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Abstract

This paper focuses on the finite-time generalized synchronization problem of non-identical

fractional order chaotic (or hyper-chaotic) systems by a designing adaptive sliding mode

controller and its application to secure communication. The effects of both disturbances and

model uncertainties are taken into account. A novel fractional order integral sliding mode

surface is designed and its stability to the origin is proved in a given finite time. By the aid of

the fractional Lyapunov stability theory, a robust controller with adaptive update laws is pro-

posed and its finite-time stability for generalized synchronization between two non-identical

fractional-order chaotic systems in the presence of model uncertainties and external distur-

bances is derived. Numerical simulations are provided to demonstrate the effectiveness and

robustness of the presented approach. All simulation results obtained are in good agree-

ment with the theoretical analysis. According to the proposed generalized finite-time syn-

chronization criterion, a novel speech cryptosystem is proposed to send or share voice

messages privately via secure channel. Security and performance analyses are given to

show the practical effect of the proposed theories.

1 Introduction

Chaos synchronization between two identical or non-identical systems is a fascinating prob-

lem in nonlinear sciences. Since the pioneering work of Pecora and Carroll [1], the synchroni-

zation problem has been widely studied in various fields of science and engineering such as

finance system, mechanical systems, power system, encryption, secure communications, and

etc. In recent years, the synchronization problem between fractional-order chaotic systems has

raised great attentions for its potential applications, especially in cryptography and secure

communication. At present, there are various types of fractional-order synchronization, for

example, complete synchronization [2], lag synchronization [3], anti-synchronization [4],

impulsive synchronization [5], projective synchronization [6], and generalized synchroniza-

tion [7]. Among all kinds of synchronizations, the generalized synchronization [8] between
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the drive system and the response system characterized by two optional functions could obtain

desired types in practice applications. Particularly, it can be used to extend the coexistence of

different synchronization types. Very recently, the generalized synchronization between two

dynamical systems with different dimensions has been studied in [9–11]. Ouannas et al. [12]

explored the coexistence of different synchronization types of fractional-order chaotic systems

with different dimensions. Wang et al. [13] reported the synchronization between non-identi-

cal fractional-order chaotic and hyper-chaotic systems with different orders. Golmankhaneh

et al. [14] reported the study of synchronization in non-identical fractional-order chaotic

systems.

Note that, the synchronization in non-identical fractional-order chaotic systems can obtain

more flexible response mechanism. In practical applications, the mismatched parameters and

the uncertainties of master system and slave system are unavoidable. Thus, it is essential to

consider and analyze the uncertainties and disturbances. Furthermore, lots of scholars have

studied the synchronization method for chaotic systems with different uncertainties, such as

the linear feedback method [9], adaptive-feedback scheme [10], adaptive fuzzy approach [11],

back-stepping strategy [15], sliding mode control(SMC) [16,17] and adaptive sliding mode

control. Amongst these methods, SMC achieved a fast convergence performance and high

robustness against the system uncertainties and external disturbances. The generalized robust

synchronization approach for mismatched fractional order dynamical systems with different

dimensions via sliding mode control was investigated in [13,18]. As we all known, SMC usu-

ally assumes the upper bound of the system uncertainties in advance. Nevertheless, in practice,

the upper bound may not be exactly known because of the complexity of uncertainties. There-

fore, an adaptive mechanism combining the superiority of SMC has been proposed to estimate

the unknown bounds of the system uncertainties. In [19], the authors investigated sliding

mode synchronization of multiple uncoupled integer order chaotic systems with uncertainties

and disturbances, and more general cases were not established on multiple coupled chaotic

systems with unknown parameters and disturbances. Further, Chen et al.[20] proposed adap-

tive sliding mode synchronization for multiple chaotic systems with unknown parameters and

disturbances, and the appropriate adaptive laws were given to estimate unknown parameters.

In addition, the adaptive sliding mode synchronization of fractional order chaotic systems

have been also discussed by researchers [21,22].

However, most of previous studies focused only on the asymptotical synchronization [23].

In practice, it is more valuable and preponderant to study the synchronization in a given finite

time other than that in an unpredictable infinite time. For the finite-time stability methods

[24], Cai et al. [25] studied the generalized synchronization in finite time among chaotic sys-

tems with different order. Further, Zhao et al. [26] investigated the generalized synchroniza-

tion of integer-order coupled chaotic systems within finite time. Zhang et al. [27]also

implemented global synchronization of two integer-order chaotic systems with different

dimensions. Chen et al. [28] investigated finite-time multi-switching synchronization of multi-

ple uncertain complex chaotic systems with network transmission mode, and the unknown

parameters and disturbances were considered. Furthermore, based on fractional-order the

finite-time stability methods, Wu et al. [29] investigated the global synchronization in finite

time between non-identical fractional order neural networks (FNNs). With respect to finite-

time synchronization, some more results have also been found in [30,31]. Whereas, most of

those results focused on the synchronization of identical (non-identical) fractional order

dynamical systems either the generalized synchronization in infinite time or without consider-

ing the effects of the system uncertainties. It is known that the application of synchronization

in secure communication process, chaos-based cryptography can offer a fast and secure way

for information protection [32]. The minimum synchronization error and time can be
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required to recover or send the encoded message. Besides, for in the chaotic masking [33,34],

digital sound encryption techniques in fractional order chaotic systems with a higher level of

security are desired, and it can give a powerful solution along with algorithms. Then, it is nec-

essary to study finite-time chaos synchronization problems of fractional order dynamical sys-

tems with uncertainties. More importantly, considering the actual situation [34], state

variables and uncertainties in the error system have crucial influence on encryption and

decryption process of the message signal. Therefore, how to design a controller, which can effi-

ciently reduce the synchronization errors in finite-time and to maximally ensure information

transmission security, is a significant and challenging topic.

Inspired by aforementioned previous works, the contributions of this paper can be summa-

rized on four aspects.

1. Based on the definition of the generalized synchronization, the synchronization schemes of

two non-identical fractional order chaotic systems are proposed to achieve finite-time gen-

eralized synchronization with considering the uncertainties and external disturbances.

2. To study generalized synchronization, a novel fractional order integral sliding mode surface

is designed and its stability to the origin is proved in a given finite time.

3. According to the fractional Lyapunov stability theory, an appropriate sliding mode control-

ler with adaptive update laws is proposed under external disturbances and model uncertain-

ties, and the stability conditions for achieving the generalized synchronization are explicitly

derived in finite time.

4. Numerical simulation results further highlight the validity, the novelty and applicability of

the proposed approach for non-identical fractional order chaotic systems. For the applica-

tion of secure communication process, a new speech encryption system is introduced to

share voice messages secretly via secure channel in terms of the proposed synchronization

criterion. Meanwhile, the security of the proposed theories is also analyzed and discussed.

The remainder framework of this study is arranged as follows. In Section 2, the preliminary

definition and lemma knowledge necessary are reviewed throughout the paper. The general-

ized synchronization scheme is introduced in Section 3. Then, numerical simulations are car-

ried out to highlight the effectiveness and applicability of the proposed approach in Section 4.

The application in speech secure communication is described in Section 5. Finally, the conclu-

sion is given in Section 6.

2. Definitions

In this section, some remarkable definitions of fractional calculus and some helpful lemmas

are recalled in the following.

Definition 1 [35] The αth-order Caputo fractional integral of a function f(t) is described by

C
t0
Iat f ðtÞ ¼

1

GðaÞ

Z t

t0

ðt � tÞa� 1f ðtÞdt; a > 0 ð1Þ

Where, 1>α>0, Γ(�) denotes the gamma function and αΓ(α) = Γ(α+1).

Definition 2 [35] The αth-order Caputo fractional derivative of a function f(t) is defined as:

C
t0
Da

t f ðtÞ ¼

1

Gðm � aÞ

Z t

t0

f ðmÞðtÞ
ðt � tÞa� mþ1

dt;m � 1 < a < m

dmf ðtÞ
dtm

; a ¼ m

ð2Þ

8
>>><

>>>:
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Where, 1>α>0 and m is the smallest integer number.

Lemma 1 [35] When the fractional-order derivative C
t0
Da

t xðtÞ is integrable, let O = [a,b] be

an interval on the real axis R, and let n = [α]+1 for α=2N or n = α for α2N. If x(t)2Cn[a,b], one

can obtain:

C
a I

aC
ta Da

t xðtÞ ¼ x tð Þ �
Xn� 1

k¼0

xðkÞðaÞ
k!
ðt � aÞk; n � 1 < a � n ð3Þ

Especially, if 0<α�1 and x(t)2C1[a,b], then C
a I

aC
ta Da

t xðtÞ ¼ xðtÞ � xðaÞ:
Lemma 2 [35] Assume α2(0,1), p2R, then

C
t0
Da

t x
pðtÞ ¼

Gð1þ pÞ
Gð1þ p � aÞ

xp� a tð ÞCt0D
a

t xðtÞ ð4Þ

Lemma 3 [29,36]Suppose α2(0,1), and x(t) denotes a continuous and differentiable func-

tion, then it satisfies the following inequality

C
t0
Da

t jxðtÞj � signðxðtÞÞCt0D
a
t xðtÞ

1

2

C

t0
Da

t x
2ðtÞ � x tð ÞCt0D

a

t xðtÞ
ð5Þ

8
><

>:

Lemma 4 [27] If di2R, i = 1,2� � �n and ξ2(0,1) are arbitrary real numbers, the following

inequalities satisfy:

jd1j
x
þ jd2j

x
þ � � � þ jdnj

x
� ðjd1j þ jd2j þ � � � þ jdnjÞ

x
ð6Þ

Lemma 5 [37] Consider the following n-dimensional fractional-order dynamical system

C
t0
Da

t xðtÞ ¼ f ðt; xÞ

xð0Þ ¼ x0

ð7Þ

(

Where, α2(0,1), x(t)2Rn is the system state and f:[0,1)×Rn!Rn is a continuous nonlinear

function. Assume that there exists a continuously differential Lyapunov function V(t,x(t)) and

strictly increasing class-K functions b1, b2 and b3 satisfying

b1ðkxkÞ � Vðt; xðtÞÞ � b2ðkxkÞ
C
t0
Db

t Vðt; xðtÞÞ � � b3ðkxkÞ
ð8Þ

(

Where, β2(0,1), Then the equilibrium point x = 0 of the fractional-order system (7) is

asymptotically stable.

Remark 1 For simplicity, the Caputo fractional calculus of order α as C
t0
Da

t and C
t0
Iat are

substituted for Dα and Iα, respectively.

3. The generalized synchronization scheme

In this section, the main goal is to develop the generalized synchronization between two non-

identical fractional order chaotic/hyper-chaotic systems in finite-time, which play an impor-

tant role to acquire the main results via applying sliding mode technique.
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Consider the following n-dimensional fractional order master system

Dax ¼ FðxÞ þ Df ðxÞ þ df ðtÞ ð9Þ

Where, 0<α�1 is the fractional order of the system, x = [x1, x2,� � �,xn]T is the system state

vector; f ðxÞ ¼ ½Df1ðx1Þ;Df2ðx2Þ; � � � ;DfnðxnÞ�
T
2 Rn; df

ðtÞ ¼ ½df
1ðtÞ; d

f
2ðtÞ; � � � ; df

nðtÞ�
T
2 Rn

denote unknown model uncertainties and external disturbances, respectively. F(x) = [F1(x),

F2(x),� � �Fn(x)]T is a nonlinear function.

Consider the corresponding m- dimensional fractional order slave system

Dby ¼ GðyÞ þ DgðyÞ þ dgðtÞ þ UðtÞ ð10Þ

Where, 0<β�1 is the fractional order of the system, y = [y1, y2,� � �,ym]T is the system state

vector; DgðyÞ ¼ ½Dg1ðy1Þ;Dg2ðy2Þ; � � � ;DgmðymÞ�
T
; dgðtÞ ¼ ½dg

1ðtÞ; d
g
2ðtÞ; . . . ; dg

mðtÞ�
T

denote

unknown model uncertainties and disturbances or perturbations, respectively. And G(y) =

[G1(y), G2(y),� � �,Gm(y)]T is a nonlinear function; the control input is U(t) = [u1(t), u2(t),� � �,
um(t)]T.

Now, the definition of generalized synchronization between fractional-order chaotic sys-

tems is given in the following expression.

Definition 3 Consider the above systems (9) and (10) with different initial values denoted

by x0 and y0. Assume that there exist an open neighborhood Θ�Rr of the origin, two continu-

ously differentiable functions ϕ: Rn!Rr and φ:Rm!Rr, i.e., e0 = φ(y0)−ϕ(x0)2Θ, and a con-

stant T = T(e(0))2(0,1), one can get

limt!T keðtÞk ¼ limt!T kφðyÞ � �ðxÞk ¼ 0 ð11Þ

Where, e(t)2Rr denotes the synchronization error of the master system (15) and slave sys-

tem (16). Then, ke(t)k�0, t�T, that is, the synchronization error can be achieved to be zero

within a finite time.

Remark 2 Fractional-order chaotic systems with same dimensions when m = n, that is ϕ(x
(t)) = x(t), φ(y(t)) = y(t), if the synchronization error is e(t) = y(t)−x(t), it can be transformed

into globally complete synchronization; if the synchronization error is e(t) = x(t)−y(t), it can

accomplish globally anti-synchronization; if the synchronization error is e(t) = y(t)−px(t), and

p is the projective coefficient, it can become globally projective synchronization; if the synchro-

nization error is e(t) = x(t), the above Eq (11) can be inferred as the following form

limt!T kxðtÞk ¼ 0, it will be transformed into the stabilization of the master system. Obviously,

these are special cases of our proposed methods. Zhang et al. [26] proposed the finite-time syn-

chronization of the error system e(t) = φ(y)−ϕ(x), but the author did not consider disturbances

and model uncertainties, and the error system should be also integer-order system. Neverthe-

less, this idea is appreciated.

Defining e(t) = φ(y)−ϕ(x), from system (9) and system (10), in order to introduce conve-

niently, the control signals U(t) are considered as U0(t) and U@(t), i.e., U(t) = U0(t)+U@(t). The

compensation controller U@(t) can be preset as U@ðtÞ ¼ J � 1
φ J�ðDbx � DaxÞ, and the separated

controller U0(t) will be designed later. Then, we have

DbeiðtÞ ¼ Db½φðyÞ � �ðxÞ� ¼ JφðyÞDby � J�ðxÞDbx

¼ JφðyÞ
GðyÞ þ DgðyÞ

þdgðtÞ þ U 0

ðtÞ

0

@

1

A � J�ðxÞðFðxÞ þ Df ðxÞ þ df ðtÞÞ
i ¼ 1; 2; . . . ; r: ð12Þ
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Where, Jϕ(x) and Jφ(y) are the Jacobin matrices of the functions ϕ(x) and φ(y), respectively,

i.e.

JQ xð Þ ¼

@Q1ðxÞ
@x1

@Q1ðxÞ
@x2

� � �
@Q1ðxÞ
@xn

@Q2ðxÞ
@x1

@Q2ðxÞ
@x2

� � �
@Q2ðxÞ
@xn

..

. ..
. . .

. ..
.

@QrðxÞ
@x1

@QrðxÞ
@x2

� � �
@QrðxÞ
@xn

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

; JP yð Þ ¼

@P1ðyÞ
@y1

@P1ðyÞ
@y2

� � �
@P1ðyÞ
@ym

@P2ðyÞ
@y1

@P2ðyÞ
@y2

� � �
@P2ðyÞ
@ym

..

. ..
. . .

. ..
.

@PrðyÞ
@y1

@PrðyÞ
@y2

� � �
@PrðyÞ
@ym

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

Remark 3 r�min{m, n}, the Jacobin matrix Jφ is row full-rank, it is well known that Jφ is a

square matrix, the inverse matrix J � 1
φ exists. In terms of the generalized inverse matrix defini-

tion, the right inverse matrix J � 1
φR exists when it is not a square matrix. To simplify the symbol,

J � 1
φ denotes the inverse or right inverse matrix of Jφ in this study.

Assumption 1 It is assumed that disturbances df(t) and model uncertainties Δf(x) of the

master system (15) are all bounded, there exist unknown positive constants γi, i.e.,

jJ�ðDf ðxÞ þ df ðtÞÞj � gi, i = 1,2,. . .,r.
Assumption 2 The disturbances dg(t) and model uncertainties Δg(x) of the slave system

(10) are assumed to be all bounded, there also exist unknown positive constants εi, i.e., |Jφ(Δg
(y)+dg(t))|�εi, i = 1,2,. . .,r.

Remark 4 The objective of this study can be formulated as designing an appropriate control

law U0(t) for any different dimensional systems (9) and (10) with disturbances and model

uncertainties, the finite-time stability for the error system (12) can be accomplished in the

light of Definition 3.

To further study generalized synchronization of two chaotic systems (9) and (10) with dif-

ferent dimensions, it can be transformed into the globally stability of equilibrium point for

error system (12). Here, a sliding mode technique will be used to solve the generalized syn-

chronization problem. In general, the design process of sliding mode control includes the fol-

lowing two major steps. The first step is to determine a suitable sliding surface with some

required system dynamic characteristics. Second, the appropriate sliding mode control laws

are arranged to guarantee the state trajectories onto the sliding surface and subsequently stay

on it forever. Therefore, a novel fractional integral siding surface is constructed as follows:

siðtÞ ¼ eiðtÞ þ k1I
bjeiðtÞj

dsignðeiðtÞÞ; i ¼ 1; 2; . . . ; r: ð13Þ

Where si(t) = [s1, s2,. . .,sr]T2Rr is the sliding surface, ei(t) = [e1, e2,. . .er]2Rr is the synchro-

nization error state, 0<δ<β<1, k1>0 is the gain coefficient.

Based on the sliding mode control strategy, the sliding surface and its derivative should sat-

isfy: si(t) = 0 and _siðtÞ ¼ 0. We know _siðtÞ ¼ D1� bDbsiðtÞ, then, _siðtÞ ¼ 0 implies Dβsi(t) = 0.

Therefore, from (13), one has

DbsiðtÞ ¼ DbeiðtÞ þ k1jeiðtÞj
dsignðeiðtÞÞ ¼ 0! DbeiðtÞ ¼ � k1jeiðtÞj

dsignðeiðtÞÞ ð14Þ

Based on Lemma 5, the following finite time convergence theorem of the fractional termi-

nal sliding surface (13) is analytically proved.

Theorem 1 Consider the sliding mode dynamics (14). The error system will be global

asymptotically stable and converge to the equilibrium e(t) = 0 within finite time upper
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bounded by:

T�
1
¼ t0 þ keðt0Þk

b� d

1

Gð1 � dÞGð1þ bÞ

k1Gð1þ b � dÞ

� �1
b

Proof Select the following Lyapunov function candidate:

V1ðtÞ ¼ keðtÞk1 ¼
Pr

i¼1
jeiðtÞj ð15Þ

By applying Lemma 3, one has

DbV1ðtÞ �
Pr

i¼1
signðeiðtÞÞD

beiðtÞ ð16Þ

Substituting Dβei(t), i = 1,2,. . .,r from (14) into (16), and sign(ei)×sign(ei) = 1, one obtains

DbV1ðtÞ � �
Pr

i¼1
signðeiðtÞÞ

k1jeiðtÞj
dsignðeiðtÞÞ ¼ � k1

Pr
i¼1
jeiðtÞj

d
ð17Þ

Using Lemma 4 the following inequality
Pr

i¼1

jeij
d
� ð
Pr

i¼1
jeijÞ

d
, one gets

DbV1ðtÞ � �
Pr

i¼1
k1jeiðtÞj

d
� � k1V

d

1
ðtÞ ð18Þ

Based on Lemma 5, the dynamic error ei(t), i = 1,2,. . .,r will converge to zero asymptoti-

cally. In terms of Lemma 2, one has

DbV1 tð Þ ¼
Gð1 � dÞ

Gð1þ b � dÞ
Vd

1
tð ÞDbVb� d

1
tð Þ � � k1V

d

1
tð Þ ð19Þ

From (19), it can be easy to derive the following form:

DbVb� d

1
tð Þ � � k1

Gð1þ b � dÞ

Gð1 � dÞ
ð20Þ

Taking fractional-order integral of (20) from t0 to t by Lemma 1, one obtains

Vb� d

1
tð Þ � Vb� d

1
t0ð Þ � Ib �

k1Gð1þ b � dÞ

Gð1 � dÞ

� �

ð21Þ

According to Definition 1, one gets

Ib �
k1Gð1þ b � dÞ

Gð1 � dÞ

� �

¼
� k1Gð1þ b � dÞ

Gð1 � dÞ

1

GðbÞ

Z t

0

ðt � tÞb� 1dt

¼
� k1Gð1þ b � dÞ

Gð1 � dÞGðbÞ

ðt � t0Þ
b

b
¼
� k1Gð1þ b � dÞðt � t0Þ

b

Gð1 � dÞGð1þ bÞ
ð22Þ

Combining (21) and (22), one can get

Vb� d

1
tð Þ � Vb� d

1
t0ð Þ �

k1Gð1þ b � dÞðt � t0Þ
b

Gð1 � dÞGð1þ bÞ
; t0 � t � T�

1
ð23Þ

From (23), one can obtain that limt!T�
1
V1ðtÞ ¼ 0, such that V1(t) = 0 for arbitrary t � T�

1
,

and the sliding-mode dynamic error ei(t), i = 1,2,. . .,r will converge to zero in finite time, i.e.,
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limt!T�
1
eiðtÞ ¼ limt!T�

1
k�ðxÞ � φðyÞk ¼ 0; t � T�

1
:T�

1
is the upper bound of convergence

time, given by T�
1
¼ t0 þ keðt0Þk

b� d

1

Gð1� dÞGð1þbÞ

k1Gð1þb� dÞ

� �1
b

. This completes the proof.

In what follows, in order to satisfy the sliding condition under disturbances and model

uncertainties, the adaptive sliding control law is proposed as follows:

U 0 iðtÞ ¼ � GðyÞ þ J � 1

φ ðyÞ

J�ðxÞFðxÞ

� k1jeiðtÞj
dsignðeiðtÞÞ

�
k2jsiðtÞj

s

þε̂ i þ ĝ i

 !

signðsiðtÞÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð24Þ

Where, i = 1,2,. . .,r, 0<σ<β<1, k2>0 is the gain coefficient. ε̂ i and ĝ i are denoted as esti-

mates of εi and γi, respectively. In this subsection, the adaptive update laws are designed by the

following algorithm:

Dbε̂ i ¼ jsij � k2jε̂ i � εij
ssignðε̂i � εiÞ

Dbĝ i ¼ jsij � k2jĝ i � gij
ssignðĝ i � giÞ

ð25Þ

(

Theorem 2 Under Assumption 1 and 2, consider the synchronization error system (18)

with uncertainties and external disturbances. Based on the control law (24) with the adaptive

laws (25), then its trajectories will globally reach the sliding surface s(t) = 0 within finite time

upper bounded by:

T�
2
¼ t0 þ

1

2
s2

i ð0Þ þ
1

2
ðε̂ ið0Þ � εiÞ

2

þ
1

2
ðĝ ið0Þ � giÞ

2

0

B
B
B
@

1

C
C
C
A

b�

sþ 1

2

G 1 �
sþ 1

2

� �

Gð1þ bÞ

2

sþ 1

2 k2G 1þ b �
sþ 1

2

� �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

1
b

Proof We choose the following Lyapunov function candidate

V2 tð Þ ¼
1

2

Pr
i¼1
ðs2

i ðtÞ þ ðε̂ i � εiÞ
2
þ ðĝ i � giÞ

2
Þ ð26Þ

Based on Lemma 3, taking the fractional-order derivative of V2(t) as follows:

DbV2ðtÞ �
Pr

i¼1

siðtÞDbsiðtÞ

þðε̂ i � εiÞDbε̂ i þ ðĝ i � giÞDbĝ i

 !

ð27Þ
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Combining (12), (14), (24) and (25), one obtains

DbV2ðtÞ �
Pr

i¼1

siðtÞ

JφðyÞðDgðyÞ þ dgðtÞÞ

� J�ðxÞðDf ðxÞ þ df ðtÞÞ

�

k2jsiðtÞj
s

þε̂ i þ ĝ i

0

B
B
@

1

C
C
AsignðsiðtÞÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

þðε̂ i � εiÞ

jsij � k2

jε̂ i � εij
ssignðε̂ i � εiÞ

0

B
@

1

C
A

þðĝ i � giÞ

jsij � k2

jĝ i � gij
ssignðĝ i � giÞ

0

B
@

1

C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð28Þ

On the basis of Assumptions 1 and 2, one yields,

DbV2ðtÞ �
Pr

i¼1

jsij

gi

þεi

0

B
@

1

C
A �

k2jsiðtÞj
s

þε̂ i þ ĝ i

0

B
@

1

C
Ajsij

þðε̂ i � εiÞjsij þ ðĝ i � giÞjsij

� k2ðjε̂ i � εij
sþ1
þ jĝ i � gij

sþ1
Þ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð29Þ

In terms of Lemma 4, it is easy to obtain that

DbV2 tð Þ � � k2

Pr
i¼1

jsiðtÞj
sþ1

þjε̂ i � εij
sþ1

þjĝ i � gij
sþ1

0

B
B
B
@

1

C
C
C
A
� � 2

sþ 1

2 k2

Pr
i¼1

1

2
s2

i ðt
� �

Þ

sþ 1

2

þ
1

2
ðε̂ i � εiÞ

2

� �
sþ 1

2

þ
1

2
ðĝ i � giÞ

2

� �
sþ 1

2

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

� � 2

sþ 1

2 k2V

sþ 1

2
2 ðtÞ < 0 ð30Þ

On the basis of Lemma 5, the state trajectories of the error system will converge to s(t) = 0

asymptotically. By Lemma 2, one has

DbV2 tð Þ ¼
G 1 � sþ1

2

� �

G 1þ b � sþ1

2

� �V
sþ1

2
2 tð ÞDbVb� sþ1

2
2 tð Þ � � 2

sþ1
2 k2V

sþ1
2

2 tð Þ ð31Þ
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Then, it can be easy to derive the following form:

DbVb� sþ1
2

2 tð Þ � � 2
sþ1

2 k2

G 1þ b � sþ1

2

� �

G 1 � sþ1

2

� � ð32Þ

Taking fractional-order integral of (32) from t0 to t by Lemma 1, one obtains

Vb� sþ1
2

2 tð Þ � Vb� sþ1
2

2 t0ð Þ � Ib � 2
sþ1

2 k2

G 1þ b � sþ1

2

� �

G 1 � sþ1

2

� �

 !

ð33Þ

According to Definition 1, one gets

Ib � 2
sþ1

2 k2

G 1þ b � sþ1

2

� �

G 1 � sþ1

2

� �

 !

¼ � 2
sþ1

2 k2

G 1þ b � sþ1

2

� �

G 1 � sþ1

2

� �
1

GðbÞ

Z t

0

ðt � tÞb� 1dt

¼ � 2
sþ1

2 k2

G 1þ b � sþ1

2

� �

G 1 � sþ1

2

� �
GðbÞ

ðt � t0Þ
b

b
¼ � 2

sþ1
2 k2

G 1þ b � sþ1

2

� �
ðt � t0Þ

b

G 1 � sþ1

2

� �
Gð1þ bÞ

ð34Þ

From (33) and (34), one can obtain

Vb� sþ1
2

2 tð Þ � Vb� sþ1
2

2 t0ð Þ � 2
sþ1

2 k2

G 1þ b � sþ1

2

� �
ðt � t0Þ

b

G 1 � sþ1

2

� �
Gð1þ bÞ

; t0 � t � T�
2

Hence, it implies that the state trajectories of the error system (12) will reach the predefined

sliding surface s(t) = 0 in a given finite time under the controller (30). One can obtain that

lim
t!T�

2

siðtÞ ¼ 0; t � T�
2
; i ¼ 1; 2 . . . r ð35Þ

Therefore, this completes the proof.

Remark 5 Theorem 1 has proved that the synchronization error (11) can be achieved to be

zero within a finite time, and Theorem 2 has proved that the state trajectories of the error sys-

tem can converge to zero within a given finite time. Therefore, according to Theorems 1 and 2,

the upper bound of total convergence time can be estimated as T� < T�
1
þ T�

2
.

Remark 6 In the proposed synchronization method, all potentialities: dimension, fractional

order derivative, identical or non-identical and with or without disturbances and model uncer-

tainties, are included in the dynamical systems. Consequently, the so-called ‘generalized syn-

chronization approach’ is entirely adequate for synchronizing any dynamical systems in finite

time.

Remark 7 From the perspective of control engineering, the main problems that greatly lim-

its the control performance in practical applications are: a) the model parameters or the upper

bound of the dynamical system, b) the presence of uncertainties and external disturbances in

the system, c) The feasibility of the control inputs. In the proposed control scheme, it is not

necessary to give prior knowledge of the upper bounds. Furthermore, due to the efficiency of

the adaptive sliding mode control, it has good robustness against uncertainties and distur-

bances. It’s also noteworthy that for real implementations of the adaptive update laws in Eq

(25), the disturbances and model uncertainties need to satisfy the Assumption 1 and 2. Fur-

ther, the control inputs U 0iðtÞ are feasible in real applications. Hence, the proposed controller is

very suitable for practical applications.
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4. Numerical simulations

In this section, some numerical simulations are provided to highlight the validity and effective-

ness of our proposed methods obtained in the previous section. Two cases are discussed by

applying the method to two non-identical fractional order chaotic systems with and without

commensurate orders.

In the following, let us consider the hyper-chaotic fractional order Lorenz system (36) as a

master system, and chaotic fractional order reverse butterfly-shape system (37) as a slave sys-

tem. These systems with disturbances and model uncertainties are taken from [18].

Master system:

Dax1 ¼ 10ðx2 � x1Þ þ x4 þ Df1ðx1Þ þ df
1ðtÞ

Dax2 ¼ 28x1 � x2 � x1x3 þ Df2ðx2Þ þ df
2ðtÞ

Dax3 ¼ x1x2 �
8=

3

� �
x3 þ Df3 x3ð Þ þ df

3 tð Þ

Dax4 ¼ � x2x3 � x4 þ Df4ðx4Þ þ þdf
4ðtÞ

ð36Þ

8
>>>>><

>>>>>:

Slave system:

Dby1 ¼ 10ðy2 � y1Þ þ Dg1ðy1Þ þ dg
1ðtÞ þ u1ðtÞ

Dby2 ¼ 40y1 þ 16y1y3 þ Dg2ðy2Þ þ dg
2ðtÞ þ u2ðtÞ

Dby3 ¼ � y1y2 �
10=4
ð Þy3 þ Dg3 y3ð Þ þ dg

3 tð Þ þ u3 tð Þ

ð37Þ

8
><

>:

The disturbances and model uncertainties of the systems are chosen as follows:

Df1ðx1Þ þ df
1ðtÞ ¼ � 0:15cosð6tÞx1 þ 0:25sinð7tÞ

Df2ðx2Þ þ df
2ðtÞ ¼ � 0:2cosð2tÞx2 þ 0:1sinð3tÞ

Df3ðx3Þ þ df
3ðtÞ ¼ 0:15sinð4tÞx3 � 0:25cosð5tÞ

Df4ðx4Þ þ df
4ðtÞ ¼ � 0:2sinðtÞx4 þ 0:2cosð2tÞ

Dg1ðy1Þ þ dg
1ðtÞ ¼ � 0:25sinð4tÞy1 þ 0:1cosðtÞ

Dg2ðy2Þ þ dg
2ðtÞ ¼ 0:1cosð2tÞy2 þ 0:15cosð3tÞ

Dg3ðy3Þ þ dg
3ðtÞ ¼ � 0:1sinð3tÞy3 þ 0:2cosð5tÞ

ð38Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

By using Assumption 1 and 2, one can obtain εi = (0.1,0.8,0.8), γi = (0.35,0.6,0.55)(i = 1,2,3).

The following examples are illustrated by using two varieties of cases for fractional order deriv-

atives: one is α6¼β and another one is α = β.

4.1. Non-commensurate order

In our simulation, the fractional derivatives are selected as α = 0.98, β = 0.99 respectively. The

initial values of the systems (36) and (37) are given as (x1,x2,x3,x4) = (2,−2,4,1), (y1,y2,y3) = (2,

−1,1). By taking those parameters, the dynamics of master system (36) and slave system (37)

without the controller exhibits a chaotic behavior as illustrated in Figs 1 and 2.The correspond-

ing time series of the master and slave systems are shown in Figs 3 and 4.
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Fig 1. Phase portraits of master system when α = 0.98.

https://doi.org/10.1371/journal.pone.0263007.g001

Fig 2. Phase portraits of the uncontrolled slave system when β = 0.99.

https://doi.org/10.1371/journal.pone.0263007.g002

Fig 3. Time series of master system when α = 0.98.

https://doi.org/10.1371/journal.pone.0263007.g003
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Assume the continuous differentiable functions of the systems (36) and (37) are

�ðxÞ ¼

x1 � x2

x1 þ x3

x1 þ x4

0

B
@

1

C
A; φðyÞ ¼

y1

y1 þ y2

y2 þ y3

0

B
@

1

C
A ð39Þ

Then eðtÞ ¼ ðe1ðtÞ; e2ðtÞ; e3ðtÞÞ
T
¼ φðyÞ � �ðxÞ ¼

y1 � x1 þ x2

y1 þ y2 � x1 � x3

y2 þ y3 � x1 � x4

0

B
@

1

C
A. Further, the

corresponding Jacobian matrix and the generalized inverse matrix is obtained

J�ðxÞ ¼

1 � 1 0 0

1 0 1 0

1 0 0 1

0

B
B
@

1

C
C
A; JφðyÞ ¼

1 0 0

1 1 0

0 1 1

0

B
B
@

1

C
C
A ð40Þ

By (19) and (27), the sliding surface and control input are provided as follows:

siðtÞ ¼ eiðtÞ þ Ibðk1jeiðtÞj
dsignðeiðtÞÞÞ; i ¼ 1; 2; 3 ð41Þ

Fig 4. Time series of the uncontrolled slave system when β = 0.99.

https://doi.org/10.1371/journal.pone.0263007.g004
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And the control signals U(t) = U0(t)+U@(t) , compensation controllers U@
iðtÞ ¼ J � 1

φ J�ðDbx �
DaxÞ; i ¼ 1; 2; 3: From (24), adaptive controllers U0i(t) are determined by the following

U 01ðtÞ ¼ � 10ðy2 � y1Þ � 38x1 þ 11x2

þx1x3 þ x4 � k1jeiðtÞj
dsignðe1ðtÞÞ

� ðk2js1ðtÞj
s
þ ε̂1 þ ĝ1Þsignðs1ðtÞÞÞ

U 02ðtÞ ¼ � 40y1 � 16y1y3 � 28x1 � x2 � x1x3

þx1x2 �
8

3
x3 þ k1jeiðtÞj

dsign e1ðtÞð Þ

þðk2js1ðtÞj
s
þ ε̂1 þ ĝ1Þsignðs1ðtÞÞÞ

� k1je2ðtÞj
dsignðe2ðtÞÞ

� ðk2js2ðtÞj
s
þ ε̂2 þ ĝ2Þsignðs2ðtÞÞÞ

U 03 tð Þ ¼ y1y2 þ
10

4
y3 � 38x1 þ 11x2 þ x1x3

� x1x2 � x2x3 þ
8

3
x3 � k1jeiðtÞj

dsign e1ðtÞð Þ

� ðk2js1ðtÞj
s
þ ε̂1 þ ĝ1Þsignðs1ðtÞÞÞ

þk1je2ðtÞj
dsignðe2ðtÞÞ

þðk2js2ðtÞj
s
þ ε̂2 þ ĝ2Þsignðs2ðtÞÞÞ

� k1je3ðtÞj
dsignðe3ðtÞ

� ðk2js3ðtÞj
s
þ ε̂3 þ ĝ3Þsignðs3ðtÞÞÞ

ð42Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Where, ε̂ i and ĝ i ði ¼ 1; 2; 3:Þ are obtained by the adaptive update laws (25)

Dbε̂1 ¼ js1j � k2jε̂1 � ε1j
ssignðε̂1 � ε1Þ

Dbε̂2 ¼ js2j � k2jε̂2 � ε2j
ssignðε̂2 � ε2Þ

Dbε̂3 ¼ js3j � k2jε̂3 � ε3j
ssignðε̂3 � ε3Þ

8
>><

>>:

Fig 5. State trajectories of the synchronization errors between master and slave system when α = 0.98 and β =

0.99.

https://doi.org/10.1371/journal.pone.0263007.g005
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Dbĝ1 ¼ js1j � k2jĝ1 � g1j
ssignðĝ1 � g1Þ

Dbĝ2 ¼ js2j � k2jĝ2 � g2j
ssignðĝ2 � g2Þ

Dbĝ3 ¼ js3j � k2jĝ3 � g3j
ssignðĝ3 � g3Þ

8
>><

>>:

In control scheme (42), The initial conditions of ε̂ ið0Þði ¼ 1; 2; 3Þ and ĝ ið0Þði ¼ 1; 2; 3Þ are

chosen as 0.5, the control parameters are chosen as k1 = k2 = 10, both δ and σ are set equal to

Fig 6. State trajectories of master system and slave system whenα = 0.98 and β = 0.99.

https://doi.org/10.1371/journal.pone.0263007.g006
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0.8. It’s noted that the controller is performed at t0 = 20s and start from initial state ðx1ð20Þ; x2

ð20Þ; x3ð20Þ; x4ð20ÞÞ ¼ ð8:38; 5:89; 12:08; 89:39Þ; ðy1ð20Þ; y2ð20Þ; y3ð20ÞÞ ¼ ð2:43; 0:75;

� 2:83Þ, thus e(20) = φ(y(20))−ϕ(x(20)) = (−0.06,−17.28,−99.85).

The synchronization errors of the master system (36) and slave system (37) are plotted in

Fig 5. Obviously, the synchronization errors converge to zero rapidly, and the stabilized time is

estimated within 1.00 s, which indicates that the global synchronization is successfully realized,

as depicted in Fig 6. Furthermore, the corresponding time response of the sliding surface (13)

is plotted in Fig 7.

According to Theorem 1, the states of the sliding mode dynamics system (14) will converge

within a given time

T�
1
¼ t0 þ keðt0Þk

b� d

1

Gð1 � dÞGð1þ bÞ

k1Gð1þ b � dÞ

� �1
b

¼ 0þ ðkeð20Þk
0:99� 0:8

1
Þ

1
0:99 �

Gð1 � 0:8ÞGð1:99Þ

10� Gð1:99 � 0:8Þ

� � 1
0:99

¼ 1:2298

Fig 7. Time response of the sliding surfaces.

https://doi.org/10.1371/journal.pone.0263007.g007

Fig 8. State trajectories of the synchronization errors between master and slave system when α = β = 0.96.

https://doi.org/10.1371/journal.pone.0263007.g008
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In Fig 6, it is seen that the error system (12) can stabilize to zero with the reaching time of

t1�0.8s and satisfy the estimated reaching time t1 � T�
1
.

Besides, by (19) based on Definition 1 and Theorem 2, the estimated time is calculated as

T�
2
¼ t0 þ

1

2
s2

i ð0Þ þ
1

2

ε̂ ið0Þ

� εi

 !2

þ
1

2

ĝ ið0Þ

� gi

 !2 !b� sþ1
2

G 1 � sþ1

2

� �
Gð1þ bÞ

2
sþ1

2
k2G 1þb� sþ1

2ð Þ

0

B
@

1

C
A ¼ 1:222

Fig 9. State trajectories between master system and slave system when α = β = 0.96.

https://doi.org/10.1371/journal.pone.0263007.g009
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From Fig 7, it is obvious that the simulation time t2�0.8s satisfies the estimated time

t2 � T�
2
.

4.2. Commensurate order

Assume that the commensurate order α = β = 0.96 and the initial values of the systems (36)

and (37) are set as (x1, x2, x3, x4) = (3,1,−2,1), (y1, y2, y3) = (1,2,3). And the control signals U(t)
= U0(t)+U@(t), compensation controllers U@

iðtÞ ¼ J � 1
φ J�ðDbx � DaxÞ ¼ 0; i = 1,2,3. Then, adap-

tive controllers U0 iðtÞ are determined by the form of (42). The other parameter values are the

same as Case I. It is noteworthy that the controller is implemented at t0 = 20s. The results are

depicted in Figs 8–10. As shown in Figs 8 and 9, the generalized synchronization is successful

accomplished and the synchronization errors tend to zero within 1.0s. From Fig 10, it is clear

that the sliding surfaces converge to zero within 1.0s. The calculation method of convergence

time is similar to Theorem 1 and 2, the upper bound of those can be estimated as T�
1
¼

Fig 10. Time response of the sliding surfaces.

https://doi.org/10.1371/journal.pone.0263007.g010

Fig 11. The overall diagram of speech secure communication.

https://doi.org/10.1371/journal.pone.0263007.g011
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0:9141; T�
2
¼ 0:9438 respectively. The results verify the presented control strategy can syn-

chronize two different dimensional fractional order chaotic systems within finite-time.

Remark 8 For the proposed synchronization approach, the error state trajectories with

both cases will converge to zero within 1.0s according to Figs 5 and 10. But the existing method

in reference [18], the synchronization errors converge to zero at the reaching time t�1.6s.

Therefore, the convergence rate of synchronization errors for fractional order chaotic systems

is faster than that of the existent approach in [18], which implies the superiority and effective-

ness of the presented scheme in our study. In addition, integer order dynamical system is also

appropriate.

Remark 9 According to Remark 8, it is obvious that the novelty and superiority of the

model is highlighted by the proposed approach. The finite-time generalized synchronization

can be applied to both commensurate and incommensurate systems. Moreover, the fact that it

acquires the coexistence of several kinds of synchronization types, as see in [12], the coexis-

tence of three different synchronization types, that is, identical synchronization (IS), anti-

phase synchronization (AS), and inverse full state hybrid projective synchronization (IFSHPS).

But the fact that the proposed approach is more general than that in [12], since it guarantees

the combination of only three specific synchronization types. Furthermore, the proposed syn-

chronization approach gives a deeper insight into the synchronization phenomena between

fractional order chaotic systems.

Fig 12. Encryption and decryption scheme of the speech signal based on synchronization criterion.

https://doi.org/10.1371/journal.pone.0263007.g012
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5. Applications in speech secure communication

In this section, due to the technology of finite-time synchronization and uncertainties of the

synchronous system can enhance the security of communication. A new speech cryptosystem

is proposed to send or share voice messages privately according to generalized finite-time syn-

chronization criterion of non-identical fractional order chaotic drive system and response sys-

tem improving the level of security. Before signal transmission, based on synchronization

theory among fractional-order chaotic systems, the generalized synchronization errors of the

systems (36) and (37) will converge to zero under the given control inputs (42) and a time

t>t1+t2. Then, the sender A records an audio message and generates him/her own key of cha-

otic sequence KA. The receiver B obtains the secret key of chaotic sequence KB by means of the

proposed synchronization criterion and then decrypts the original speech signal. It is noted

that encryption-decryption keys KA, KB are the same. Furthermore, the overall diagram of

speech encryption–decryption process is depicted in Fig 11.

5.1. Description of encryption and decryption scheme

Now the speech encryption and decryption algorithm is designed based on generalized syn-

chronization of fractional order chaotic system. Chaotic sequences can be generated by using

the systems (36) and (37), and the arbitrary two functions of ϕ(x) from the systems (36) are

chosen to generate the key of encryption algorithm. The original sound is then encrypted by

Fig 13. Synchronous trajectories of drive system and response system when α = 0.98 and β = 0.99.

https://doi.org/10.1371/journal.pone.0263007.g013
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employing a simple XOR operation with the chaotic sequence generated. The decryption algo-

rithm is basically similar to the encryption algorithm. As shown in Fig 12, the complete algo-

rithm can be described in the following steps:

Step 1: The preliminary speech signal preprocessing. Selecting any channel signal of the

recorded two-channel speech signals. The chosen signal will realize the conversion from deci-

mal to binary. And its amplitude will be magnified 1000 times.

Step 2: The encryption sequence generated. The arbitrary two functions of ϕ(x) from the sys-

tems (36) are chosen to generate the chaotic sequence a1, b1. Then there will get the difference of

a hundred numbers from a1 and b1. If a1(i)−b1(i)>0, i = 1,2,3� � �100, the sequence of encryption J

(i) = 1, In contrast, J(i) = 0, that is to say, the key of encryption KA has been generated.

Step 3: Encryption. The sequence of encryption J(i) will be transformed into binary number

and then be encrypted by using a simple XOR operation.

Step 4: Decryption. The corresponding two functions of φ(y) from the systems (37) are

obtained to generate the tracking sequence a2, b2 in terms of synchronization criterion. Addi-

tionally, the decryption algorithm is the same as the encryption algorithm. Then the sequence

of decryption T(i) could be generated. Likewise, the corresponding XOR operation will also

been performed. The decrypted speech signal can be acquired.

Step 5: Decrypted speech signal post-processing. The decrypted speech signal will realize

the conversion from binary to decimal, and its amplitude will be reduced by 1000 times.

Step 6: Get the original speech.

Fig 14. The original speech signal and FFT spectrum.

https://doi.org/10.1371/journal.pone.0263007.g014
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5.2. Demonstration of the experimental results

In this experiment, the generalized finite-time synchronization between the systems (36) and

(37) is implemented in Case I, while the controller is applied at t0 = 5s. Synchronous trajecto-

ries are depicted in Fig 13. Further, Assume that A records a speech message and wishes to

send it to B secretly. Both A and B should be agreeing on a time t>t0. The message has been

saved by A as the audio format of s.mp3.The original speech signal and corresponding FFT

spectrum is displayed in Fig 14. It has 7.2 seconds long with 44100 samples. For encryption,

the preprocessing for original speech signal is completed in advance. As shown in Fig 15, the

original speech signal preprocessing and FFT spectrum are represented graphically. From

Fig 16, the arbitrary 40 points chosen from the original speech are converted to the binary bits.

According to encryption scheme in the previous section, encrypted speech signal and its corre-

sponding FFT spectrum are illustrated in Fig 17. It is clear that the speech signal is entirely cov-

ered by the chaotic secret key sequence, and the original profile could not be seen at all. For

decryption, the decrypted speech signal and its corresponding FFT spectrum are depicted in

Fig 18. Finally, B will obtain an original speech message without any loss of information,

because the decrypted audio signal is fully restored. Therefore, B can play decrypt speech and

hear an original voice. It is well known that the secret key sequence generated by the drive sys-

tem is utilized to encrypt the speech signal and that generated by the response system operates

in recovering the encryption signal.

Remark 9 Notice that from the aforementioned result, spectrogram analysis is a random

test tool that divides the signal in the time domain into slots to calculate Fast Fourier

Fig 15. Original speech signal preprocessing and FFT spectrum.

https://doi.org/10.1371/journal.pone.0263007.g015
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Transform (FFT) for each slot. The magnitude square of FFT is plotted versus each slot to indi-

cate the energy of sound. There are 44100 samples of the input speech signal with7.2 seconds

long. Then, the spectrogram of original and encrypted signals is made. The energy of sound

appears to be small as a result of low speech signal’s amplitude, so its amplitude will be magni-

fied 1000 times. For encrypting the speech file, spectrogram appears random which indicates

the randomness distribution of sound components’ energy. In the decryption process, the

waveforms of the decrypted speech signal are shown by the decryption key. Encryption and

decryption scheme of the speech signal based on synchronization criterion is straightforward

with low-level hardware complexity. Furthermore, the proposed method also effectively

enhances the security of signal transmission. Image encryption is one of the most significant

and common applications of synchronization between fractional order chaotic systems. A

future direction of investigation is to recast the methodology adopted in this paper to the

image encryption.

5.3. Security analysis

In the proposed synchronization criterion, the fractional order chaotic systems (36) and (37)

are used to generate the secret key of encryption and decryption sequences KA, KB. Due to

some secret elements of fractional-order chaotic systems, such as the parameters and initial

conditions of the system, fractional orders α and β and the convergence time, will add the total

number of different secret keys directly. Hence, the new algorithm has a large enough key

space to resist brute-force attacks. The key sequences generated are totally uncorrelated and

random. When such sequences are utilized, experimental results have revealed that the

Fig 16. The binary number of the original speech signal.

https://doi.org/10.1371/journal.pone.0263007.g016
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proposed algorithm possesses some secret elements of traditional cryptography, such as com-

plex chaotic behavior, time-varying nonlinearity, disturbances and model uncertainties.

Therefore, the reverse recover of the original speech message is totally hopeless except by the

receiver. Meanwhile, the demonstration and analysis of the speech cryptosystem based the

fractional order dynamical systems have shown that, the proposed encryption and decryption

scheme is more secure and appropriate for sending and receiving messages secretly. Further-

more, these have basically addressed all existing security disadvantages with respect to chaos

based audio encryption methods and have provided a new idea for the ever-increasing practi-

cal applications.

6. Conclusion

This paper is concerned with the generalized finite-time synchronization between two non-

identical fractional order chaotic (or hyper-chaotic) systems based on adaptive sliding mode

controller and its application in secure communication. First, the definition of generalized

finite-time synchronization is given. Second, a novel fractional order integral sliding surface is

presented and its finite-time convergence theorem is analytically proved. Then, according to

the fractional Lyapunov stability theory, a robust controller with adaptive update laws is pro-

posed to ensure the occurrence of the sliding motion. Meanwhile, its finite-time stability con-

dition is derived by considering model uncertainties and external disturbances. The results of

Fig 17. Encrypted speech signal and FFT spectrum.

https://doi.org/10.1371/journal.pone.0263007.g017
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theoretical analysis show that the finite-time stability and the robustness of the proposed con-

trol scheme are mathematically proved, and the upper bound of the convergence time is

explicitly evaluated. Finally, numerical simulations illustrate the effectiveness and robustness

of the presented approach, which are in good agreement with the results of theoretical analysis.

What’s more, in order to demonstrate the practical effect of generalized synchronization with

application to the speech secure communication, a novel sound encryption mechanism is pro-

posed and a successful case is given to show the applicability of the proposed theories. It is

worthwhile to note that the proposed synchronization approach not only can be extended to a

wide range of nonlinear fractional-order chaotic systems and time-delayed chaotic systems,

but also can be further applied to create a new encryption mechanism or a new way guarantee-

ing information safety. A future direction of investigation is to recast the methodology adopted

in this paper to the image encryption.
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