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Abstract

Rosette morphology across Arabidopsis accessions exhibits considerable variation. Here

we report a high-throughput phenotyping approach based on automatic image analysis to

quantify rosette shape and dissect the underlying genetic architecture. Shape measure-

ments of the rosettes in a core set of Recombinant Inbred Lines from an advanced mapping

population (Multiparent Advanced Generation Inter-Cross or MAGIC) derived from inter-

crossing 19 natural accessions. Image acquisition and analysis was scaled to extract geo-

metric descriptors from time stamped images of growing rosettes. Shape analyses revealed

heritable morphological variation at early juvenile stages and QTL mapping resulted in over

116 chromosomal regions associated with trait variation within the population. Many QTL

linked to variation in shape were located near genes related to hormonal signalling and sig-

nal transduction pathways while others are involved in shade avoidance and transition to

flowering. Our results suggest rosette shape arises from modular integration of sub-organ

morphologies and can be considered a functional trait subjected to selective pressures of

subsequent morphological traits. On an applied aspect, QTLs found will be candidates for

further research on plant architecture.

Introduction

Understanding the role of environmental conditions on plant development is of increasing

importance to counterbalance climate change effects in agricultural species [1]. Natural varia-

tion found in nature can reveal features that are subject to selective pressure, including that

exerted by the local environment [2–4]. For example, shoot architecture integrates the interac-

tion between genetic determinants, developmental history, the environment and adaptation to

particular lifestyles [5, 6]. The rosette forms during the vegetative phase of many species

including several major crops in the Brassicaceae family. The rosette is an attractive model to
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understand the genetic architecture of variation in plant form thanks to the quantity and qual-

ity of genetic and natural resources available in the model species, Arabidopsis [2, 7, 8].

Rosettes display limited internode extension and generally are comprised of a spiral of

leaves, overlapping to a greater or lesser extent [9]. This leaf assemblage has recurrently

appeared along angiosperm phylogeny [10], yet its adaptive significance remains unclear.

Rosettes probably occupy the space for photosynthesis, excluding nearby plants by establishing

ground cover [11] while remaining cryptic to larger herbivores [12]. Leaf distribution and size

may respond to environmental factors such as light interception [13], herbivore grazing [14],

abiotic stress [4, 15]. We rationalise that, over evolutionary time, small changes in leaf size and

shape, internode extension, and other developmental processes could have been selected and

therefore, shape variation could give insight into the genetic control of the rosette habit.

Shape is a ubiquitous concept in biological research with context dependant morphometri-

cal methodologies [16, 17]. Outline shape descriptors [18–21] define specific and quantitative

[22] aspects of form, e.g. roundness [23]. They can be combined with computer vision [24, 25]

for high-throughput phenotyping [26] of plants organs, assemblages, full plants and field plots.

These are global descriptors [27, 28] with some degree of overlapping [29–31] and dependency

[32]. For example, a cogwheel, a starfish-like shape or Arabidopsis rosettes are visually differ-

ent but with similar roundness scores and different circularity ones, due to their different defi-

nition [33, 34].

High dimensional vectors of descriptors need multivariate statistics to discriminate shapes

numerically. Particularly, Principal Component Analysis (PCA) [35, 36] build latent variables

[37, 38] (or latent shapes [39]) generating a “morphospace” [40–42], with specific mathemati-

cal properties [43, 44] e.g. relative warps and synthetic shape axis [45–47]. PCA-based mor-

phospace cleaves univariate morphological features [47] that can be analysed as individual

morphological phenotypes [43] in quantitative trait loci (QTL) mapping experiments [48–50].

Also, PCA is used to separate size from shape [51, 52], study allometric growth [41, 53] or

when sample size is much smaller than the number of variables measured.

To interrogate shape and size variation over populations large enough to reveal associations

with the underlying genetics requires measurement techniques that are scalable. Imaging tech-

niques are readily scalable and have been widely used to measure growth rate [3, 54, 55], leaf

number and size [56], leaf hyponasty [57] and hypocotyl angle [58], and can be used to esti-

mate morphological parameters. We have previously characterized rosette morphology in 19

Arabidopsis ecotypes using image based approaches during growth and development [22] and

other studies have used similar descriptors for screening large Arabidopsis populations and

mutants, tracking morphological changes over time and allowing a more precise dissection of

developmental timing of plant growth and development [59–63]. Image analysis can quantify

size and shape variation due to defined genetic lesions in rosette plants [64] and used to iden-

tify QTL for variation in rosette area, revealing a number of candidate genes for growth and

size traits [3, 4, 62, 63, 65–67]. More recently, a multi-scale approach was used with the pur-

pose of linking genes to plant shape at several scales, from the whole plant to cells and tissues

attending to quantitative measurements extracted from digital images and models [50]. It can

be argued that research on plant morphology and gene mapping would benefit advanced auto-

matic phenotyping methods scalable to large populations [68, 69]. For that reason, it is impor-

tant to find and describe measurements that ensure an accurate capture of morphological

variability with biological meaning.

QTL mapping experiments leverages the phenotypic variation associated with the standing

genetic variation. Biparental crosses estimate linkage between markers [70, 71] and between

markers and phenotypes e.g. Composite Interval Mapping and Haley-Knot regression [72,

73]. Mapping resolution depends on recombination rate, marker distribution [74, 75] and trait
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complexity [76]. In contrast, natural populations can harbour higher genetic and phenotypic

variation [77], have shorter haplotypic regions due to higher crossover number [78] and may

present some population structure that confound analysis. Genome-Wide Association Map-

ping (GWAS) exploits linkage disequilibrium [79] to associate statistically traits to genotyped

markers [80] by ANOVA-like tests [81, 82]. Linear mixed models correct for experimental fac-

tors [83–85] like population structure, replication levels, treatments, etc. Multiple testing, for

many markers, need False Discovery Rate correcting procedures like Bonferroni or Benja-

mini-Hochberg.

Advanced mapping populations, like Multiparent Advanced Generation Inter-Cross

(MAGIC) [86], trade the advantages and disadvantages of classical mapping populations in

terms of resolution and efficiency [87]. These are crosses of up to 20 genetically and phenotypi-

cally diverse parental types [88] and several generations of selfing. The strategy reduces popu-

lation structure and generates small haplotypic mosaics, providing finer resolution mapping

than bi-parental with less false positives than natural populations. MAGIC allows haplotype

reconstruction for markers alleles as founder-of-origin [89–91] tracking genetic variation back

to parental sequence level [92]. Tailored bayesian models [93, 94] improves parameter estima-

tion and permutation-based procedures reduce False Discovery Rates [95].

The use of highly diverse natural accessions increases the opportunity to find trait-associ-

ated markers that may not be available in laboratory experimental populations. In particular,

the wild-type ecotypes phenotyped in [22] are the parentals of the MAGIC [96]. This popula-

tion consists of a large genetically-unstructured population of Recombinant Inbred lines

(RILs) generated by inter-crossing 19 Arabidopsis parental lines and several generations of sin-

gle seed descent [96]. The Arabidopsis MAGIC population displays a high degree of pheno-

typic variation in terms of rosette shape and size, making it suitable to dissect the genetics of

complex phenotypic traits.

Here, we report machine-assisted acquisition of time-stamped images from MAGIC RILs

during their rosette development and we extract a range of morphology descriptors for rosette

size and shape variation. We continue the work of [22] and extend their approach to quantify

and explore the underlying genetic basis of size and shape variation by a QTL mapping

approach. Combined phenomics and genomics analyses identify 116 loci linked to the shape

in the early developmental stages of Arabidopsis rosette growth.

Material and methods

Plant material

Phenotyping was performed on a core set of 485 RILs (3 replicates of each) from the MAGIC

population [96, 97]. Seeds were obtained from the Nottingham Arabidopsis Stock Centre

(NASC). Plants were previously genotyped by [96], using 1260 single nucleotide polymor-

phisms (SNPs) at the Illumina GoldenGate assay.

Growth conditions

Experiments were performed in greenhouse chambers at the National Plant Phenomics Centre

(NPPC) at IBERS, Aberystwyth University, UK. Seedlings were vernalized for 28 days at 5˚C

and 8h light/16h darkness cycle. This ensured that all genotypes germinated and flowered

within the time course of the experiment.

Single seedlings were pricked out into 6 cm diameter pots (half filled with vermiculite and

the upper half with 30% grit sand/70% Levington F1 peat based compost) and were transferred

after 7 days to PlantScreen Phenotyping System (Photon Systems Instrument, PSI, Brno,

Czech Republic) and grown under controlled conditions (18˚C, 14/10h photoperiod, white
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light ~ 400 μmol m-2 s-1). Plants were imaged, weighed and watered to a predefined target

weight of 65% of field capacity, daily, until most plants had flowered.

Image acquisition, processing and morphology descriptors

Top view images were processed using an internal automatic workflow provided by the manufac-

turer. It performed the tasks of image processing, which calculated size and shape descriptors and

stored them on the platform database. A detailed description of all descriptors can be found in [61]

and Table 1. Rosette size was described by Projected Rosette Area (PRA) and Perimeter Length

(PL). Rosette ground coverage comprised Compactness and Rotational Mass Symmetry (RMS)

descriptors. Rosette deviation from a circle was measured with Slenderness of Leaves (SOL),

Roundness (RND), Convex Hull Roundness (RCH), Isotropy (ISO) and Eccentricity (ECC).

Phenotypic data analysis

All summaries and plots were performed using the R statistical computing environment [98].

Replicate values by Days After Sowing (DAS) were averaged and all calculations, including

QTL mapping are performed using the mean value as representative of the RIL at given DAS.

Principal components analysis (PCA, function prcomp from the package stats [98]) was cal-

culated to generate an uncorrelated shape space, i.e. to eliminate remaining size-effects and

correlations among descriptors. PCA was built with the correlation matrix and all 9 Principal

Components were retained so that RILs distances remain constant, given overall mean and

variance scaling. Therefore, this PCA does not reduce dimensionality but constructs an uncor-

related morphospace with common aspects of rosettes grouped in each principal component.

PCA was performed on RIL- averaged values rather than individual values.

Pairwise Pearson’s correlation across descriptors’ averages were calculated at each DAS

(function cor and cor.test from the package stats [98]). Broad-sense heritability (H2) was calcu-

lated independently at each DAS for all shape descriptors to estimate the proportion of the

phenotypic variance explained by genetic variation. Variance decomposition random-effect

Table 1. Morphology descriptors used in this study. Modified from PlantScreen User Manual, v1.5, 2017.

Group Descriptor Acronym Description Equation

Rosette size Projected Rosette

Area

PRA Total area of visible plant surface. pixel count transformed into mm2 -

Perimeter Length PL Boundary pixel count transformed into mm -

Rosette

coverage

Compactness Compactness Ratio between area and convex hull area. Convex Hull represents the

smallest polygon surrounding the shape without any concavity.

Comp: ¼ Area
AreaConvex Hull

Rotational Mass

Symmetry

RMS Ratio between convex hull area outside and inside a circle with the same area

(weighed by compactness) that the plant, which has its centre in the plant

centroid

RMS ¼ AreaCircle OnlyþAreaConvex Hull Only
AreaIntersection

� �

Rosette

geometry

Slenderness of

Leaves

SOL Ratio between the plant skeleton and area. The plant skeleton is a set of lines

that runs through the medial axis, i.e. the central region, of plant leaves and

petioles

SOL ¼ Perimeter2Skeleton
Area

Roundness RND Deviation from a circle using the relation between the area and the

perimeter

RND ¼ 4 � p � Area
Perimeter2

Convex Hull

Roundness

RCH Roundness calculated from the convex hull RCH ¼ 4 � p �
AreaConvex Hull

Perimeter2Convex Hull

Isotropy ISO Ratio of area and perimeter from a polygon, including leaf tips ISO ¼ 4 � p �
Areapolygon

Perimeter2polygon

Eccentricity ECC Shape elongation towards an axis. The spatial variance of plant pixels

position is calculated. Then the mayor and minor axis of the ellipse with the

same variation are computed.

ECC¼2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
�MajorAxisLengthð Þ

2
� 1

2
�MinorAxisLengthð Þ

22
q

Major Axis Length

https://doi.org/10.1371/journal.pone.0263985.t001

PLOS ONE A phenomics approach to rosette shape and QTL mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0263985 February 16, 2022 4 / 22

https://doi.org/10.1371/journal.pone.0263985.t001
https://doi.org/10.1371/journal.pone.0263985


models were fitted (function lme from the package nlme [99]) with phenotype (Pij) as depen-

dent variable, RIL (Ri with I as line number) as a random factor and random residuals (εij) for

each replicate plant j as Pij = μ+Ri+�ij [100]. Variance component estimates were extracted

from the model with the function varcomp from the ape package [101]. Broad-sense heritabil-

ity (H2) for each descriptor was estimated as H2 ¼
Vg

VgþVe
, where Vg is the variance among the

RILs and Ve is the environmental variance. The general workflow for the data analysis is sum-

marized in Fig 1.

QTL mapping and candidate genes

Each shape descriptor (9 variables) and principal component (9 PCs) were split by DAS and

used as input for QTL mapping with the happy.hbrem R package. This software was specifically

designed for multi-parental population analysis [89] and previously used for Arabidopsis

MAGIC population [96]. RILs genomes are reconstructed as parental haplotype mosaic

(happy) working out the Identity By Descent (IBD) using a Hidden Markov Model [89]. For

each phenotype, a genomic scan fits a Hierarchical Bayes random effects (hbrem) model [92]

with 19 random factors, corresponding to founder alleles, weighed by the IBD probabilities. A

permutation test randomizing phenotypes 500 times, established a genome-wide threshold for

Fig 1. Workflow used in this study for phenotyping and QTL mapping. 485 RILs (3 replicates) were grown in 5x4 trays and imaged daily. Images were

automatically segmented, rosettes were extracted, and analysed by device built-in pipelines. Shape descriptors and other metadata are recorded into a database.

Shape descriptors and their PCA-derived morphospace were used for QTL mapping with happy.hbrem followed by gene search at ARAPORT11.

https://doi.org/10.1371/journal.pone.0263985.g001
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statistically significant QTL and corrects for multiple testing according to [96, 102]. Finally, a

QTL location is defined as the peak marker with largest logP-value (from hbrem procedure)

within an interval where other SNPs pass the genome-wide P-value (from the resampling pro-

cedure). A boxplot with allelic phenotypic effect for each founder ecotype was calculated using

the hbrem procedure.

The amount of phenotypic variation explained by each marker was estimated using the

package MagicHelpR (https://github.com/tavareshugo/MagicHelpR). The closest gene to the

QTL marker was identified and gene annotations were retrieved from ARAPORT11 [103]

using custom scripts.

The total number of traits was 180 comprising 9 shape descriptors and 9 PCs multiplied by

10 days. Some QTLs were found at several days and traits. To make the analysis tractable, a

procedure to select non redundant QTLs was developed as follows. An R script goes through

all QTLs, in order of date, from 35 to 44 DAS, and then by shape descriptor, following the

order in Table 1 and PC1, PC2 . . . PC9. At each day and descriptor, the R script saved any

QTL that was not reported before and removes redundant ones. Therefore, the significant

QTL list was sorted, first by day and then by descriptor. Then, the relevance of each shape

descriptor and the length of the phenotyping experiment can be evaluated by the number of

QTLs found each day and per variable.

Results

Shape descriptors variation, heritability and correlation

Cross comparisons across the RILs showed large variation in rosette morphology for the

MAGIC RIL population. Fig 2 illustrates an example of six RILs and their values of Projected

Rosette Area (PRA) and Compactness. S1 Fig includes the whole population and all traits and

S1 Data contains averaged values per RIL for all nine shape descriptors and DAS. Rosette

shape varied from genotypes with high surface coverage, short petioles and rounded leaves

that do not extend far from the stem (e.g. RIL 41, Fig 2A) to genotypes with conspicuous gaps

caused by longer petioles and / or elongated leaves that extend far enough to give a dispersed

appearance (e.g. RIL 516, Fig 2A).

PRA showed values of 102 ± 57 mm2 (mean ± standard deviation) increasing daily between

25–35% up to an average of 1180 ± 400 mm2. RIL PRA variation had a min-max range of 385

mm2 at 35 DAS and 2239 mm2 at 44 DAS. Perimeter Length (PL) varied between 15 and 204

mm (mean ± sd: 78 ± 31mm) at 35 DAS increasing to a min-max range between 57 and 694

mm (mean ± sd: 353 ± 95 mm). The PRA-PL correlation (S1 Table) was 95% at 35 DAS, decay-

ing through time down to 66.23%.

Compactness values were between 0 and 1 where 1 is a circle with no gaps and values lower

than 0.3 represent a small circumference with no inner pixels, out of the range feasible for

rosettes. At 35 DAS, compactness fluctuated between 0.38 and 0.86 (mean ± sd: 0.65 ± 0.07)

with a similar range afterwards (mean values between 0.62 and 0.66). Compactness correlated

negatively with PRA (-48.34% at 35 DAS) changing towards a slight positive correlation (3% at

41 DAS and 27.02% at 44 DAS). Compactness correlated negatively with PL (-65% at 35 DAS

moving towards -36% at 44 DAS) (S1 Table).

ECC values vary from 0 (a circle) to 1 (a line). At 35 DAS, the rosettes had a range of values

between 0.14 and 0.77 (mean ± sd: 0.34 ±0.09) decaying to a min-max between 0.08 and 0.30

(0.16 ± 0.03). ECC correlated negatively with PRA (around 50% on most DAS) and weakly

with PL (between -16 and -54%). The correlation between ECC and compactness fluctuated

between -32% and +15%. Eccentricity also correlated strongly with Rotational Mass Symmetry

(RMS), over 80% between 35 and 38 DAS diminishing towards 60% at 44 DAS and 6% at 42
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DAS. Correlation between ECC and roundness convex hull (RCH) was below -80% at all days

except -74% at 40 DAS (S1 Table).

RMS (called rotational inertia and moment of inertia in rigid body physics) is also valued

between 0 and 1. A value of 1 means an irregular rosette, either because it is eccentric or it is

non-homogeneous. Small values of RMS indicate circular and high-coverage rosettes. RMS

had values between 0.32 and 0.93 at 35 DAS (mean ± sd: 0.75 ± 0.1). RMS fluctuated with

ample variation along days (min-max range around 0.70) between 0.12 and 0.77 at 44 DAS

(mean ± sd: 0.42±0.10) (S1 Table).

RCH had low variation across time, with minimum values between 0.70–0.80 at all DAS

and maximum values of between 0.92–0.97 with a dynamic range between 0.10 and 0.20. The

Fig 2. Rosette morphology variation of the MAGIC RIL population across time. A. Top view images of two contrasting rosettes, RIL 41 and RIL 516. B.

Projected rosette area (PRA) and compactness from a set of six different RILs. DAS: Days after sowing. Error bars represent sample-based standard deviation

(SD, n = 3). The six MAGIC lines have been chosen so they cover most of the range of phenotypic variation.

https://doi.org/10.1371/journal.pone.0263985.g002
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correlation between RCH and RMS peaked at -66% at 35 DAS and increased towards -22% at

40 DAS and decreased again to -40% at 44 DAS (S1 Table).

RND values are between 0, circular rosettes, and 1 asymmetric ones. Rosettes RND ranged

between 0.09–0.59 at 35 DAS, decreasing to 0.04–0.38 (mean ± sd: 0.22 ± 0.07 at 35 DAS to

0.13 ± 0.05 at 44 DAS). RND was negatively correlated with PL (below -70%) and with Slender

of leaves (SOL) (-77.5% at 35 DAE) decreasing through time (-47% at 44 DAS) (S1 Table).

SOL had an unbounded dynamic range from 0 to 289 (in our rosette set). SOL minimum

rose from 1.93 at 35 DAS to 4.24 at 44 DAS, and maximum also increased from 21 to 243. SOL

had a strong positive correlation with PRA, around 78% at 35 and 36 DAS decreasing to 41%

at 44 DAS (S1 Table).

Isotropy (ISO) was weakly but positively correlated with RND (50% to 61% from 38 DAS

onwards) and negatively with PL (-51% to -67% between 38 DAS and 44 DAS) (S1 Table).

Heritability values (Table 2, S2 Fig) decreased across time as rosettes grew. Heritability for

PRA, PL, Compactness and RND were over 50% at all times (RND baseline heritability was

48%). Heritability for SOL went from 62% at 35 DAS, at two cotyledons stage, to 49% at 38

DAS, with five or six leaves, and to 12% at 44 DAS. RCH, ECC and RMS had heritability values

around 40% and went down to around 30% and to 10% for RMS. ISO had constant low herita-

bility at all times, around 15–20%.

Principal component analysis (S2 Table, S3 Fig) generated an uncorrelated morphospace

for variation in rosette morphology. The first two principal components explained 75% of

shape variation (51% PC1 and 24% PC2) in the RIL population. PC1 was a combination

mainly of size components related to rosette age (according to the colour gradient from green

to blue along time) and RND and ECC components. The second PC represents just shape

components indicating that compactness is independent of size and correlating with RCH and

RND, while these two did not correlate among them. These 2 PCs indicated that younger

rosettes were quite eccentric and when they grew older they either got rounder or elongated in

one direction. PC 1 is composed of PRA, PL, RCH and SOL as positive loadings and RMS and

ECC as negative ones. PC2 is positively influenced by Compactness, RND, ISO and RCH, cap-

turing the circularity of the rosette. PC3 (12% variance) is negatively influenced by Compact-

ness, ECC and RMS and SOL, which are related with the asymmetry and the presence of inter-

leaf gaps. PC4 (5% of variance) is dominated (0.84) by ISO. PC5 (4% of variance), positively

weighted by SOL, RCH and RMS and negatively by PRA, accounts for small leaves spread out

in a circular fashion. PC6 (2% of variance) is dominated positively by RMS and less by PRA

and negatively by SOL, phenotyping large rosettes with gaps between leaves but leaf blade

overlapping. PC7 (1% of variance) oppose Compactness and RND accounting for dense filled-

Table 2. Broad-sense heritability per morphology descriptor across time, showing the percentage of change between the last and first DAS.

Descriptor \ DAS 35 36 37 38 39 40 41 42 43 44

PRA 62 68 68 68 69 70 68 66 65 62

PL 67 74 75 72 72 69 62 58 46 47

Compactness 69 70 64 62 57 52 49 49 52 56

RMS 39 46 43 32 21 17 10 11 17 18

SOL 62 62 58 49 34 31 21 18 14 12

RND 64 70 67 61 59 55 48 46 43 48

RCH 47 44 43 41 35 34 27 29 28 29

ISO 16 23 22 23 26 25 23 22 17 21

ECC 39 48 52 47 37 37 18 27 28 28

https://doi.org/10.1371/journal.pone.0263985.t002
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in rosettes. PC8 and PC9 account for less that 1% of variance but PC9 identifies large rosettes

with small perimeter, a sign of round shape.

Dynamic QTL mapping

A Bayesian multipoint QTL mapping [89, 91] was applied to all combinations of shape

descriptors, including PCs, and DAS to find genetic markers associated with rosette morpho-

logical variation. This strategy identified 116 QTLs significantly associated (-log(P)� 3.5) with

phenotypic variation across time (S3 and S4 Tables, Fig 3). The physical position of markers

queried in the ARAPORT 11 database for the closest gene accession, resulting in 105 candidate

genes for shape variation in Arabidopsis rosettes (S5 Table).

Redundant associations (i.e. same locus found to be significant at several DAS or at several

shape descriptors) were filtered out. Most QTLs were found either in the first 4 or in the last 3

DAS (Table 3). For shape descriptors (Table 4), Compactness, RND, PL, PC3 and PC2 contrib-

uted most to QTLs. Although PRA varied among rosettes, no associated markers were found

even before filtering.

QTL tended to cluster on chromosome 2 at all DAS and mostly for compactness, RND and

PL descriptors (Table 5, S3 and S4 Tables, S4 Fig). QTL at chromosome 1 were found mostly

at 35 and 38 DAS and markers at chromosome 3, 4 and 5 were found mostly at 42 to 44 DAS.

Estimated phenotypic values of the 19 parental alleles on compactness and RND are shown for

the QTLs cluster on chromosome 2 (S5 Fig).

Genes and markers associated to shape variation

S5 Table contains ARAPORT 11 gene accessions closest to QTL associated markers and are

possibly related with the phenotype. The descriptions of these genes suggest that many regula-

tory genes related with hormonal and environmental signals may be related with the shape

descriptors studied.

QTL on Chromosome 2 (Fig 3 and S4 Fig) were distributed across the whole chromosome

with a dense cluster around the markers ER_472 and PHYB_1645. The highest p-values were

found at markers MASC05920 and MASC05927 (p-values around 12 according to trait and

day).

The marker MASC05920 was found in this region with maximum significance level (-log

(P) between 10 and 15 according to date and descriptor) found for Compactness, RND and

PC2 (S3 and S4 Tables). MASC05920 is located within AT2G26300 loci (gene name GPA-1).

This gene encodes for a heterotrimeric G-protein alpha subunit involved in signal transduc-

tion (S5 Table). A BLASTP alignment between Arabidopsis and Saccharomyces GPA-1 (NCBI

NP_011868) resulted in a 60% identity (positives), 55% identity (positives) with Caenorhabdi-

tis one (NCBI accession NP_001123018), indicating homology may be due to conserved motifs

shared with most G-proteins. Comparisons of the distribution of haplotype effects at this QTL

for both, compactness and RND, suggests that parental lines Ler and Can contribute mainly to

the most compact and round rosettes; while the other parents have a similar distribution of

effects (S5 Fig).

Other QTLs were associated with marker MASC05927, located in locus AT2G26240. This

gene encodes for a transmembrane protein 14C (S5 Table) whose function has not been

described so far. For this QTL, the Ler parental line is the main contributor to the RND pheno-

type. Marker ER_472 is located ~8.800 bp away from markers MASC05920 and MASC05927.

This marker was significantly associated with RND at 42 DAS, explaining 15% of phenotypic

variation (-log(P) = 12.1) (Fig 3A–3C). It was also found significant for ISO at 39 and 41 DAS,

explaining between 6% and 12% of the phenotypic variation. ER_472 is a SNP within ERECTA
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Fig 3. LOD score plots at different DAS. A. Roundness. B. Compactness. C. Close-up of chromosome 2 region surrounding PHYB_1645 SNP (blue asterisk)

and ER_472 SNP (green asterisk). Gene models are shown under marker names. Significance threshold–log(P)� 3.5 is shown as dotted lines.

https://doi.org/10.1371/journal.pone.0263985.g003
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gene (AT2G26330), which is annotated as a Leucine-rich receptor-like protein kinase family

protein [104] and known to affect rosette shape [105–107]. The effect of the 19 haplotypes

shows that the alleles conferring the largest RND effect are from Ler, followed by Can and Hi

parental lines (S5 Fig). A QTL on chromosome 2 for RND was associated with marker

PHYB_1645 (-log(P) = 4.2). This marker is located within the PHYB gene (AT2G18790)

encoding for the PHYTOCHROME B gene (Fig 3A–3C), a photoreceptor sensitive to red:far

red ratio. The effect of the 19 haplotypes for this QTL showed a similar, but no identical distri-

bution of effects, with the Can parental line as the main contributor (S5 Fig).

Other relevant QTLs were found spread over the other chromosomes. A QTL on chromo-

some 5 (marker MN5_25963543) explained 8% of the phenotypic variation for RND and

Compactness at 44 DAS (Fig 3A and 3B, S3 Table). Its closest gene is AT5G64930 (CPR-5),

involved in plant defence (systemic acquired resistance—SAR). Four QTL were found in chro-

mosome 4 associated with RND (S3 Table). Three of the genes identified encode un–character-

ized proteins, and the fourth encodes for the gene ATG4G22300 (AtTIPSY1).

Discussion

Plant development occurs throughout the individual lifetime [108–110] and the production of

new organs, i.e. stems, roots, leafs or flowers, is constantly influenced by the environment

[111–113]. Ecotypes adapted to local environments often differ in many traits, particularly in

the arrangement, size and shape of such organs. Research on phenotypic variation often refers

to “morphology”, “form” and “shape” by implicit and informal definitions. As a consequence,

the concept of shape can be reduced to adjectives like long-short, round-elongated, sparse-

dense or into categories without explicit parameterization. Computer vision based shape

descriptors are precisely defined, their measurement is objective, repeatable and interpretable

as compared to visual human experience [22, 114, 115].

Extending the strategy previously used to describe shape variation of the 19 parental acces-

sions in [22], we have quantified the rosette shape of 485 RILs. We used these measurements

to associate genetic and phenotypic variation. Arabidopsis MAGIC population captures a rea-

sonable range of natural variation and the inter-cross results in highly recombinant lines with

higher mapping resolution to dissect quantitative traits genetic architecture [116] than bipa-

rental populations [117]. The lack of structure in MAGIC populations reduces false positives

rates, which is an important drawback in association mapping [96].

The MAGIC population has been previously characterised for flowering time, height and

fitness [96, 118] with a specific advanced statistical method for QTL mapping [89, 91]. This

Table 3. QTLs found per day after removing redundant QTLs.

DAS 35 36 37 38 39 40 41 42 43 44

# QTLs 17 11 12 16 7 7 4 15 14 15

Cum sum 17 28 40 56 63 70 74 89 103 118

https://doi.org/10.1371/journal.pone.0263985.t003

Table 4. QTLs found per variable after removing redundant QTLs. Organized by shape descriptor, sorted by QTL count.

Shape Descriptors Compactness RND PL PC3 PC2 RCH ISO ECC

# QTLs 29 23 10 9 8 6 6 5

Cumulative sum 29 52 62 71 79 85 91 96

Shape Descriptors PC4 PC6 PC8 PC1 PC5 PC9 PRA SOL

# QTLs 5 4 3 2 2 2 2 2

Cumulative sum 101 105 108 110 112 114 116 118

https://doi.org/10.1371/journal.pone.0263985.t004
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method takes advantage of multiple parents to assign genetic variants as multi-allelic markers

rather than bi-allelic. In summary, MAGIC populations represent the best of both worlds, in

the sense of high variation, low structure, high resolution and precision in the statistical meth-

ods. As a potential disadvantage the set of 485 RILs, with three replicates per RIL, became 1455

plants to keep under strict environmental control and daily phenotyping. To overcome this

difficulty, a mechanised phenomics approach was necessary.

Our results support the idea that variation in rosette growth and shape involves multiple

genes in a hierarchical control. This genetic structure should be able to exploit variable envi-

ronmental conditions [119, 120], regulate heterochrony [109, 121], and enable a phenotypic

response to variation in vernalization and photoperiod, e.g., flowering time or branching

pattern.

Shape descriptors were correlated, suggesting ecologically related trait syndromes [122].

Therefore, they can be grouped into functional traits. PRA, PL, and SOL form a cluster captur-

ing information on size and length. ECC and RMS form another cluster describing rosette

elongation. RND and ISO describe the pattern of leaf arrangement as in a circle or a star-like

shape. A singleton comprising only RCH captures accurately the closeness of rosettes to a per-

fect cycle, regardless of the gaps between leaves. Compactness would be another singleton

describing rosette coverage.

Significantly associated markers were found using a dynamic QTL approach with a full

combination of shape traits and DAS. This method yields up to 180 variables to test, thus

increase the analytic effort with respect to single time point and single variable approaches,

yet also increase the number of QTLs that would otherwise not be found using these other

common strategies, e.g. phenotyping rosette size at the six leaves stage.

The markers found at chromosome 2 form a region with several potential genes related to

rosette morphology. A first example is the GPA-1 gene. In yeast, the GPA gene is related to sig-

nal transduction in pheromone response pathway [123]. In Arabidopsis, amongst other func-

tions, it is related to blue light induction of phenylalanine production [124], abscisic acid

responses [125] and modulation of hypocotyl elongation and leaf formation (recessive mutants

show round leaves and elongated petioles associated to sugar signalling and response-associ-

ated cell death [126]. GWAS association with environmental variables in the 1001 genomes

population found SNPs markers related with the γ-subunit of a heterotrimeric G-protein,

AGG3, related with cold tolerance [8]. The AGG3 protein is related to seed and organ growth

[127] and shape [128], connecting this activity with the single G-protein alpha subunit found

in Arabidopsis, GPA-1 and their orthologs in rice. GPA-1 also regulates germination, seedling

development, reaction to environmental changes and stomata opening by means of ABA sig-

nalling. Mutants for GPA-1 are sensitive to ABA signalling [129]. ABA, together with ethylene

and gibberellins, affect phenotypic plasticity related variation in leaf architecture [130]. This

candidate alone would support a highly significant QTL in this region but there were other

QTLs close to this marker that may be novel. For example, the gene AT2G26240 encoding for

the transmembrane protein 14C is suspected to be related with fatty acid transport, FAX7 fatty

acid export 7 [131]. The gene ERECTA (AT2G26330) is involved in shade avoidance responses

(SAS) and the general morphology [132]. The gene PHYB is a well-known photoreceptor

involved in the shade avoidance syndrome (reviewed in [133]), playing an important role in

Table 5. QTLs found per chromosome after removing redundant QTLs.

Chromosome 1 2 3 4 5

#QTLs 23 54 13 13 15

Cumulative Sum 23 77 90 103 118

https://doi.org/10.1371/journal.pone.0263985.t005
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canopy development and morphology [134]. The gene CPR-5 (AT5G64930) is not directly

related with morphology but with plant defences, yet, changes in rosette shape have been

reported in cpr5 mutants in response to light and altered salicylic acid levels [135, 136].

Another gene close to a marker QTL and involved in plant defence is ATG4G22300

(AtTIPSY1) [137].

Overall, from the 116 markers significantly associated with the rosette shape descriptors,

most are located within loci with known or suspected regulatory functions (S5 Table). These

were several membrane proteins and receptors, including a G-protein subunit like GPA-1
(AT2G26300), a protein kinase receptor like ERECTA (AT2G26330), transcription factors

like, PHYTOCHROME RAPIDLY REGULATED1 (PAR1, AT2G42870), or chromo proteins

like PHYB (AT2G18790) and hemoproteins, like HO2 (AT2G26550), participating on photo-

morphology and shade avoidance responses, by regulation of an auxin-responsive gene [138]

and similar environment response phenotypes.

This study focuses on the global shape of an organ assemblage, the A. thaliana rosette.

Rosette leaf shape varies along the ontogenetic development according to their local environ-

ment [67, 139], e.g., in a single plant some leaves are longer than others, usually towards light

sources, with crenate, undulate or entire borders. Yet, rosette appearance is distinguishable

among ecotypes and similar within individuals of the same ecotype, especially when grown in

homogenous conditions [22]. Thus, rosette shape variation is visible and genetically controlled

within some range as predicted by the ‘continuum and process morphology’ [140–142]. Our

results on shape descriptors heritability are consistent with these observations and build up on

the concept that morphological traits act as functional ones [63, 143]. The QTLs found here

agree with the theory that finely tuned genetic regulatory networks, linking and integrating

environmental clues during ontogenetic development, are among the major contributions to

plant local adaptations [144–147]. In this sense, our study introduces the automated plant phe-

nomics as a relevant tool for the so called eco-evo-devo [148] with particular emphasis on mor-

phology at a subspecies taxa level [149, 150]. From an applied biology perspective, the QTLs

reported may be useful for further research either in their role on phenotypic regulation or the

type of genetic variants they bear. For example, it can be argued that genetic manipulation of

phytochromes or kinase receptors may potentiate crop adaptability to extreme environments

or reduce undesirable variation due to early stage disturbances like short-term frost, drought

or salt stress [15].

Supporting information

S1 Fig. Rosette descriptors through time for the 485 MAGIC RIL population and their

principal components. Each line represents a RIL. Bold lines remark 8 random RILS.

(TIFF)

S2 Fig. Broad-sense heritability per morphological descriptor across time.

(TIFF)

S3 Fig. Principal components analysis biplot. PC1 vs PC2 coloured by DAS (35 DAS: Green,

44 DAS: Blue).

(TIFF)

S4 Fig. Significant markers for all morphological descriptors across time at five Arabidop-

sis chromosomes. In red ERECTA and PHYB markers. Number in parenthesis besides each

marker means the number of times the same marker was identified for all descriptors across

time.

(TIFF)
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S5 Fig. Boxplots with the estimated values of 19 parent alleles on roundness and compact-

ness for the main QTL detected. Four QTLs on chromosome 2 at 39, 42 and 43 DAS are

shown for roundness, and one QTL for on chromosome 2 at 39 DAS is shown for compact-

ness.

(TIFF)

S1 Table. Correlation pairs between morphology descriptors across time in DAS. Grey

background cells indicate values between -50% and 50% and red coloured values indicate neg-

ative correlations.

(XLSX)

S2 Table. Principal component analysis loading values for the whole set of shape descrip-

tors through time, scaled by mean and standard deviation and calculated over the correla-

tion matrix. Grey background cells indicate values between -0.5 and 0.5 and red coloured

values indicate negative loadings.

(XLSX)

S3 Table. Set of QTLs identified in all the morphology descriptors across time. Including

the region position of the QTL, the position of the SNP peak, the significance, p-value, percent-

age of variation.

(XLSX)

S4 Table. Set of QTLs identified in all the PCA based descriptors across time. Including the

region position of the QTL, the position of the SNP peak, the significance, p-value, percentage

of variation.

(XLSX)

S5 Table. Set of Gene accessions at ARAPORT 11 closest to the QTLs found. It contains the

closest gene to every SNP peak, its gene annotation, position and the count of combinations

DAS and descriptor for which the SNP peak was significantly associated to the marker each

gene accession is the closest.

(XLSX)

S1 Data. RIL-averaged rosette descriptors data for the 485 MAGIC RILs across time and

principal components. Three replicates per RIL were phenotyped for the 9 shape descriptors

at Table 1 and their RIL group means were recorded for further analysis. Principal Compo-

nents extracted from the correlation matrix–all DAS and RILs pooled–where calculated from

RILs averaged phenotypic values. Colour code shows the trajectory of traits along time where

every variable has been code in green for low values, yellow for intermediate and red for large.

The color code is calculated for all DAS and RILs and recalculated for every feature. Statistics

per DAS are recorded at the bottom of the table.

(XLSX)
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