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Abstract

Active Queue Management (AQM) is recommended by Internet Engineering Task Force to

mitigate the bufferbloat phenomenon in the Internet. In this paper, we show the results of

comprehensive measurements carried out in our university network, in which a device with

an AQM algorithm, designed and programmed for this purpose, was running. The imple-

mented AQM algorithm was based on the dropping function, i.e. arriving packets were

dropped randomly, with the probability being a function of the queue length. Several different

dropping function forms, proposed in the networking literature, were used, in addition to the

classic FIFO queue (no AQM). The experiment lasted over a month, during which the state

of the network was measured and recorded several thousand times. This made the results

independent of the natural fluctuations of the users’ behavior and the network load. Conclu-

sions on the general performance improvement offered by the implemented AQM, as well

as the differences in the performance between particular forms of the dropping function,

were reached. Some of these conclusions differ from those drawn previously from simula-

tions. This underlines the need for carrying measurements of new AQMs in real, operating

networks, with complex, natural traffic.

1 Introduction

In the early Internet, the buffers at network devices were meant to mitigate the losses caused

by the statistical multiplexing of flows incoming from different directions. Namely, the ran-

dom nature of incoming flows caused occasional bursts of traffic at nodes. These bursts had to

be stored in buffers, before being forwarded. This was initially the only purpose of buffers. At

this early stage, the congestion control in the Internet was poor, what led to a few spectacular

congestion collapses and forced the search for a new, efficient method of congestion control.

Such method, the Reno algorithm, was found and widely implemented, what eliminated con-

gestion collapses and improved the inter-flow fairness.

Unfortunately, the new algorithm, and its descendants used today, exploit the buffers in a

different way. They constantly increase the sending rates of individual end systems, until one

or more buffers on the transmission path get full, causing either long queueing delays, or

packet loss, or both. In this way, by noticing the long delays and/or losses, modern congestion

control mechanisms are informed that the maximum possible sending rate has been achieved.
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As we can see, there is a clash between the original purpose of buffers, and their usage by

the congestion control mechanism, which tends to fill the buffers, no matter how big they are.

This, of course, has some negative consequences. The most profound and widely described is

called bufferbloat, [1, 2]. The presence of bufferbloat means simply that a substantial fraction

of buffers in the Internet contains long queues of packets, much longer than necessary for

proper functioning of the network. These long queues cause long queueing delays and, in gen-

eral, longer than necessary packet delivery times.

The cure for bufferbloat is well known and called Active Queue Management (AQM). It

exploits the idea that some arriving packets should be dropped before the queue in a buffer

gets long, informing in this way end systems about the need to reduce their sending rates.

AQM has been recommended, for instance, by Internet Engineering Task Force in the RFC

7567 document, [3].

Based on theoretical and simulation studies, many AQM algorithms have been proposed so

far. In some algorithms, a deterministic decision on each arriving packet is reached, whether

to drop it or not, [4, 5]. In the majority of propositions, however, each packet can be dropped

randomly, with a probability being constantly re-calculated with regard to the current and

recent network conditions, e.g. [6–11]. Sometimes, the methods of re-calculation of the drop-

ping probability are very refined and exploit the fuzzy logic [12, 13], genetic algorithms [14] or

neural networks [15, 16].

In particular, in [12], an autonomic, intelligent and stateless proactive fuzzy logic AQM,

called PFL, is proposed. PFL uses an efficient non-linear fuzzy control to detect the network

congestion and tune the dropping probability to it. Moreover, the built-in self configuration

mechanism, based on the steady-state packet loss ratio, enables it to control the PFL output

dynamically. In [13], a method called FPID is proposed, in which the RED algorithm works

with the fuzzy proportional integral derivative approach. A very good performance is achieved,

due to the application of the fuzzy theory, combined with the classic PID theory. In [14], a lin-

ear-quadratic-optimal controller is designed, based on the linear control theory for an AQM

router. One of the crucial and difficult steps of the algorithm, i.e. finding the weight matrices,

is based on the genetic algorithm, what constitutes an alternative approach for the time-vary-

ing feedback loop control. In [15], the performance of four algorithms based on neural net-

works, i.e. PID, AN-AQM, FAPIDNN and NRL, is studied. All the four algorithms exhibit a

good accuracy and small queue length jitter in simulations. Their disadvantage is, however, the

lack of a formal proof of stability. Finally, in [16], a yet another AQM idea based on neural net-

works is introduced. Namely, a combination of neural networks, distributed adaptive control

and barrier Lyapunov function is used to guarantee that the tracking errors approach a pre-

defined zone, independently of initial conditions.

Now, a very important class of AQM algorithms consists of those, in which the probability

of dropping an incoming packet is a function of the queue size. This function is called the

dropping function. In the first algorithm of this type, [17], a simple linear dropping function

was proposed. Then some other shapes of the dropping function were investigated, among

them a broken line with increasingly steeper slope [18], en exponential function [19], polyno-

mials of second and third degree, [20, 21], a mixture of linear and cubic functions, [22], and a

product of a linear function with its logarithm, [23].

An AQM based on the dropping function may not be sometimes as good as best solutions

exploiting advanced machine-learning methods, mentioned above. It is, however, extremely

simple conceptually, easy in implementation, and, as we will see herein, offers a substantial

improvement of the performance, when compared with no AQM at all. Moreover, the stability

of AQM based on the dropping function has been formally proven, [24].
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So far, AQM algorithms based on the dropping function have been widely studied via

mathematical modeling and computer simulation. We are, however, unaware of any published

results of tests of these algorithms implemented in a real device, and carried out in a real, fully

operational network.

In this paper, we show results of measurements of a fully operational network of our univer-

sity campus, in which a device with AQM based on the dropping function, designed and pro-

grammed by us, was running. Nine different dropping function forms, proposed in the

literature, have been tested and compared with each other, and with the classic FIFO-tail-drop

queue (no AQM). The experiment lasted over a month, during which the state of the network

was measured and recorded several thousand times, with random changes of the dropping

function. This made the results independent of the natural fluctuations of the users behavior

and the network load. Each measurement lasted as long as 2 million packets passed through

the AQM device. During such period, several performance characteristics were recorded,

including the network load, the average queue size and its standard deviation, the packet loss

ratio and the packet burst ratio. These detailed characteristics were then aggregated using cost

functions (6) and (7), defined in the next section, which enabled us to assess the overall impact

of particular dropping functions, and the lack of AQM.

The device with AQM, used in the measurements, was an x86, multi-core server, running

Linux operating system, with implemented dropping function mechanism. DPDK cards and

software, [25], were used to provide fast packet processing. They made it possible to process

and forward the arriving traffic with the full speed of the output interface, i.e. 1Gb/s. Prior to

the measurements carried out in a real network, our AQM device has been tested in a network-

ing laboratory, using artificial traffic from Spirent generator. The results of these tests were

described in [26]. It is important to note, however, that tests in a local lab cannot properly

expose advantages or disadvantages of an AQM scheme, for several reasons. The most impor-

tant reason is that the round trip propagation times (RTPTs) are unrealistically small in a local

lab (below 1ms). In the measurements described in this paper, many flows traversing the

AQM device experienced much longer RTPTs, of tens or hundreds milliseconds. Such RTPTs

are hard to mimic in a local lab. On the other hand, it is well-known that high RTPTs have a

profound impact on the behavior of the TCP congestion control mechanism, and, as a conse-

quence, the AQM algorithm (e.g. [27]). Therefore, results of AQM tests obtained in a local lab

may differ from those obtained in a real, working network.

Finally, it is worth mentioning that queueing models with the dropping function have been

studied recently using the mathematical methods of classic queueing theory, with different

assumptions on the arrival stream and the service time distribution, e.g. [24, 28–30]. Some of

these theoretical results have been used to parameterize the dropping functions, implemented

in the AQM device to provide a specific performance goal, i.e. the average queue size of 50

packets at the network load of 1.

The rest of the paper is organized in the following way. In Section 2, the mathematical

results used to parameterize the dropping functions in the AQM device are recalled first.

Then, nine formulas for dropping functions implemented in the AQM device are given, as

well as the definitions of the performance characteristics collected in the experiment. The aca-

demic network, in which the measurements were carried out, is described in Section 3. In Sec-

tion 4, the design of the device with the AQM algorithm based on the dropping function is

presented. Namely, the internal structure exploiting the multi-core architecture, the actual

packet flow and processing, as well as the advantages of using the DPDK framework, are

described. Then, in Section 5, the results of the measurements are presented and discussed. In

particular, five graphs depicting the mean queue length, its standard deviation, the loss ratio,

the burst ratio and the total impairment factor, for different loads and dropping functions, are
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presented and discussed. In addition, a table with all the performance characteristics, averaged

over short load intervals, are shown and discussed. The final conclusions and recommenda-

tions are given in Section 6.

2 Theoretical results, dropping functions and characteristics used

in the experiment

In what follows, the dropping function will be denoted by d(n), where n is the queue length

upon a packet arrival, and d(n) is the probability of dropping this packet. Naturally, for every n
we have 0� d(n)� 1.

The particular shapes of the dropping function, used in the measurements, were taken from

the literature (there will be references next to formulas). The specific parameterization of each

of them has been carried out using a model of the queue with the dropping function taken

from [24]. Namely, the following theorem was proven there.

Theorem 1. If the interarrival time distribution is exponential with parameter λ and the ser-
vice time distribution is exponential with parameter μ, then the probability Pk that the queue size
is k in the steady state is equal to:

P0 ¼
1

1þ
P1

k¼1
rk
Qk� 1

i¼0
½1 � dðiÞ�

; ð1Þ

Pk ¼ r
kP0

Yk

i¼1

½1 � dði � 1Þ�; k ¼ 1; 2 . . . ; ð2Þ

the average queue size and its standard deviation are equal to:

EX ¼
X1

k¼0

kPk; DX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1

k¼0

k2Pk � ðEXÞ
2

s

; ð3Þ

respectively, the loss ratio is equal to:

L ¼ 1 �
1 � P0

r
; ð4Þ

while the average response time of an accepted packet is equal to:

ERa ¼
EXr½1þ

P1

k¼1
rk
Qk� 1

i¼0
ð1 � dðiÞÞ�

l
P1

k¼1
rk
Qk� 1

i¼0
ð1 � dðiÞÞ

; ð5Þ

where ρ = λ/μ is the load offered to the queue.
Using this theorem, nine different dropping function types were parameterized in such a

way, that each of them provides EX ¼ 50, i.e. the average queue size of 50 packets, for ρ = 1,

(see [26]). The resulting dropping functions have the following forms (depicted also in Fig 1):

• small buffer shape, see e.g. [31]:

d0ðnÞ ¼
0; if n < 100;

1; if n � 100;

(
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• RED shape, see e.g. [17]:

d1ðnÞ ¼

0; if n < 91;

0:016666n� 1:506666; if 91 � n < 121;

0:5; if n � 121;

8
>>><

>>>:

• GRED shape, see e.g. [18, 28]:

d2ðnÞ ¼

0; if n < 87;

0:008333n� 0:722833; if 87 � n < 102;

0:025n � 2:4185; if 102 �n <117;

0:5; if n � 117;

8
>>>>>>><

>>>>>>>:

• NLRED shape, see e.g. [20]:

d3ðnÞ¼

0; if n < 81;

0:000312ðn � 80:88Þ
2
; if 81 � n <121;

0:5; if n � 121;

8
>>><

>>>:

Fig 1. Dropping functions d1-d8.

https://doi.org/10.1371/journal.pone.0263407.g001
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• TRED shape, see e.g. [22]:

d4ðnÞ ¼

0; if n < 89;

4:5
n � 88:05

30

� �3

; if 89 � n < 99;

0:016666n� 1:467499; if 99 �n <109;

4:5
n � 118:05

30

� �3

þ 0:5; if 109�n <119;

0:5; if n � 119;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

• REM shape, see e.g. [19]:

d5ðnÞ ¼
0; if n < 94;

0:5 � 0:5e� ðn� 93:86Þ=10; if n � 94:

(

• S shape, see e.g. [24]:

d6ðnÞ ¼
0:25en� 100:74

3 ; if n < 101;

0:5 � 0:25e100:74� n
3 ; if n � 101;

8
<

:

• exponential shape, see e.g. [24]:

d7ðnÞ ¼
0:5en� 107:3

5 ; if n < 108;

0:5; if n � 108;

8
<

:

• constant shape:

d8ðnÞ ¼
0; if n < 99;

0:5; if n � 99:

(

Besides the nine functions listed above, the classic FIFO algorithm (no dropping function)

was used. In such case, the default buffer size was 300 packets.

Therefore, we used 10 queueing schemes in total—nine with the dropping functions and

one without. The AQM device switched randomly between the ten, so that there was no corre-

lation between the particular day or time of the day and the queueing scheme used. The

switching scheme will be described in detail in Section 5.

Each measurement lasted as long as 2 million packets passed through the AQM device.

During such period, several performance characteristics were recorded, in particular: the load

of the AQM device, ρ, the average size of arriving packet and its standard deviation, the
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average queue length in packets (EX) and its standard deviation (DX), the loss ratio (L), and

the burst ratio (B).

All these characteristics are rather well known and commonly used. Nevertheless, to avoid

any misunderstandings, we will clarify now how we understood and measured them. The load

was understood as the average arrival rate of packets bound to the output link, divided by the

capacity of this link, i.e. 1Gb/s. The loss ratio was measured as the fraction of packets which

were dropped during the measurement, either by the dropping function mechanism, or by the

overflowed buffer. Finally, the burst ratio was understood as the ratio of the average number of

packets dropped in a row, divided by the theoretical number of packets dropped in a row, that

should have been observed for a purely random and independent loss, [32]. By this definition,

B informs us about the statistical structure of packet losses, i.e. their tendency to cluster

together. If B = 1, then the losses seem to occur randomly and independently of each other. If

B< 1, then the losses tend to occur separately, as single events. If B> 1, then the losses tend to

group together, in long series. The latter is known to influence negatively important network-

ing services, e.g. real time multimedia transmissions. (It is also worth mentioning, that B is not

the only parameter used to characterize the structure of losses; see e.g. [33, 34] for other

approaches).

Due to the fact that high values of both loss ratio and burst ratio have negative (but differ-

ent) influence on the quality of transmission, it is useful to estimate their combined negative

effect using one factor. Such an impairment factor, combining L and B, have been proposed in

[35], and has the following form:

I ¼ Ie þ ð95 � IeÞ
100L

100L=Bþ R
; ð6Þ

with Ie and R denoting some constants (by default, Ie = 0 and R = 4.3). Therefore, in our exper-

iment, after each measurement of L and B, the factor I was computed, to allow for an easy

assessment of the total deterioration of transmission caused by losses, including their

structure.

Obviously, the most important parameter, exposing the occurrence of the bufferbloat, is the

average queue size. Of almost the same importance is the factor I. To assess their combined

negative impact, we can use the following global impairment factor:

C ¼ EX þ I: ð7Þ

Finally, the standard deviation of the queue size can be considered as a supplementary char-

acteristic. It reflects the stability of the queue size, provided by the AQM mechanism and influ-

ences the delay jitter of the transmission.

3 Academic network used in the experiment

The scheme of the campus network of the Silesian University of Technology, used in the mea-

surements, is shown in Fig 2. The network routing is handled by Juniper MX480 core router

(on the left of Fig 2). During the experiment, the AQM device with the dropping function (in

the middle) was connected into the network part servicing student dormitories (on the right).

Each dormitory building has dedicated 802.1q virtual LAN. Two of the buildings are located in

neighboring cities, thus to reach them, the VLANs follow an MPLS cloud with VPLS.

The network in each dormitory is an autonomous network, administered by a different

entity. From our experiment point of view, each such network is a different sub-ISP network

and it connects users using layer 2 devices. The access to the Internet, DHCP and security are
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handled by the devices in the campus network. Each end system in a dormitory has a public IP

address, so there is no NAT on the path to the Internet.

During the measurements, the aggregated traffic from the Internet towards the dormitories

was typically up to 1.2Gb/s, rarely exceeding this value. The return traffic was about 10 times

smaller and it was unaffected by the AQM device. The TCP/UDP proportions varied from 75/

25 to 50/50 percent. The average packet size was about 1300 bytes, with the standard deviation

of about 450bytes.

The network measurements have been formally approved by the Vice Rector for Science

and Development of the Silesian University of Technology, prof. Marek Pawełczyk.

4 AQM device used in the experiment

The AQM device, shown in the middle of Fig 2, was an x86-multi-core server running Linux

operating system. This device was designed and programmed by us to test the dropping func-

tion mechanism in real networks. What is important, DPDK cards and software were used in

this device, what allowed it to achieve the processing and forwarding speed exceeding by far

the bit rates actually occurring in the experiment. First of all, the DPDK framework allows dis-

abling the interrupts on the participating network interfaces. To further improve the perfor-

mance, CPU cores can be assigned to separate tasks performed concurrently. Further speedup

is gained by processing buffer descriptors, pointing to memory locations with packets, rather

than actual packets.

The schematic internal structure of our AQM device is depicted in Fig 3. The interface on

the right has the speed of 1Gb/s, which constitutes the potential bottleneck for the aggregated

traffic bound to dormitories. The interface on the left runs at the speed of 10Gb/s, which

enables it to receive traffic exceeding 1Gb/s.

In general, each CPU core in Fig 3 runs in an infinite loop, polling one buffer for packets,

performing perhaps some tasks, and sending the packets to some other buffer.

In particular, the CPU core on the left of Fig 3 performs the actual dropping of packets,

depending on the selected dropping function and the current queue size. Unfortunately, the

DPDK framework does not allow querying the NIC queue size, due to the lengthy PCIe

Fig 2. University network used in the experiment.

https://doi.org/10.1371/journal.pone.0263407.g002
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operation required to access NIC processor registers. Therefore, to be able to read the queue

size, we had to introduce an intermediate queue in the memory (in the middle of Fig 3). It

exploits the ring-buffers library, built into DPDK, and enables the concurrent atomic access,

which does not require locking of the queue for reading or writing. Thus the current size of

this queue can be easily calculated. The CPU core on the left does so after reading a packet

from the left NIC RX queue. Then it queries the dropping probability from a tabularized drop-

ping function, calculates a random number, and combines that information into a drop or no-

drop decision. If the packet is dropped, then its memory is freed. Otherwise, the packet is

enqueued into the intermediate queue. From this queue, the CPU core on the right reads pack-

ets and outputs them to the right NIC TX buffer. This buffer has a small size of 4 packets, to

minimize its influence on the performance of the device.

The CPU core in the middle of Fig 3 simply forwards packets on the uncongested return

path.

The secondary task of the AQM device is to carry out the measurements during the course

of the experiment. This task is handled also by the CPU core on the left. All the characteristics

are gathered in every cycle performed by this core. As it keeps the current queue size all the

time (an argument of the dropping function), the average queue size and its standard deviation

can be computed easily. The same core is used to drop packets, so the loss ratio and burst ratio

can be obtained with equal ease.

Fig 3. Scheme of the AQM device with the selectable dropping function.

https://doi.org/10.1371/journal.pone.0263407.g003
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To be sure that all these operations do not cause any performance overhead influencing the

measurements, we tested the device using a hardware generator. Namely, a high load of 3Gb/s

of small packets (100-bytes long) was generated. No performance issues were observed under

such load. Both the bit rate and the number of packets processed per second in this stress test

exceeded by far what was then met in the real experiment. In this way, we made sure that the

actual measurements were not affected by any issues with the performance of the device.

5 Experiment results and discussions

The experiment lasted continuously over a month. On the hour, i.e. at 7:00, 8:00, 9:00, etc, the

queueing algorithm was switched randomly between d0-d8 and no AQM, with the period of

operation of one hour. Namely, an integer random number from set {0, 1, . . ., 9} was generated

first. If number 9 was generated, the AQM device operated with no AQM for the next hour. If

number i 2 {0, 1, . . ., 8} was generated, the device used di dropping function for the next hour.

An hour later, a new integer was generated, the queueing algorithm switched to a different

dropping function, and so on.

This operation scheme was meant to assure that every dropping function worked in every

networking conditions, i.e. in the morning, in the middle of the day, at night, at the beginning

of the week, at the end of the week, during the weekend, when the load was high, low, moder-

ate, etc. The one hour operation time of a particular dropping function was chosen as being

long enough to allow the algorithm to reach its steady-state operation regime and short

enough to provide approximately stable networking conditions, i.e. the level of users activity

and the network load.

During the operation of a particular dropping function, measurements of the performance

characteristics provided by this function were carried out. In every measurement, the current

dropping function, the load, the average queue size and its standard deviation, the packet loss

ratio and the packet burst ratio were collected. In addition, the cost functions values (6) and

(7) were computed. Each measurement lasted as long as 2 millions packets passed trough the

AQM device.

The results of the measurements are depicted in Figs 4–8. All figures have the load on the

horizontal axis, and the characteristic of interest on the vertical axis. In particular, in Fig 4 we

see the average queue size, in Fig 5—the standard deviation of the queue size, in Fig 6—the

packet loss ratio, in Fig 7—the packet burst ratio, while in Fig 8—the total impairment

factor, C.

In these graphs, each individual measurement is presented as a single, colored dot, where

the color represents the particular dropping function, the same as in Fig 1. As we can see, for

one value of the load and one dropping function, we can have several, quite different measure-

ments of the performance characteristic. This is natural in a real networking environment. It

can be caused, for instance, by different proportions of the TCP and UDP traffic, at different

times. Therefore, a third-degree polynomial is fitted, using the generalized additive model, to

all measurements within a particular dropping function. These polynomials are plotted as the

curves of the same color, as dots obtained for a particular dropping function.

All the graphs begin with the load of 0.9. There were also measurements with the load less

than 0.9, but such results are less interesting, as the queue sizes and losses are small for a low

load, no matter if AQM is used, or not. Finally, there were very few measurements for ρ> 1.2,

therefore the graphs end at the load of 1.2.

Now, as we can see in Fig 4, all dropping functions d0-d8 provide similar queue sizes within

the whole range of ρ. The lack of the dropping function, on the other hand, results in a signifi-

cantly (several times) longer queues, i.e. the bufferbloat. Therefore, when the bare queueing
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delay is taken into account, the application of the dropping function is clearly advantageous,

no matter which shape of the nine is used. Note also that all the dropping functions induce the

average queue size pretty close to 50 packets for ρ = 1, which was the design goal while parame-

terizing these functions by means of the mathematical model of [24].

In Fig 5 we can observe the stability of the queue size. All the dropping functions provide a

similar, good stability, with slightly worse results for d2. Again, the lack of the dropping func-

tion results in a much worse deviation of the queue size.

Fig 4. The average queue length, EX, versus load.

https://doi.org/10.1371/journal.pone.0263407.g004
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All of the observations made so far are consistent with the previous studies conducted via

simulations (see e.g. [36]).

However, Fig 6 is quite surprising and inconsistent with the results of the previous studies.

As indicated by simulations, an application of the dropping function should improve the

queueing delay, but always at the cost of an increased loss ratio. This is not confirmed in Fig 6,

which is a good news. On the contrary, most of the used queueing schemes, including no

AQM, induce similar loss ratios. What is more, the smallest loss ratios are not obtained when

Fig 5. The standard deviation of the queue length, DX, versus load.

https://doi.org/10.1371/journal.pone.0263407.g005
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no AQM is used, but for one of the dropping functions. Namely, d4 provides the lowest loss

ratios in the whole range of the offered load. On the other hand, a little worse than average

results are obtained for d2 and d0.

In Fig 7, the burst ratio can be studied. As we can see, three queueing algorithms induce vis-

ibly worse results. In particular, especially bad results are obtained for no AQM and for the

trivial dropping function, d0 (small buffer). They are both far worse than the results for all

non-trivial dropping functions, d1-d7, which are rather close to each other. Quite bad results

Fig 6. The loss ratio, L, versus load.

https://doi.org/10.1371/journal.pone.0263407.g006
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are also obtained for another trivial dropping function, d8. Furthermore, the absolute values of

B obtained in the measurements for no AQM case are very high. In the whole range of the

load, they oscillate around 1.75, sometimes even exceeding 2. Therefore, it is really important

to decrease such high values of B, to values much closer to 1, which can be easily achieved by

an application of a proper dropping function.

Finally, in Fig 8, the total impairment factor, C, is depicted. It combines the impact of the

queueing delay with the loss impairment, given in formula (7). As we can see, the no-AQM

Fig 7. The burst ratio, B, versus load.

https://doi.org/10.1371/journal.pone.0263407.g007
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case is far worse than anything else. Among the dropping functions, the trivial function d0 per-

forms visibly worse than others. This is consistent with the results of the previous studies.

We may also notice in Fig 8, that in general d4 is better, while d2 is worse, than any other

non-trivial dropping function, d1-d7. This is inconsistent with the results of the previous stud-

ies—in simulations, the convex dropping function d2 prevailed. It must be stressed, however,

that the differences between d4 are d2 small, if compared with no AQM at all.

Fig 8. The total impairment factor, C, versus load.

https://doi.org/10.1371/journal.pone.0263407.g008
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Summarizing these considerations, we can draw the following general picture. All the non-

trivial dropping functions, d1-d7, provide a significant improvement of the performance, if

compared with no AQM, when both the queuing delay and losses are taken into account. The

trivial dropping functions, d0 and d8, provide a similar improvement of the queueing delay,

but their performance is inferior in terms of the structure of losses.

There are some differences in the performance among the proper dropping functions, d1-

d7. For instance, d4 provides the best loss ratios, d3—the best burst ratios, etc. However, these

differences are not crucial—they are far lower than the difference between an application of a

proper dropping function, and no AQM at all.

The same conclusions, that were drawn from Figs 4–8, can also be drawn from Table 1. In

this table, the average measurements obtained for different load ranges are presented. Namely,

the following load ranges, are used: (0.90–0.94], (0.94–0.98], . . ., (1.14–1.18]. Within each load

range, we have the average value of a particular characteristic, e.g. the queue size, for every

dropping function separately. Moreover, the worst result within a particular load range and

particular characteristic is boxed. On the other hand, the best result within a particular load

range and particular characteristic is printed in a bold font.

We can see that a great majority of bad (boxed) results is associated to no-AQM scheme.

Moreover, in no single case the best result is associated with no-AQM scheme. These are very

strong arguments for using AQM.

6 Conclusions

We presented the results of an experiment carried out in our university network, in which an

AQM device, designed and programmed for this experiment, was running. In particular, the

class of AQM algorithms, in which the packet dropping probability is a function of the queue

size, was used in the device. Nine dropping function shapes, known from the networking liter-

ature, were implemented and tested, in addition to the classic FIFO queue. Several commonly

used performance characteristics, including the load, queue size, loss ratio and burst ratio were

recorded during a month of measurements. In addition, two cost functions, expressing the

combined impact of these characteristics, were computed. What is important, the AQM device

itself did not introduce any limitations on the network throughput—its internal performance

was far better than needed to fully saturate the 1Gb/s link used. This was confirmed in labora-

tory stress tests.

From the obtained results, we can draw at least three clear conclusions.

Firstly, an application of the AQM with any of the non-trivial dropping functions, d1-d7,

proved to be highly beneficial, if compared with no AQM. Typically, the queueing delay, the

stability of the queue and the burst ratio ware improved by far, while the loss ratio was kept at

the similar level, as in the no-AQM case.

Secondly, it was not crucial, which particular shape of the dropping function, taken from

the literature, was used. All the shapes used in the measurements, except for the trivial d0 and

d8, provided a very good performance, much better than the lack of AQM. Naturally, some of

the non-trivial functions, d1-d7, proved to be slightly better than others (e.g. d4). The differ-

ences, however, are not critical—any one among d1-d7 can be recommended to replace the

classic FIFO buffer.

Thirdly, the study underlined the necessity to perform experiments and measurements of

this type in real, operating networks. The very complex nature of real traffic, with distributed

round trip times among flows, large number of distinct protocols, different flow characteristics

and durations, lead sometimes to different conclusions, than those obtained via simulation

models. For instance, the lowest loss ratio in the whole range of load was observed here for one
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Table 1. Average performance characteristics in different ranges of the network load.

Load, ρ Dropping function Avg. queue, EX StdDev. queue size Loss ratio, L Burst ratio, B Total impairment, C
(0.9–0.94] none 93:20 120:71 0.0347 1:872 146:80

d0 21.19 36.61 0.0292 1.839 68.33

d1 30.58 44.07 0.0450 1.346 86.49

d2 36.90 47.86 0:0601 1.370 102.62

d3 26.66 42.01 0.0344 1.328 74.06

d4 24.77 39.78 0.0325 1.365 71.02

d5 27.27 42.50 0.0389 1.390 79.35

d6 27.94 41.57 0.0408 1.413 81.83

d7 27.21 41.39 0.0388 1.391 79.22

d8 26.49 39.69 0.0369 1.538 78.81

(0.94–0.98] none 113:12 125:85 0.0441 1:858 175:91

d0 31.23 41.81 0.0485 1.791 96.97

d1 37.75 46.33 0.0572 1.330 100.95

d2 40.41 48.35 0:0638 1.358 107.74

d3 34.05 44.94 0.0446 1.306 89.00

d4 32.22 42.80 0.0427 1.340 86.42

d5 33.47 45.15 0.0471 1.380 91.51

d6 35.75 44.34 0.0569 1.390 100.18

d7 34.87 43.99 0.0494 1.368 94.21

d8 36.11 43.40 0.0573 1.518 103.53

(0.98–1.02] none 143:22 127:44 0.0562 1:828 215:63

d0 41.78 44.32 0.0707 1.782 123.03

d1 47.07 47.81 0.0730 1.302 117.06

d2 48.44 48.36 0:0749 1.315 119.63

d3 41.99 46.27 0.0536 1.279 101.99

d4 39.94 44.45 0.0530 1.317 100.44

d5 40.68 46.43 0.0580 1.353 104.85

d6 44.02 46.80 0.0742 1.370 116.57

d7 41.36 44.80 0.0556 1.344 103.99

d8 42.03 44.55 0.0676 1.501 114.96

(1.02–1.06] none 174:02 125:95 0.0773 1:803 259:56

d0 54.12 44.14 0:0928 1.699 144.43

d1 56.80 47.40 0.0883 1.270 131.34

d2 58.32 48.12 0.0950 1.295 135.88

d3 53.47 47.63 0.0769 1.262 123.75

d4 50.71 45.47 0.0712 1.288 119.53

d5 50.60 47.05 0.0741 1.325 121.77

d6 51.56 46.60 0.0858 1.345 127.88

d7 51.92 45.02 0.0711 1.311 121.38

d8 50.14 44.17 0.0783 1.471 127.45

(Continued)
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of the dropping functions, rather than for the FIFO buffer, as predicted by simulations, [36].

Also, the best results in simulations were obtained for a convex dropping function, which was

speculated to be a consequence of some special properties of convex functions (e.g. [37]). This

effect was not confirmed herein. In fact, the convex dropping function d2 performed slightly

worse than other non-trivial functions.

It is hard to explain the detailed impact of the shape of a particular dropping function on

the system performance. This is again due to the nature of real traffic, which is not only very

complex at any particular moment in time, but also highly variable. The overall load may vary

by far, proportions between TCP and UDP traffic may vary by far, the number of flows and

data type they carry may vary by far, statistical properties of flows (rates, packets sizes, round

trip times, durations) may vary by far, etc. Each of the mentioned traffic features influences the

resulting performance characteristics, when combined with a particular shape of the dropping

function. Therefore, the only reasonable way to study this is by exposing each of the tested

dropping function to different traffic types, many times, and in a long period of time. This was

done in the experiment described in the paper.

Table 1. (Continued)

Load, ρ Dropping function Avg. queue, EX StdDev. queue size Loss ratio, L Burst ratio, B Total impairment, C
(1.06–1.1] none 205:12 116:12 0.0968 1:752 298:71

d0 62.40 42.86 0.1222 1.680 162.68

d1 66.30 44.47 0.1015 1.234 143.26

d2 68.65 47.14 0:1274 1.270 153.13

d3 66.55 44.30 0.0924 1.226 140.68

d4 63.14 43.29 0.0917 1.250 138.01

d5 60.32 45.17 0.0924 1.288 136.81

d6 59.55 44.45 0.1000 1.323 139.66

d7 63.27 43.70 0.0962 1.284 140.79

d8 59.19 42.88 0.0963 1.450 142.80

(1.1–1.14] none 232:79 102:91 0.1262 1:726 336:04

d0 71.69 38.74 0.1404 1.627 174.83

d1 77.47 38.97 0.1196 1.198 157.01

d2 76.18 44.26 0:1448 1.242 162.36

d3 75.79 43.19 0.1256 1.198 156.50

d4 75.80 37.43 0.1125 1.212 154.47

d5 71.56 40.91 0.1170 1.246 152.74

d6 70.74 40.48 0.1182 1.288 154.07

d7 74.66 38.51 0.1157 1.245 155.50

d8 70.83 37.96 0.1167 1.412 159.04

(1.14–1.18] none 251:09 90:39 0.1528 1:696 360:18

d0 85.37 26.26 0.1527 1.570 188.78

d1 87.40 31.49 0.1428 1.155 168.80

d2 83.02 39.99 0:1608 1.209 169.82

d3 89.38 31.74 0.1438 1.154 170.87

d4 85.46 31.63 0.1463 1.170 168.17

d5 82.66 32.97 0.1397 1.201 165.97

d6 78.04 35.72 0.1391 1.259 164.15

d7 83.54 32.99 0.1408 1.223 168.11

d8 84.23 26.82 0.1443 1.368 176.58

https://doi.org/10.1371/journal.pone.0263407.t001
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There are several possible directions of future work. Firstly, other networks can be used to

carry out similar experiments. Before that, we cannot be sure, to what extend the results

obtained in one network, are representative to other networking environments. Secondly, a

much more detailed analysis can be performed. For instance, in our study we collected and

discussed the performance characteristics for the aggregated traffic only. There was no distinc-

tion between individual flows in the measurements, thus the results are averaged across all the

flows. It would be interesting to see, how different dropping functions influence the character-

istics of individual flows (the per-flow loss ratio, the per-flow burst ratio etc), depending on

the flow rate, its round trip time, and so on. Thirdly, AQM algorithms of different types than

herein can be implemented and tested in real networks. Such study is needed not only to test

the advantages and disadvantages of a particular algorithm in a real networking environment,

but also to demonstrate the possibility of its implementation, efficient enough to make the

algorithm useful in contemporary networks.
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