human subjects as early as 80±20 ms after the stimulus onset and reaches its peak within 250

±50ms after the stimulus onset [35–37]. However, the underlying neural dynamics of animacy

processing in the brain of patients with MCI in comparison to healthy controls (HC) is still

unknown. Several studies using autopsy [38–41] and PET imaging [42, 43] have shown that

some of the visual areas in the temporal cortex are among the first regions affected by the

disease.

The Integrated Cognitive Assessment (ICA) is a visual task based on a rapid categorization

of natural images of animals and non-animals [44]. ICA assesses changes in the speed and

accuracy of animacy processing in patients with MCI and mild AD and is shown to be sensi-

tive in detecting MCI patients [45, 46]. The ICA primarily tests Information processing speed

(IPS) and engages higher-level visual areas in the brain for semantic processing, i.e., distin-

guishing animal vs. non-animal images [44]. Reduced visual processing speed is reported in

amnestic-MCI [47], and IPS is further reported to be related to other areas of cognitive dys-

function [48, 49].

In line with previous behavioral studies, we hypothesized that the underlying neural

response of MCI patients during an animacy categorization task is both slower and less accu-

rate at the level of representation compared to HC [44]. The absence of multivariate methods

in previous studies also raises the question of whether the pattern of animacy information pro-

cessing is different in patients with MCI compared to that of HC.

To address these questions, we acquired EEG data from MCI and HC participants during

the completion of the ICA’s animal/non-animal categorization task. We studied the temporal

neural dynamics of animacy processing in MCI patients using both univariate and multivariate

analyses. By applying multivariate pattern analysis (MVPA), we compared the neural speed of

animacy processing in MCI and HC. We further looked beyond the conventional univariate

methods and compared MCI and HC in terms of their pattern of EEG responses to natural

images of animal and non-animal stimuli.

We found that the categorical representation of animacy information emerges later in the

brain of patients with MCI compared to that of HC. Furthermore, the results reveal differences

between the EEG response patterns of HC vs. MCI during the time-points when univariate

mean responses showed no significant difference. The EEG response patterns could further be

used to discriminate HC from MCI, demonstrating that the pattern of EEG activity also carries

information about the status of the disease beyond the conventional univariate analysis of

mean activities.
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2 Methods

2.1 Integrated cognitive assessment (ICA) task

ICA [44, 50], [51, p.] is a rapid animal vs. non-animal categorization task. The participants are

presented with natural images of animals and non-animals. The images are followed by a short

blank screen and then a dynamic mask. Participants should categorize the images as animal or

non-animal as quickly and accurately as possible (Fig 1). See (Khaligh-Razavi et al. 2019 [44],

Fig 1B) for sample images of the task.

2.2 Montreal cognitive assessment (MoCA)

MoCA [52] is a ten-minute pen and paper test with a maximum score of 30 and is convention-

ally used to assess visuospatial, memory, attention, and language abilities to detect cognitive

impairment in older adults. An examiner is needed to administer the test. The results of this

test were used by the consultant neurologist to help with the diagnosis of participants.

2.3 Addenbrooke cognitive examination (ACE-R)

ACE-R [53] is another pen-and-paper tool for cognitive assessment with a maximum score of

100. It mainly assesses five cognitive domains: attention, orientation, memory, fluency, lan-

guage, and visuospatial. On average, the test takes about 20 to 30 minutes to administer and

score. The results of this test were used by the consultant neurologist to help with the diagnosis

of participants.

Fig 1. The EEG task. The EEG experiment contained 13 experimental runs; in each run, 32 natural images (16 animal,

16 non-animal) were presented to the participant in a random order. Each image was shown for 100 ms, followed by an

inter-stimulus interval (ISI) of 20ms and a dynamic noise mask for 250ms. Participants were given 1500 ms to indicate

(using pre-specified buttons) whether the presented image contained an animal or not.

https://doi.org/10.1371/journal.pone.0264058.g001
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2.4 Subject recruitment

40 (22 Healthy, 18 MCI) participants (Table 1) completed the ICA test, MoCA, and ACE-R in

the first assessment. The participants were non-English speakers, with instructions for the cog-

nitive assessments provided in Farsi. The ICA test was administered on an iPad.

Patients were recruited into the study prospectively. A consultant neurologist made all the

diagnoses according to diagnostic criteria described by the working group formed by the

National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and

the Alzheimer’s Disease and Related Disorders Association (ADRDA) (referred to as the

NINCDS-ADRDA criteria) and the National Institute on Aging and Alzheimer’s Association

(NIA-AA) diagnostic guidelines. The study was conducted at the Royan Institute, according to

the Declaration of Helsinki, and approved by the local ethics committee at the Institute. The

inclusion/exclusion criteria are listed below.

• Inclusion criteria for the HC group:

Males and females aged between 50–85 years who are not currently on medication that may

interfere with the study results and are in good general health were included in the study.

• Inclusion criteria for the MCI group:

Males and females aged between 50–85 years with a clinical diagnosis of MCI who were able

to provide informed consent were included in the study.

• Exclusion criteria for both groups:

Individuals with a presence of significant cerebrovascular disease or major psychiatric disor-

der (e.g., chronic psychosis, recurrent depressive disorder, generalized anxiety disorder, and

bipolar mood disorder) or major medical comorbidities (e.g., congestive cardiac failure, dia-

betes mellitus with renal impairment) were excluded from the study.

Additional exclusion criteria were: use of cognitive-enhancing drugs (e.g., cholinesterase

inhibitors), or a concurrent diagnosis of epilepsy or any history of alcohol misuse, illicit drug

abuse, severe visual impairment (e.g., macular degeneration, diabetic retinopathy, as deter-

mined by the clinical examination), or repeated head trauma.

2.5 EEG data acquisition and preprocessing

The EEG experiment included a short version of the ICA task (i.e., smaller image set). Partici-

pants completed one EEG session that included 13 runs; each run lasted 67 seconds, during

which 32 images were presented in random order, and participants had a short break in

between the runs. Each stimulus was repeated 13 times during the whole EEG session (once in

each run). These are referred to as repetition trials throughout the manuscript. Participants 16

and 17 completed 10 runs, and participants 12 and 22 completed 12 runs. We acquired the

EEG data using a 64-channel (63 electrodes on the cap and one as the reference; for electrodes

layout, see S1 Fig of the supplementary materials) g.tec product at a sampling rate of 1200 Hz.

Three electrooculograms (EOG) channels were set up to capture eye blinks. Additionally, we

Table 1. Demographic information of participants.

Characteristic HC (n = 22) MCI (n = 18) P-values
Age–mean years ±SD 63.41±6.10 63.56±6.41 0.94

Education in years–mean ±SD 15±4.18 14.72±5.02 0.85

Gender (%female) 13 (59%) 10 (55%) 0.82

SD: standard deviation.

p-values were calculated from two-sided t-test for two independent samples.

https://doi.org/10.1371/journal.pone.0264058.t001
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included resting trials in between the image trials (i.e., almost every 70 seconds, they were

given 10 seconds to rest their eyes, blink, and swallow). Participants were instructed to only

blink (or swallow) during these trials to prevent contamination of EEG signals with the eye-

blink (and swallowing) artifacts. These trials were excluded from further EEG analyses.

Because of such a design, we did not have to reject any of the image trials. Other potential arti-

facts were removed with Independent Component Analysis.

The preprocessing consisted of six general steps, which were all done using Brainstorm [54]

in MATLAB:

1. Re-referencing the data with the mean activation and removing the reference channel

(channel 33).

2. Neutralizing eye blinks by removing the most correlated component with the EOG chan-

nels, using the independent component analysis algorithm.

3. Extracting pre-stimulus data from 100 ms before to 800 ms after the stimulus onset

(epoching).

4. Normalizing the epochs regarding the mean and standard deviation of the baseline.

5. Smoothing the data with a 50 Hz low-pass filter.

6. Resampling the data to 1000 Hz sampling rate.

2.6 Univariate pattern analysis—Event-Related Potential (ERP)

We calculated the ERPs of the extracted epochs (from 100 ms before to 800 ms after the stimu-

lus onset) by averaging the EEG responses to all stimuli within each group of channels. We cal-

culated the ERPs separately for each individual. The ERP of HC and MCI are the average ERP

of corresponding participants.

2.7 Support vector classifier

We used a linear support vector machine (SVM) classifier throughout the analyses to decode

neural data. The hyperparameters were as follows: The cost/regularization parameter (C) and

the weight of classes were all set to 1. All the classifications were done using the LIBSVM soft-

ware implementation [55].

2.8 Multivariate pattern analysis—Animal vs. non-animal decoding

To study the emergence of animacy categorical information in the brain, we used a linear clas-

sifier to discriminate EEG responses to animal stimuli from that of non-animal (Fig 2). Before

the classification, we randomly assigned each target stimulus with all its EEG trials to bins of

sizes 2, 3, and 4 stimuli and randomly sub-averaged the trials within each bin. The decoding

accuracy at each time point ‘t’ is then the average accuracy of 10,000 repetitions in a leave-one-

bin-out cross-validation model, using an SVM classifier.

2.9 Multivariate pattern analysis—Pairwise decoding

At each time point, we measured the accuracy of an SVM classifier in discriminating pairs of

stimuli using leave-one-out cross-validation. This leads to a symmetric 32×32 representational

dissimilarity matrix (RDM) at each time point, representing the pairwise dissimilarities of sti-

muli in the off-diagonal elements (Fig 3). We repeated the entire process for each individual to

create an RDM at each time point.
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2.10 Multivariate pattern analysis—HC vs. MCI classification

We characterized the activation pattern at each time-point as a 63×32 matrix, with each col-

umn being the responses of the EEG channels to a stimulus, averaged over all repetition trials

(Fig 4). We applied 10,000 bootstrap resampling (without replacement) of participants and

trained a leave-one-out cross-validation SVM model to discriminate the EEG activation pat-

tern of HC from that of MCI.

2.11 Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS) is a non-linear dimension reduction algorithm. It rearranges

the data points in a p-dimensional space until their pairwise distance is consistent with a given

dissimilarity matrix. Here, we used MDS to visualize the stimuli on a 2D plane based on their

pairwise dissimilarity in RDMs.

2.12 Statistical analysis

To avoid any assumption about the observed distributions, we only used non-parametric sta-

tistical tests. They are capable of testing a null hypothesis without any prior assumptions about

the nature of the distribution:

2.12.1 Bootstrap test. Bootstrapping is a strategy to estimate different statistics over an

unknown distribution. It consists of a resampling (with or without replacement) procedure

and applying a target function. The result is a bootstrap distribution that can be used for statis-

tical inference purposes. We used 10,000 bootstrap resampling of participants without

Fig 2. Animal vs. non-animal decoding. We extracted repetition trials of EEG responses to animal and non-animal stimuli at each time-point (for a given

time-point t we had two matrices of 63 channels x16 stimuli x13 repetition trials of EEG responses to animal and non-animal stimuli). Before the classification,

we randomly assigned each target stimulus with all its EEG trials to bins of size 2, 3 and 4 stimuli and randomly sub-averaged the trials within each bin. We

trained a leave-one-bin-out cross-validation SVM model to discriminate animal from non-animal. At each time-point, the decoding accuracy is the average of

10,000 repetitions of the classification procedure described above. We repeated the entire process of each individual separately.

https://doi.org/10.1371/journal.pone.0264058.g002
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replacement from each group (HC and MCI) and computed a p-value as follows:

p � value ¼
number of elements lower ðor higherÞ than baselineþ 1

number of bootstrap resampling ð10000Þ þ 1

2.12.2 Permutation test. The permutation test consists of randomly relabeling the sam-

ples from two populations to form a null distribution. It computes a p-value by testing a target

statistic against the null hypothesis:

p � value ¼
number of members from the null distibution lower ðor higherÞ than the target þ 1

number of permutations ð10000Þ þ 1

2.12.3 Rank-sum. Rank-sum (also known as Wilcoxon–Mann–Whitney test) tests the

null hypothesis that the data in x and y are sampled from continuous distributions with equal

medians, against the alternative that they are not [56]. We used rank-sum to compute the p-

value when comparing HC and MCI medians of animal vs. non-animal decoding amplitude,

ICA speed and accuracy and, mean of ERP responses.

Fig 3. Representational dissimilarity matrices (RDMs). We trained an SVM to discriminate pairs of stimuli using their EEG responses at time-point t. This

pairwise classification of stimuli by cross-validation SVM model leads to a 32 × 32 RDM at each time-point t.

https://doi.org/10.1371/journal.pone.0264058.g003
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3 Results

3.1 A reduction in the speed and accuracy of animacy processing in MCI

patients

We compared the neural speed and accuracy of animal/non-animal discrimination between

HC and MCI. To this end, for each group, we computed the time at which animal images can

best be discriminated from non-animals based on their EEG responses. This time-point is

referred to as the peak of animal/non-animal decoding. MCI patients showed a median delay

of 39 ms (95% CI = [8, 111], SE = 34 ms) in processing the animacy information in comparison

to healthy individuals (p-value = 0.0001; 10000 bootstrap resampling of participants, Fig 5A).

Additionally, in this decoding peak time-point, the neural accuracy of animal detection was

Fig 4. HC vs. MCI classification over time based on EEG response patterns. At each time-point, the pattern of EEG activation is a 63x32 matrix with

columns being the EEG responses of channels to the 32 stimuli. We applied 10,000 bootstrap resamplings (without replacement) of participants and each time

trained a leave-one-out cross-validation SVM model to discriminate HC from MCI based on their EEG activation patterns.

https://doi.org/10.1371/journal.pone.0264058.g004
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Fig 5. a) Median of animal vs. non-animal decoding accuracy peak time-points. 10000 bootstrap resampling without replacement of participants was applied

to measure the differences between HC and MCI. The difference of medians of HC and MCI peaks is 39 ms (p-value = 0.0001; One-sided bootstrap test) b)

Box-plot of animal vs. non-animal EEG decoding peak amplitude. The difference of HC and MCI amplitude medians is 5% (p-value = 0.018; rank-sum). c)

Mean EEG RDM of participants at the time of animal vs. non-animal decoding peak. No significant difference was observed between the RDMs (permutation

test). d) Mean ERP of participants at the time of animal vs. non-animal decoding peak. The black dots indicate significant activation in channels of the specified

region (FDR-corrected at 0.05 sign-rank). No significant difference between the ERP of HC and MCI was observed (FDR-Corrected at 0.05 rank-sum). e) Box-

plot of the ICA test accuracy (results of the behavioral ICA, taken on iPad). A significant difference is observed between HC and MCI (p-value = 0.037; rank-

sum). f) Box-plot of the ICA test speed (results of the behavioral ICA, taken on iPad). A significant difference is observed between HC and MCI (p-

value = 0.025; rank-sum). Fp: prefrontal; AFL: left anterior frontal; AFR: right anterior frontal; FL left frontal; Fz: midline frontal; FR: right frontal; FCL: left

fronto-central; FCR: right fronto-central; TL: left temporal; CL: left central; Cz: midline central; CR: right central; TR: right temporal; TPL: left temporo-

parietal; CPL: left centro-parietal; CPR: right centro-parietal; TPR: right temporo-parietal; PL: left parietal; PR: right parietal; POL: left parieto-occipital; Pz:

midline parietal; POR: right parieto-occipital; O: occipital.

https://doi.org/10.1371/journal.pone.0264058.g005
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significantly lower in MCI patients compared to healthy controls (p-value = 0.018; rank-sum,

Fig 5B).

The representational dissimilarity method is a way to represent patterns of brain informa-

tion processing [57]. To study the neural representation underlying animacy categorization,

we compared the representational dissimilarity matrices (RDM) and ERP responses (Fig 5C

and 5D) of the two groups at the time of each individual’s animal vs. non-animal decoding

peak.

The HC/MCI RDM in the peak animacy decoding time-point represents the pattern of

EEG responses at a time-point in which the brain representation of animal images is best sepa-

rated from that of non-animals (Fig 5C). While the peak animacy time-point was delayed for

the MCI group, the MCI RDM was not significantly different from that of the HC RDM in its

peak, suggesting that it took more time for the MCI patients to converge to a pattern similar to

that of the HC, which is used for discriminating animals from non-animals.

We also looked at the ERP responses at these peak time-points between HC and MCI: chan-

nels in the right and left parietals, right temporal-parietal, midline parietal, and midline frontal

lobes were significantly activated in both groups. HC showed significant activation levels in

the right parieto-occipital, right temporal, and central lobes (midline central, right and left

central-parietals, right central, and fronto-central); however, these were absent from the MCI

brain activation map. On the other hand, only MCI patients showed significant activation on

the left parieto-occipital lobe.

Analyzing the behavioral data of participants while taking the ICA test (on an iPad outside

the EEG), we found the results to be consistent with the findings from the EEG data: the speed

and accuracy of animacy detection, as measured by the ICA test, were also significantly deteri-

orated in patients with MCI (p-value = 0.025 and p-value = 0.037 respectively) (Fig 5F and

5G).

We also examined the channel-specific animacy decoding time courses to investigate

whether there is a significant delay in the peak and/or the onset of animacy processing in MCI

patients at the level of EEG channels (Fig 6). We found that there is a significant delay in the

animacy decoding peak time-point of MCI patients in the right parietal lobe compared to HC

(p-value = 0.0013, Fig 6). Additionally, the significance of animal vs. non-animal decoding

started later in the MCI patients in EEG channels of left fronto-central, midline frontal, mid-

line central, and left parieto-occipital lobes (Fig 6).

3.2 Comparing patterns of visual information processing in HC and MCI

We compared patterns of visual information processing in HC and MCI using their RDMs

over time. The maximum difference between HC and MCI RDMs was observed at t = 224 ms

after the stimulus onset (scaled Euclidean distance, d = 0.53 [out of 1], p-value = 0.012; Fig

7A). At this time-point (t = 224 ms), an SVM classifier (leave-one-out cross-validation) could

significantly discriminate between HC and MCI patterns of visual information (represented

by their RDMs) with an accuracy of 70.4% (p-value = 0.0036, 10,000 bootstrap sampling of

participants).

We also looked at the univariate differences between HC and MCI at the same time-point

(i.e., t = 224 ms); there was no significant difference between the two groups in their ERP

responses (Fig 7B). This demonstrates that the response patterns carry valuable information

above and beyond what is captured in the neural activity’s mean responses.

Furthermore, examining the HC and MCI RDMs, we highlighted RDM cells that were sig-

nificantly different between the two groups (Fig 7A). Each RDM cell represents the difference

between the EEG patterns of the two stimuli at a given time-point. To provide a more intuitive
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understating of the differences in patterns, we used multidimensional scaling (MDS) to visual-

ize the RDMs on a 2D surface. Fig 7C illustrates the stimuli with a significant difference

between HC and MCI, and Fig 7D visualizes all the stimuli.

3.3 Temporal dynamics of animacy categorization

To study the temporal dynamics of animacy categorization in HC and MCI, we compared the

mean response (i.e., ERP) as well as EEG activation patterns (i.e., 63 channels × 32 stimuli

matrices) between HC and MCI over time. For each EEG channel group, we measured the

ERP differences between HC and MCI over time: midline frontal, right fronto-central, and

right temporal regions showed a significant difference (Fig 8A). We also performed a classifi-

cation over the EEG activation patterns to see if HC and MCI can be discriminated based on

Fig 6. Animal vs. non-animal decoding time course across groups of EEG channels. Horizontal color dots indicate time-points with significant decoding

accuracy in the corresponding group (green for HC and orange for MCI). In regions specified with red rectangles MCI’s peak animacy decoding time-point is

significantly later than that of HC; in regions specified with blue rectangles MCI’s onset of animacy decoding significance is significantly later than that of HC

(FDR-corrected at 0.05; bootstrap test with 10,000 resampling of participants on MCI minus HC time-points).

https://doi.org/10.1371/journal.pone.0264058.g006

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0264058 February 23, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0264058.g006
https://doi.org/10.1371/journal.pone.0264058


their epoched EEG responses. HC and MCI could be discriminated based on their EEG activa-

tion patterns in the left frontal, midline frontal, left parietal, and right central parietal lobes

(Fig 8B).

Looking at the EEG data (Fig 8), we found that HC and MCI could be discriminated start-

ing from 375 ms in the left parietal (PL) and from 495 ms in the left frontal (FL) both to 515

ms after the stimulus onset only based on their patterns of activity, but not the ERPs. Addition-

ally, the pattern of activity in centro-parietal (CPR) could discriminate HC from MCI in

Fig 7. a) The RDM of HC and MCI at the time-point of maximum Euclidean distance (t = 224 ms, d = 146.6, p-value = 0.012, permutation test). We further

normalized the Euclidean distance to make it more meaningful by fitting a logarithmic function on the maximum distance (222.7), baseline distance (115.7)

and the minimum distance (0). The logarithmic function scales the distances to the [0, 1] interval, and the observed distance between RDMs becomes 0.53. The

highlighted elements (i.e. red-squares) of the RDMs are the pairwise dissimilarities with a significant difference between HC and MCI (FDR-corrected at 0.05

rank-sum). b) Difference of the mean ERPs across EEG channels (HC minus MCI) at t = 224 ms. None of the EEG channels show a significant difference (all p-

values> 0.05) between HC and MCI at this time-point. c) MDS of the stimuli that showed a significant difference in their pairwise dissimilarity between HC

and MCI (those specified by red squares in the two RDMs). d) MDS of all the stimuli. The dots that are connected with dashed lines are the same stimuli shown

in panel ‘c’.

https://doi.org/10.1371/journal.pone.0264058.g007
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almost every time-point after t = 655ms. On the other hand, the ERP responses showed a sig-

nificant difference between HC and MCI in the right fronto-central (FCR) at around t = 405

ms and in the right temporal (TR) from 155 ms to 174 ms and 365 ms to 545 ms. At the same

time points, the two groups could not be separated based on their activation patterns. The

midline frontal (Fz) was the only region that could differentiate HC and MCI based on both

the ERP responses and the activation patterns at around t = 405 ms after the stimulus onset.

Fig 8. a) HC and. MCI ERP differences in regions where either the ERP difference or the HC vs. MCI classification were

statistically significant. The shaded error bars indicate 95% confidence interval of the ERP difference (HC minus MCI). Red

dots indicate time-points with significant level of difference in ERP (FDR-corrected at 0.05 across time; rank-sum). b) The HC

vs. MCI classification based on the pattern of EEG data (i.e. channels × stimuli), in regions where either the ERP difference or

the HC vs. MCI classification of EEG responses were statistically significant. The shaded error bars indicate 95% confidence

intervals. Red dots indicate time-points with significant HC vs. MCI classification accuracy (FDR-corrected at 0.05; 10000

bootstrap resampling of participants). FL: left frontal; Fz: midline frontal; FCR: right fronto-central; PL: left parietal; CPR: right

central parietal; TR: right temporal.

https://doi.org/10.1371/journal.pone.0264058.g008
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In the previous subsection, we demonstrated that at t = 224 ms, the difference between HC

and MCI in the EEG response patterns (captured by RDM) was at its maximum, while the

level of activity (captured by ERP) remains unchanged. Here, we identified five groups of

channels whose EEG data could discriminate between HC and MCI, either based on the acti-

vation patterns or the ERP responses, but not both. This is consistent with the reported results

in the previous section (3.2), demonstrating that EEG activation patterns could be different

even though there might be no difference at the level of ERP.

4 Discussion

In this study, we investigated the temporal dynamics of animacy visual processing in patients

with MCI and argued that the speed of processing animacy information is a potential bio-

marker for detecting MCI. The proposed rapid visual categorization task in the ICA test is

more challenging than the typical memory tasks, making it more sensitive to less severe brain

deteriorations. The ICA is particularly suited for population-wide screening of cognitive

impairment to help identify patients with MCI and mild AD (MiAD) and not designed for

cognitive assessment in more severe stages of the disease, such as moderate to severe AD. Early

detection of cognitive impairment is becoming increasingly important, particularly in the con-

text of disease-modifying therapies for early stages of AD, such as Aducanumab–which has

recently received FDA approval.

Previous resting-state and task-based EEG studies have focused on univariate changes (e.g.,

ERP, frequency bands, connectivity) in patients with MCI and individuals with mild to moderate

AD [5–7, 15–17, 58]. Here, using a rapid visual categorization task and applying multivariate pat-

tern analysis, we looked beyond the univariate changes and studied the categorical representa-

tion of animacy information in the brain of old healthy individuals and patients with MCI. We

demonstrated that patients with MCI could be discriminated from HC based on their pattern of

animacy representation. Furthermore, we identified regions in which either the mean EEG

responses or the pattern of brain activity show significant differences between HC and MCI.

Having a closer look at the ERP of different regions, we observed a decrease in the P300

amplitude of the MCI patients. This decrease is significant in the electrodes of the midline

frontal, right fronto-central, and right temporal regions between 250 ms to 500 ms after the

stimulus onset. This observation is in line with the reported result in [13], especially with the

P300 of the midline frontal electrodes, and highlights the importance of this signal in the

detection of MCI.

4.1 Task differences in EEG studies of HC and MCI

Consistent with previous reports in resting-state EEG studies [59] and studies with a visual

memory task [17], we observed univariate differences between HC and MCI in the temporal

and the fronto-central electrodes.

In contrast, we did not find any significant difference in ERP responses of HC vs. MCI in

centro-parietal and parietal electrodes–which is reported previously in an EEG study with a

visual working memory task [16]. We also observed no univariate difference in the frontal and

occipital electrodes, while previous resting-state EEG studies have reported differences

between HC and MCI in these regions [59, 60]. On the other hand, we found that MCI patients

could be discriminated from HC based on their ERP responses of the midline frontal region

electrodes. These differences could potentially be explained by the difference in the tasks used

for each of these studies (i.e., visual working memory and resting-state vs. rapid visual

categorization).

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0264058 February 23, 2022 14 / 20

https://doi.org/10.1371/journal.pone.0264058


In addition to the previous univariate findings, here we revealed multivariate differences

between HC and MCI in their patterns of EEG responses: midline frontal, left frontal, left pari-

etal, and right centro-parietal electrodes showed significant multivariate differences between

HC and MCI. Furthermore, the categorical representation of animacy information of the right

parietal electrode emerged later in the MCI patients compared to that of HC. Also, in compari-

son with HC, the MCI patients had significantly longer onset latencies of animacy information

in the left fronto-central, midline frontal, midline central, and left parieto-occipital electrodes.

4.2 What do differences in the pattern of activation mean?

The overall changes in the pattern of EEG responses happen in the regions that are involved in

visual processing and motor movement. These regions are engaged during the ICA task’s exe-

cution, and their activation is captured through frontal and parietal electrodes.

Neurons of the parietal cortex integrate sensory inputs (visual, auditory, etc.) through

motor control regions to execute movements [61–63]. Visuomotor skills that are known to be

resolved in regions of the parietal cortex are heavily involved in the ICA task, as the task

requires the participant to use visual information to categorize presented images with a move-

ment of both hands.

In the case of frontal regions, univariate changes in the electrodes of this lobe have previ-

ously been shown in EEG studies [17, 59]. Additionally, the Posterior-Anterior Shift in Aging

(PASA) suggests that the brain of individuals with age-related changes tends to engage other

networks in the frontal region to compensate for the decline of processing information in pos-

terior areas [64]. Consistent with PASA, we observed that the pattern of information process-

ing is altered in both frontal and parietal electrodes.

4.3 Neural speed of information processing in MCI patients

Rapid recognition of animate objects is a fundamental ability of human visual cognition. Previ-

ous M/EEG studies have investigated the temporal neural dynamics of animacy processing in

young, healthy individuals. Using slightly different visual tasks and stimuli, studies have

shown that the onset and peak of animacy decoding emerge between 66 ms to 157 ms [35]; or

from 80 ms to 240 ms [36] after the stimulus onset. Here, we showed that in old healthy indi-

viduals, the onset, and the peak of animacy decoding emerge between 131 ms (SE = 30) and

434 ms (SE = 30) after the stimulus onset. This result indicates that normal aging causes a

reduction in the animacy information processing speed (IPS). Compared to the old healthy

individuals, animacy IPS was further delayed in MCI patients (onset of animacy decoding: 196

ms±16, peak animacy decoding: 473 ms±34 after the stimulus onset). These findings confirm a

significant decrease in the speed of neural information processing in patients with MCI and

are consistent with previous behavioral studies showing a decline in visual IPS in MCI patients

compared to HC [44, 47]. Together, these results suggest the IPS as a potential biomarker for

the detection of MCI patients. However, other complementary biomarkers should be

employed for the diagnosis of MCI due to AD.

Some of the study limitations include the relatively small number of patients recruited.

Additionally, the study was not a longitudinal study to determine if the MCI patients will con-

vert to AD. In future longitudinal studies, we aim to investigate how well the current results

generalize to cohorts of larger MCI/AD patients.

5 Conclusion

We showed that the speed of processing animacy information is decreased in MCI patients

compared to healthy individuals. This suggests the use of the ICA test, which is based on the
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categorization of animal and non-animal images, as a digital biomarker for detecting cognitive

impairment in MCI patients.

Furthermore, we showed that in addition to univariate changes, the brains of MCI patients

and HC individuals are different in the pattern of representing animacy information.

Supporting information

S1 Fig. EEG electrodes layout. We used a 64-channel g.tec product at a sampling rate of 1200

Hz for EEG data acquisition (S1 Fig). The reference electrode (#33) was placed on the partici-

pant’s right ear. Fp: prefrontal; AFL: left anterior frontal; AFR: right anterior frontal; FL left

frontal; Fz: midline frontal; FR: right frontal; FCL: left fronto-central; FCR: right fronto-cen-

tral; TL: left temporal; CL: left central; Cz: midline central; CR: right central; TR: right tempo-

ral; TPL: left temporo-parietal; CPL: left centro-parietal; CPR: right centro-parietal; TPR: right

temporo-parietal; PL: left parietal; PR: right parietal; POL: left parieto-occipital; Pz: midline

parietal; POR: right parieto-occipital; O: occipital.

(TIF)

S1 Table. Performance of participants on paper tests (MoCA and ACE-R) and ICA test

(administered on iPad). The absent subjects were removed from this study either due to their

status of disease (AD or mild AD) or that their status changed during the development of the

study.
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