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Abstract

Otitis media (OM) and externa (OE) are painful, recurrent ear conditions. As most otitis pub-

lications focus on the bacterial content of childhood ears, there remains a dearth of informa-

tion regarding the adult ear microbiome including both bacteria and fungi. This study

compares the outer ear microbiome of healthy adults to adults affected by OE and OM using

both intergenic-transcribed-spacer (ITS) and 16S-rDNA sequencing. The adult ear core

microbiome consists of the prokaryote Cutibacterium acnes and the eukaryotic Malassezia

arunalokei, M. globosa, and M. restricta. The healthy ear mycobiome is dominated by

Malassezia and can be divided into two groups, one dominated by M. arunalokei, the other

by M. restricta. Microbiome diversity and biomass varied significantly between healthy and

diseased ears, and analyses reveal the presence of a potential mutualistic, protective effect

of Malassezia species and C. acnes. The healthy ear core microbiome includes the bacteria

Staphylococcus capitis and S. capitis/caprae, while the diseased ear core is composed of

known bacterial and fungal pathogens including Aspergillus sp., Candida sp., Pseudomonas

aeruginosa, S. aureus, and Corynebacterium jeikeium. The data presented highlight the

need for early detection of the cause of otitis to direct more appropriate, efficient treatments.

This will improve patient outcomes and promote improved antimicrobial stewardship.

Introduction

Acute and chronic ear infections are of considerable importance, among the most common

reasons for physician visits and resulting antibiotic treatment [1–3]. Otitis was previously con-

sidered more prevalent in children under the age of 15 [4], but a recent study found that about

half of physician visits for otitis complaints were from adults [2]. The most common ear infec-

tions include otitis media (OM) and otitis externa (OE). OM is characterized by middle ear

inflammation with subtympanic fluid accumulation, caused or promoted by growth of
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bacterial, fungal, and/or viral pathogens leading to infection, swelling, redness, and pain [5].

OE (“swimmer’s ear”), consists of outer ear canal infection and inflammation accompanied by

pain, redness, and tenderness with occasional purulent exudates. OE presents as either an

acute (AOE) or chronic (COE) disease: AOE is believed to be of bacterial origin, while COE is

more often caused by fungi. Treatments for OM and OE consist of oral antibiotics in at least

25% of patients [1]. OM and OE are often thought to result from a polymicrobial infection

with biofilm formation leading to antibiotic resistance phenotypes, which may explain why at

times antibiotic treatments provide limited benefit [4], as well as limited effectiveness due to

the increase of resistant microbes or treatment with an incorrect antimicrobial.

Current diagnostic methods include culture-based techniques and molecular tests e.g.,

PCR-based microbial panels. However, less than 1% of all microbes can be cultured using stan-

dard methods [6]. While a majority of the microbes detected in this study, and the ear core

microbiome, are able to be cultivated, they require diverse cultivation techniques and have

vastly different growth characteristics. For example, the most common components for the

mycobiome, and clear differentiators of health and disease, are Malassezia species. Most clini-

cal testing laboratories minimally routinely test for fungi at all, and the fastidious Malassezia
species M. restricta and M. arunalokei would be very likely to be under-reported. This is also

the case for many Cutibacterium species, which require anaerobic conditions to grow in cul-

ture. Hence, culture techniques often lack the sensitivity and speed needed to detect the variety

of pathogens that may be present in a polymicrobial ear infection, which include biofilms, and

difficult to grow, anaerobic bacteria and/or fungal pathogens [7, 8]. Although more sensitive

and faster, quantitative PCR-based microbial testing is limited to the number of microbial tar-

gets (usually 8–20) contained in the panel. These limitations of existing diagnostic methods

challenge the accurate diagnosis and proper management of ear infections.

While the microbiology of adult OM remains poorly investigated, culture methods have

implicated otopathogens such as Haemophilus influenzae, Streptococcus pneumoniae, and Mor-
axella catarrhalis as primary bacterial causes of childhood acute OM (AOM) [9]. 16S Next-

Generation DNA Sequencing (NGS) has confirmed these as primary otopathogens, but also

added Turicella otitidis, Alloiococcus otitidis, and Staphylococcus auricularis [10], highlighting

that NGS testing has the potential to provide more detailed information about the bacterial eti-

ology of AOM and has been instrumental in the systematic detection of novel candidate organ-

isms [11]. A. otitidis remains controversial as a pathogen as it is found in healthy ears,

highlighting the need to further NGS-based analysis to understand how microbial species can

be, at times, either pathogenic or benign. The OE microbiome is even less well reported, with

Staphylococcus aureus, Staphylococcus haemolyticus, Klebsiella, and Pseudomonas aeruginosa
as primary bacterial pathogens [9, 12]. However, these bacterial culture and DNA sequencing-

based approaches are limited to bacterial detection and cannot properly diagnose the 5–10% of

OE cases potentially caused by fungi. These fungal OE cases will not respond to antibacterial

treatments, lead to excessive antibiotic use, prolonged symptoms, and wasted medical

expenditure.

NGS has the potential to impact patient care by improving clinical diagnostic sensitivity

and enabling targeted treatments through precise, unbiased, and comprehensive species-level

microbial identification of bacteria and fungi, with the ability to generate semi-quantitative

data [7, 13, 14]. The aim of this study was to use an NGS-based microbial test for the diagnosis

of OM and OE in an adult population. Microbial profiles of OM and OE individuals were

compared to a healthy cohort to investigate how the ear microbiome is altered under these

conditions and to investigate the possibility of microbial perturbation or pathogen overgrowth

in otitis. To date, the vast majority of sequence and culture-based investigations of OM and

OE have focused on children and included only bacterial detection methods [15–17]. This
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study highlights how NGS can provide novel insights into the adult otitis microbiome includ-

ing its role in health and disease. Accurate, fast, and early detection of the causes of OE and

OM can guide more effective treatments, decrease the need for antibiotic prescriptions, pro-

mote good antibiotic stewardship, and greatly improve patient care and outcomes [18].

Material and methods

Study design and subject population

Healthy subjects as well as patients with different disorders of the ear were recruited from a

private practice for enrollment in this study. This was a single-center study and specimens

were collected from Tustin Ear, Nose & Throat Sinus and Allergy Center, practice of Dr.

Charles Oh, a board-certified Otolaryngologist who performed all the diagnoses and sample

collection. This study was approved by the Zymo Research Corporation Institutional Review

Board (IRB) and all participating subjects provided a written informed consent prior to the

start of the study. To determine the microbial composition of the ear, samples were collected

from 46 healthy individuals with specimens taken from both ears, for 92 samples total, ages 22

to 60 years with no known history disorders of ear or sino-nasal cavities and no chronic medi-

cal conditions including asthma, bronchitis, or allergic rhinitis. Healthy participants were

from the local Irvine, Tustin, CA, USA areas and data from these were compared to 22 patients

with otitis externa (OE) and 48 patients with otitis media (OM) (Table 1). Exclusion criteria

included patients receiving any antimicrobial treatment at time of collection and those with

non-infectious disorders of the ear.

Sample collection

Samples were collected using the collection kit provided with the PrecisionBIOME NGS

Microbial test (Pangea Laboratory, Tustin, CA, USA). This kit contains sterile oropharyngeal

and nasopharyngeal swabs and collection tubes pre-filled with a nucleic acid-stabilizing solu-

tion called DNA/RNA ShieldTM (Zymo Research Corp., Irvine, CA). This solution can pre-

serve the microbial DNA present in the specimen at room temperature for up to 30 days (S1

Fig). Both left and right ears from all healthy participants were swabbed using a sterile naso-

pharyngeal swab provided with the kit. Swabbing was performed in a standard way by rotating

the swab at least five full turns inside the ear canal until swab was saturated. Right after swab-

bing, the swab was placed inside the collection tube and the rest of the swab stem was dis-

carded at the breakpoint. Tubes were tightly capped and sent for 16S and ITS analysis through

the PrecisionBIOMETM NGS Microbial test. A total of 92 healthy ear specimens were collected

and analyzed.

Specimens from adult subjects with different ear infections including OM and/or OE were

collected using a similar procedure as described above. A total of seventy otitis patients (70)

with a median age of 64 years and suffering from either OM or OE (Table 1) were recruited for

microbial analysis and pathogen identification using the PrecisionBIOMETM NGS Microbial

Table 1. Clinical characteristics of study subjects.

Characteristics Healthy (n = 92) Otitis (n = 70)

Male/Female 23/23 (bilateral) 35/37

Age (Median) 30 64

Age range 22–60 years 22–92 years

Otitis Media (OM) — 48/70

Otitis Externa (OE) — 22/70

https://doi.org/10.1371/journal.pone.0262806.t001
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test. For sample collection, an otoscope and microscope were used to identify the site of infec-

tion. For all OM cases, sampling was performed through the outer ear canal into the middle

ear. Middle ear fluids were collected by aspiration (tympanocentesis) and placed directly inside

the specimen collection tube. In cases of ruptured ear drums, fluids were collected with a flexi-

ble nasopharyngeal swab using an auditory speculum. For OE cases, the outer ear canal skin

including ear exudates were collected using a sterile nasopharyngeal swab included in the col-

lection kit. Otitis media was the most common type of ear infections analyzed in this study

(N = 48/70).

DNA extraction, library preparation, and sequencing

Shortly after collection, specimens were sent for analysis through the PrecisionBIOME™ NGS

Microbial Test (Pangea Laboratory, Tustin, CA, USA). PrecisionBIOME™ is an NGS test that

provides accurate and fast identification and quantification of both bacterial and fungal species

present in a clinical specimen along with antibiotic susceptibility information. Briefly, micro-

bial DNA from the specimen was extracted using the ZymoBIOMICS DNA Miniprep Kit

according to the manufacturer’s instructions (Zymo Research Corporation, Irvine, CA).

Extracted DNA was next prepared for NGS analysis following a workflow which included

library preparation using the Quick-16S™ NGS library prep kit (Zymo Research Corporation,

Irvine, CA), sequencing of barcoded amplicons with the MiSeq sequencing platform (Illumina,

San Diego, CA), and bioinformatics analysis using a proprietary PrecisionBIOME™ bioinfor-

matics pipeline capable of producing species-level resolution of bacterial and fungal sequences.

Positive and negative controls (transport medium alone and unused swabs) were also included

in the NGS workflow. To control for contamination cell and DNA mock communities were

used as positive controls (ZymoBIOMICS microbial community standard, catalog Nos. D6300

and D6305; Zymo Research Corp) from the DNA extraction process. ZymoBIOMICS Micro-

bial Community Standard (Zymo Research Corporation, Irvine, CA) was used as a positive

control to monitor the performance of all steps of the NGS workflow including the bioinfor-

matic analysis. Potential sequencing errors and chimeric sequences were also removed with

the DADA2 pipeline. Absolute abundance of total bacteria and fungi was determined using

the Femto Bacterial and Fungal DNA Quantification kits (Zymo Research Corporation, Irvine,

CA) according to manufacturer’s protocols.

Analysis of microbiota

Microbiota profiling was determined using the PrecisionBIOME™ bioinformatics analysis

pipeline. Uclust was used to perform taxonomic classifications using a PrecisionBIOME™ cus-

tom proprietary database. Phylotypes were computed as percent proportions based on the

total number of sequences in each sample. Relative abundances of bacteria compared to fungi

were determined assuming an equivalency of one 16S rDNA copy to one fungal ITS copy.

While it is unlikely that the number of 16S or ITS copies change in any given, this is an

assumption, which may be considered a limitation of the analysis presented here. Absolute

microbial quantification was achieved using a real-time PCR approach using primers targeting

the V1-V3 and ITS regions for bacterial and fungal quantification, respectively. Species level

resolution of this sequencing approach was previously confirmed by shotgun sequencing [19].

Statistical analyses

Unless otherwise stated, results were expressed as average values with standard deviation. Mea-

surements of α- diversity and evenness were calculated using the Shannon index and the num-

ber of observed species. β-diversity was calculated using Bray-Curtis distance at the species
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taxonomic level for both bacteria and fungi. Linear discriminant analysis (LDA) and effect size

(LEfSe) were used to identify taxa that were significantly enriched in each group using the

default settings (QIIME version 1.9.1, P value> 0.05 was considered significant) [20]. Analyses

of variance and false discovery rate control to correct for type I errors were performed on the

species-level relative abundance data of this analysis. Species with a P value < 0.05 were con-

sidered significant. A presence-absence data matrix of species by site was generated by assum-

ing species with abundance greater than 1% as presence and less than 1% as absent. The “co-

occur” function from R (“cooccur” package in R version 3.5.2, R Core Team, 2013) was used

to generate pairwise classification of species having positive, negative, and random associa-

tions. The core microbiome was determined based on taxa detected with� 5% relative abun-

dance and in� 50% of all samples. GraphPad Prism (version 8) software was used for data

visualization.

Results

To identify possible causative agents of adult ear infections, we compared the bacterial and

fungal microbial profiles of three study groups: healthy, asymptomatic adults, otitis media

(OM) patients, and otitis externa (OE) patients. NGS analysis detected both bacterial and fun-

gal organisms, with a total of 877 different bacterial and 277 fungal species detected (S1 and S2

Tables). To measure similarities/differences in the microbial composition a β-diversity analysis

showed a clear bacterial composition separation of healthy vs infected groups, with OE and

OM specimens clustering. No clustering was seen for the fungal component (S2 Fig). As a fur-

ther control for internal consistency, we compared the left and right samples from healthy ears

and found no significant differences (S3 Fig).

Bacteriome composition and diversity

At the phylum level, the bacteriome of healthy ears was dominated by Firmicutes and Actino-

bacteria while in otitis ears Proteobacteria and Bacteroides were more often detected. At the

species level Cutibacterium acnes dominated the healthy ear bacteriome with the highest aver-

age relative abundance (51.83%) and frequency (92/92 samples). The following top four bacte-

ria detected in healthy ears were S. auricularis (10.07%, 34/92), S. capitis/caprae (9.47%, 82/92),

Corynebacterium otitidis (6.67%, 28/92), and A. otitis (6.16%, 29/92). Interestingly, five species

previously reported as potential pathogens were detected in the healthy group, although at

lower abundances (S. capitis/caprae, C. otitidis, A. otitis, S. caprae, and Streptococcus mitis/ora-
lis/pneumoniae (Fig 1A).

The Proteobacterium P. aeruginosa was the most abundant species on average in the OE

group (16.23%, 12/22), followed by C. acnes (13.18%, 17/22), S. aureus (11.96%, 8/22), and Cory-
nebacterium jeikeium (4.87%, 5/22) (Fig 1B). In total, eight previously defined otopathogens

were detected amongst the top 15 most abundant species, with P. aeruginosa, S. aureus, C. jei-
keium, Klebsiella aerogenes/pneumoniae (4.41%, 2/22), Proteus mirabilis (3.42%, 1/22), C. otitidis
(3.35%, 4/22), and S. caprae (2.65%, 3/22) representing at least 2% of the average abundance.

The OM group had P. aeruginosa as the most abundant species (13.10%, 20/48), followed

by S. aureus (12.94%, 14/48), C. jeikeium (7.17%, 11/48), and C. acnes (4.45%, 36/48) (Fig 1C).

Ten previously defined otopathogens detected amongst the top 15 most abundant species. Of

these, P. aeruginosa, S. aureus, C. jeikeium, S. marcescens, C. otitidis (2.43%, 9/48), and Auriti-
dibacter sp. (2.11%, 3/48) represented at least 2% of the average relative abundance.

Alpha diversity, which measures the diversity within a given sample (as opposed to beta

diversity that measures diversity between samples) showed no significant differences for the

bacteriome of the study groups (Fig 2A and 2B, P> 0.05). However, the bacterial biomass
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based on enumeration of 16S copy numbers revealed a significant increase in bacterial biomass

for both OE and OM samples compared to the healthy group (Fig 2C, P = 0.0207).

Mycobiome composition and diversity

The mycobiome analysis revealed multiple distinct differences between groups: At the phylum

level, the mycobiome of healthy ears was dominated by Basidiomycota while in otitis ears

Ascomycota was more often detected. At the species level, the most abundant Basidiomycota

fungal species detected in the healthy group were from the genus Malassezia. Specifically,

Malassezia arunalokei was the most dominant species (47.32% average abundance, 74/92 sam-

ples, Fig 1D), followed by Malassezia restricta (35.89%, 90/94), Malasseziales sp. (5.95%, 43/

94), and Malassezia globosa (2.82%, 60/94). Interestingly, three previously reported otopatho-

gens, Candida metapsilosis/orthopsilosis (0.43%, 1/94), Malassezia sympodialis (0.35%, 24/94),

and Alternaria sp. (0.33%, 10/94), were detected in the top 15 most abundant species, although

at very low abundances (<0.5%) and frequencies.

As was seen in the bacterial analyses, species found in healthy ears were also present in otitis

cases, though with lower abundances and frequencies. At the species level, the most abundant

Ascomycota fungal species detected in the OE group was Aspergillus sp. (23.42%, 8/22), fol-

lowed by M. restricta (14.75%, 20/22), M. arunalokei (12.57%, 16/22), Candida albicans
(7.68%, 3/22), and Malasseziales sp. (5.14%, 10/22) (Fig 1E). In addition to Aspergillus sp. and

Fig 1. Microbiome profile of individual samples for bacteria (A-C) and fungi (D-F) for each group, healthy, OE (otitis externa), and OM (otitis media). Shown

are the top 15 most abundant species based on relative abundance per group. A red letter (P) highlights those species known to be otitis pathogens. To ease

comparison, bacterial and fungal species are consistently colored between graphs. Further information about the relative abundances of all detected species per

individual can be found in S1 Table (bacteria) and S2 Table (fungi).

https://doi.org/10.1371/journal.pone.0262806.g001
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C. albicans, four other pathogens were among the 15 most abundant species (Candida parapsi-
losis (4.51%, 3/22), Aspergillus citrinoterreus/pseudoterreus/terreus (3.71%, 1/22), Cryptococcus
neoformans (1.84%, 1/22), and Penicillium sp. (0.91%, 4/22)). As highlighted by the frequency,

single outliers can significantly drive the average species abundances, i.e., A. citrinoterreus/
pseudoterreus/terreus and C. neoformans, which appeared in only a single sample each.

In the OM group M. restricta (15.40%, 41/48) was the most abundant species on average,

followed by M. arunalokei (12.97%, 33/48), Aspergillus sp. (8.39%, 17/48), and C. parapsilosis
(7.38%, 17/48) (Fig 1F). In addition to Aspergillus sp., C. parapsilosis, and C. metapsilosis, three

other otopathogens were detected among the 15 most abundant species (Alternaria sp. (1.97%,

4/48), C. albicans (1.62%, 2/48), and Aspergillus flavus (1.51%, 1/48)). Consistent with the OE

group, single outliers in the data significantly drive the group-average species abundances.

There was a significant increase in the number of observed species between the healthy and

the OM group (Fig 2D). Shannon diversity showed a significant increase in the number of

detected species in both OE and OM compared to the healthy group (Fig 2E). Interestingly,

OM and OE groups had a significantly lower fungal biomass as measured by ITS copy num-

bers compared to the healthy group (Fig 2F). Therefore, a healthy mycobiome was character-

ized by a lower fungal diversity and a higher fungal biomass compared to clinically affected

samples. This is the opposite to what was found for the bacterial biomass.

Ear microbiome is distinct between healthy and otitis ears

To identify members of the microbiome that could differentiate the study groups, a LEfSe

analysis was conducted at all taxonomic levels. The analysis indicated the phyla Actinobacteria

Fig 2. Diversity analysis between groups for bacteria (A-C) and fungi (D-F). Alpha diversity was determined by the number of observed species (A and D) and

the Shannon diversity index (B and E). Estimations of the bacterial (C) and fungal (F) biomass were done based on 16S and ITS copy numbers, respectively.

Letter (a, b) highlight groups that were significantly different from each other (P> 0.05).

https://doi.org/10.1371/journal.pone.0262806.g002
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and Firmicutes as significantly enriched in the healthy group, and Proteobacteria in the OE

group (Fig 3A). At the species level, 36 significantly distinct bacterial species were identified.

For brevity and readability of the graph, only those species that had an abundance of at least

5% in any group are shown (Fig 3B). After applying the 5% filter, four species were signifi-

cantly enriched in the healthy group, including two commensals, i.e., C. acnes and S. auriscalis,
and two otopathogens, A. otitis and S. capitis/caprae. In the OE group, three species were iden-

tified, including the two otopathogens S. aureus and P. aeruginosa. OM group was significantly

enriched with five previously known otopathogens species, i.e., C. jeikeium, C. striatum, S.

marcescens, Streptococcus agalactiae, and Achromobacter xylosoxidans.

Fig 3. Linear discriminant analysis (LDA) effect size (LEfSe) analysis of otitis microbiota changes due to health context of the patient. Panels highlight

taxa significantly different between groups at the phylum to genus level (A, C) and at the species level (B, D) for bacteria (A, B) and fungi (C, D), respectively.

Cladograms: Regions in red indicate taxa that are significantly enriched in the healthy group, regions in green represent taxa enriched in the otitis externa

group (OE), and regions in blue taxa that are significantly enriched in the otitis media (OM) group. Nods colored in yellow are not significantly different

between groups. Each ring represents a taxonomic level, with the phylum level on the outside and the genus level in the innermost ring. Bar graphs: Shown are

those species that were significantly different between groups with their relative abundances and frequencies for each group. To visualize the results, the average

abundance of each significant species was used for the subset of the samples that had the species present. For readability of the figure, only the species that

represented at least 5% of the bacterial or fungal microbiome, respectively are shown.

https://doi.org/10.1371/journal.pone.0262806.g003
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The fungal analysis showed that the phyla Basidiomycota were significantly enriched in the

healthy group and Ascomycota in the OE group (Fig 3C). Five species were significantly dis-

tinct between groups (using� 5% filter). Specifically, M. arunalokei, Malassezia spp., and M.

restricta were significantly enriched in the healthy group (Fig 3D). Two potentially pathogenic

species were significantly enriched in the OE group, Aspergillus sp. and C. albicans. The OM

group had a significant enrichment of the otopathogen C. parapsilosis.

Ear core microbiome

A core microbiome analysis is important for “understanding the stable, consistent components

across complex microbial assemblages” and is defined as “the suite of members shared among

microbial consortia from similar habitats” [21]. Four species were shared among all groups, C.

acnes, M. arunalokei, M. globosa, and M. restricta (Fig 4). Staphylococcus epidermidis was

shared between OE and OM. Part of the OE core were Aspergillus sp., P. aeruginosa, and C.

pseudogenitalium/tuberculostearicum, and the healthy group had S. capitis and S. capitis/caprae
as core members. A taxon from the order Malasseziales was shared only between normal and

OM samples.

Microbial composition clustering

Co-occurrence analysis, which highlights interspecies dependencies based on patient health

context (Fig 5), showed that interspecies dependencies were health context and species spe-

cific. In the healthy group, S. capitis and S. capitis/caprae showed a positive co-occurrence with

each other, and negative interactions with M. arunalokei and A. otitis, which was only seen in

that group (Fig 5A). The OE group showed two positive interactions, one between C. acnes
and S. capitis/caprae, and one between S. aureus and C. simulans (Fig 5B). A negative co-

occurrence between M. restricta and the otopathogen Aspergillus sp. was detected, hinting at a

protective effect of Malassezia species. Two pathogens from different kingdoms, Aspergillus sp.

and P. aeruginosa, had a negative interaction. Interestingly, the OM group was characterized

by a positive co-occurrence between S. marcescens and C. acnes. C. acnes further had a negative

Fig 4. The panels show those species that were part of a shared core microbiome between all three study groups,

shared between only two groups, or unique to a given group.

https://doi.org/10.1371/journal.pone.0262806.g004
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interaction with S. aureus. The OM samples were characterized by positive co-occurrences

between ear commensals i.e., Malassezia species, and C. acnes and S. epidermidis (Fig 5C). The

otopathogen S. aureus had a negative co-occurrence with the commensal C. acnes.

Fig 5. Co-occurrence analysis. Microbial interactions between bacterial and fungal species in each study group.

Negative interactions between species are shown in yellow, positive interactions are shown in blue and no significant

interaction is shown in grey. (A) healthy, (B) otitis externa, and (C) otitis media.

https://doi.org/10.1371/journal.pone.0262806.g005
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NGS reveals pathogen dysbiosis by bacterial, fungal, or joint players in

otitis patients

Several individual samples were characterized by a very low species diversity, i.e., a single spe-

cies represented > 90% of either the bacteriome (n = 29) or mycobiome (n = 35). Based on the

previous observation that the microbial profile is highly individualized for OE and OM

patients (Fig 1B, 1C, 1E and 1F), the bacterial and fungal profiles for each OM and OE patient

were analyzed to identify potential pathogens that may be driving the infection in each case. A

total of 18% (4/22) of OE patients showed a single bacterial species representing�80% of the

total bacteriome, and 32% (7/22) of patients had a single fungal species at�80% of the total

mycobiome. Dual bacterial and fungal pathogen dysbiosis was seen in 9% (2/22) of patients

(Table 2). For OM patients, overrepresentation of a single bacterial pathogen was more com-

mon with 35% (17/48) of patients, while 15% (7/48) showed a single fungal pathogen overrep-

resentation (Table 3). There was no fungal otopathogen overrepresentation (�90%) seen in

the healthy group and only one sample showed a bacterial pathogen at 92% (A. otitis) (Fig 1A

and 1D). Overall, 38% (11/92) of healthy group samples had a single bacterium, C. acnes, rep-

resent�90% of the bacteriome. A possible assumption when such a dysbiosis is detected, is

that there may be an overgrowth, i.e., increase of microbial biomass, in the sample. A correla-

tion analysis between the number of observed species and the biomass, as estimated by 16S

and ITS copy numbers, however, showed no significant correlation (Bacteria: r = -0.042,

P = 0.595; Fungi: r = 0.110, P = 0.162, S4 Fig).

Polymicrobial infections are a concern for OE and OM, which may be either multiple bac-

terial or fungal pathogens or a combination. OE and OM samples were analyzed for the pres-

ence of multiple pathogens in each sample with a cutoff of�10% relative abundance in the

bacteriome or mycobiome. All OE patients had at least one bacterial otopathogen present at

�10% of the bacteriome, 36% (8/22) had two (�10% each), one patient had three (Fig 6A,

sample A), and one patient showed four otopathogens present at�10% (Fig 6A, sample B).

Between the two patients that showed three and four pathogens respectively, there was no

Table 2. Pathogens detected in otitis externa (OE) patients at high relative abundances.

Patient Gender Otopathogens detected by NGS test (% Rel. Abund.) Pathogen Type

1 M S. aureus (68%) Bacterial

2 M S. aureus (80%) Bacterial

3 F Aspergillus piperis (99%) Fungal

4 F Aspergillus piperis (100%) Fungal

5 F S. aureus (85%); Candida albicans (80%) Bacterial &Fungal

6 M Aspergillus sp. (94%) Fungal

7 M Pseudomonas aeruginosa (98%) Bacterial

8 M Pseudomonas aeruginosa (71%) Bacterial

9 F Aspergillus terreus (82%) Fungal

10 M Klebsiella pneumoniae (94%) Bacterial

11 M Candida parapsiliosis (88%) Fungal

12 F Proteus Mirabilis (81%); Aspergillus (100%) Bacterial & Fungal

13 F Corynebacterium freneyi (93%) Bacterial

14 M Pseudomonas aeruginosa (100%) Bacterial

15 F Serratia marcescens (42%); P. melaninogenica (40%); C. albicans (90%) Bacterial &Fungal

16 F Aspergillus sp. (89%) Fungal

Abbreviations: Rel.: Relative; Abund.: Abundancy, M: Male; F: Female.

https://doi.org/10.1371/journal.pone.0262806.t002
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overlap in the pathogens detected. The mycobiome in the OE group showed that 45% (10/22)

patients had one and 9% (2/22) patient had two fungal pathogens (Fig 6A).

In the OM group, 40% (19/48) of patients had one bacterial pathogen present at�10%,

21% (10/48) had two and for one patient three otopathogens were detected (Fig 6B). In the

mycobiome, 40% (19/48) of patients had one and six individuals had two fungal otopathogens

present at�10% (13%). About 35% (17/48) of patients had both a bacterial and a fungal patho-

gen present at�10% (Fig 6B). As seen for OE and OM polymicrobial analysis, the combina-

tion of bacterial and/or fungal pathogens is highly individualized in this data set.

Discussion

Acute and chronic adult ear infections are common, but their etiology and the role of the

eukaryotic mycobiome remain inadequately investigated. We investigated microbial commu-

nity profiles in healthy adult and OM and OE patient ears, and all harbored both bacteria and

Table 3. Pathogens detected in otitis media (OM) patients at high relative abundances.

Patient Gender Pathogens ID by NGS test (% Rel. Abund.) Pathogen Type

1 M Pseudomonas aeruginosa (99%) Bacterial

2 F Pseudomonas aeruginosa (97.4%) Bacterial

3 F Corynebacterium freneyi (91.4%) Bacterial

4 M Aspergillus piperis (100%) Fungal

5 F S. aureus (97%); Aspergilllus terreus (100%) Bacterial & Fungal

6 M S. aureus (100%) Bacterial

7 M Pseudomonas aeruginosa (100%) Bacterial

8 F Candida metapsilosis (78%) Fungal

9 F Proteus mirabilis (65%); Aspergillus sp. (96%) Bacterial & Fungal

10 M P. aeruginosa (56%); Brevibacterium otitidis (38%)/ Candida parapsilosis (76%) Bacterial & Fungal

11 M Aspergillus flavus (73%) Fungal

12 F Weeksella virosa (51%); Pseudoclavibacter bifida (19%); Oligella urethralis (15%) Bacterial

13 F Pseudomonas aeruginosa (84%) Bacterial

14 F Aspergillus piperis (80%) Fungal

15 F Aspergillus piperis (100%) Fungal

16 F P. aeruginosa (81%) Bacterial

17 M S. aureus (88%) Bacterial

18 F Candida metapsilosis (73%) Fungal

19 M S. aureus (99.5%) Bacterial

20 M S. aureus (99%) Bacterial

21 F Moraxella catarrhalis (94%) Bacterial

22 M S. aureus (97%) Bacterial

23 F Candida parapsilosis (99%) Fungal

24 F Serratia marcescens (99%) Bacterial

25 M Malassezia sloofiae (86%) Fungal

26 F Corynebacterium resistens (91%) Bacterial

27 F Candida metapsilosis (100%) Fungal

28 F C. jeikeium (71%) Bacterial

29 F C. jeikeium (80.5%) Bacterial

30 M Pseudomonas aeruginosa (100%) Bacterial

31 M Auritidibacter sp. (100%) Bacterial

Abbreviations: Rel.: Relative; Abund.: Abundancy, M: Male; F: Female.

https://doi.org/10.1371/journal.pone.0262806.t003
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fungi. In the healthy ear, the most abundant bacterial species were C. acnes, S. auriscularis, and

S. captis/caprae, consistent with previous investigations [22]. The healthy mycobiome was

characterized by high numbers of Malassezia with two distinct groups harboring either M.

arunalokei or M. restricta. While M. restricta is well characterized and generally regarded as a

commensal on normal skin with no reports of it being a human otopathogen, it can be associ-

ated with skin diseases like dandruff [23]. M. arunalokei has only recently been identified [24]

and remains minimally investigated [25]. Further investigation into the role of these species in

healthy ears is warranted. In previous NGS studies M. arunalokei would have appeared as

“Malassezia spp.” or in unidentified sequence “dark matter”.

Compared to OE and OM, the commensals C. acnes and S. capitis/caprae were significantly

enriched in the healthy group, which confirms previous reports, as well as M. arunalokei and

M. restricta. The otopathogens S. auricularis [10] and A. otitidis [11] were also significantly

enriched in this group, which was unexpected and highlights the need for continual refine-

ment of research databases and careful consideration of unidentified species. An unexpected

frequency of previously postulated otopathogens i.e., C. otitidis or S. caprae, in the healthy ear

was detected, however their frequencies and abundances were increased in OE and OM

groups. These findings are most likely due to the increased sensitivity of the 16S pipeline [19]

versus earlier culture-based methods and the potential lack of testing on clinically healthy ears.

This highlights the need for continual refinement of research databases and careful consider-

ation of unidentified species.

In OE the most abundant species were P. aeruginosa, C. acnes, and S. aureus with eight oto-

pathogens among the top 15 most abundant; and in OM by P. aeruginosa, S. aureus, and C. jei-
keium, with ten otopathogens among the top 15. The commonality of P. aeruginosa and S.

aureus as dominant pathogens in the bacterial analyses of both OM and OE supports previous

findings and validates the NGS study results. Previous studies had identified Turicella otitidis,
Alloiococcus otitidis, and Staphylococcus auricularis as primary otopathogens, which were pres-

ent in OM cases at lower abundances [10]. Interestingly, this study only reported OM cases

Fig 6. Poly-species infection analysis. As an example, and for brevity of the graph, the bacterial and fungal profiles of those patients that were positive for at

least three bacterial otopathogens or two fungal otopathogens are shown for (A) OE and (B) OM.

https://doi.org/10.1371/journal.pone.0262806.g006
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and did not compare results with a healthy age-matched cohort. From our results, these organ-

isms are part of the normal ear flora. This shows that molecular testing has the potential to pro-

vide more detailed information about the bacterial etiology of AOM.

The mycobiome was surprisingly distinct between groups. In both OE and OM, Malassezia
spp. remained highly abundant mycobiome members, but newly appearing non-Malassezia
species were increased in abundance. In OE the two most abundant non-Malassezia species

were Aspergillus sp., followed by C. albicans, and Aspergillus spp. in the OM group (17/48 sam-

ples). Aspergillus sp. [26] and C. albicans [27], potential pathogens, were significantly enriched

in OE, and OM was enriched for the previously characterized otopathogen C. parapsilosis [28,

29]. As highlighted by the dysbiosis and overgrowth analysis of individual OE and OM sam-

ples, the microbial composition was highly personalized. Therefore, averaging relative abun-

dance across all OM samples may dilute the contribution of kingdom-specific pathogens. This

issue may be resolved by analyzing a larger sample size, which may confirm the findings pre-

sented here that the microbiome of OE and OM patients is highly individualized. The high

degree of inter-subject variances provides a challenge to building microbiome models/profiles

associated with each disease state.

High level beta-diversity analysis indicated sample clustering for bacteria but none for

fungi. However, the mycobiome alpha-diversity was significantly altered: the number of

detected fungal species was significantly higher in the OM group compared to healthy samples,

and the Shannon diversity was significantly higher in both otitis groups compared to healthy

samples. Thus, healthy ears were characterized by a lower fungal diversity, dominated by two

Malassezia species, i.e., M. restricta and M. arunalokei, and higher fungal biomass compared to

infected ears. Comparison of subjects with limited microbial diversity (dysbiosis) showed no

correlation to healthy or diseased ears, indicating disease is unlikely directly linked to bacterial

overgrowth but may indicate a mutualistic fungal/host relationship, where loss of a protective

fungal mutualist correlates with the increase in bacterial biomass. Biomass was estimated as

bacterial and fungal cell numbers using 16S rDNA and ITS analysis by enumerating copy

numbers [30]. While complicated by diversity in fungal ITS copy number, the ITS copy num-

ber may also serve as a proxy for fungal cell number [19]. These enumerations showed a signif-

icant increase in bacteria and a decrease in fungi for both OE and OM compared to the

healthy group. It is important to note that while the 16S bacterial copy numbers were higher

than the fungal ITS copy numbers for all groups, it must be considered that due to their signifi-

cantly larger size (9–12μm versus 0.8–1μm diameter) and the cubic relationship between

diameter and mass, each fungal genome represents greater than 1000x more active biomass.

Further longitudinal studies and development of more accurate estimates of fungal ITS copy

number per cell may help untangle the inter-kingdom relationships [31].

Interkingdom interactions are complex and difficult to decipher via presence/absence anal-

yses, but co-occurrence analysis highlights potential interspecies interaction. These interac-

tions were species and health state dependent. In healthy ears S. capitis and S. capitis/caprae
showed a positive co-occurrence, but interestingly negative interactions with the healthy ear-

associated M. arunalokei. The OE group showed positive interactions between C. acnes and S.

capitis/caprae, and between S. aureus and C. simulans. C. simulans is known to cause skin and

soft tissue infections [32] but has not previously been identified as an ear pathogen. Based on

the data presented here, C. simulans could potentially represent a new biomarker for OE infec-

tions. The negative co-occurrence between M. restricta and the known otopathogen Aspergillus
was detected, potentially indicating mutualistic benefit of Malassezia. Malassezia have the

potential to be commensal (as they are found on all human skin [25]), pathogenic (as in sebor-

rheic dermatitis [33] and Crohn’s disease [34]), or mutualistic (as in some cases of atopic der-

matitis) [35]. In this study Malassezia, particularly M. arunalokei and M. restricta, appear to
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most likely be mutualists. Inter-kingdom antagonistic effects were seen between two pathogens

from different kingdoms, Aspergillus sp. and P. aeruginosa, but in one case, OM, there was a

positive co-occurrence between S. marcescens and C. acnes. It is possible this represents strain

specificity in C. acnes, as strains can be either pathogenic or commensal [31]. In the case of

OM there were positive interactions between the commensals Malassezia species and C. acnes
and S. epidermidis, while the otopathogen S. aureus had a negative co-occurrence with the

commensal C. acnes. Specific implications of this finding for diagnostic and treatment pur-

poses remain to be investigated.

The core microbiome represents the stable, consistent components of a microbial commu-

nity. The shared human ear core microbiome consisted of prokaryote C. acnes and eukaryotic

M. arunalokei, M. globosa, and M. restricta, which confirms the potential mutualistic effect of

Malassezia species as discussed above.

This detailed ear microbiome NGS analyses revealed new, more complex relationships

between microbial community members. Inclusion of the fungal kingdom disclosed signifi-

cant changes in mycobiome diversity and biomass between healthy and diseased ears, and

reveals the presence of a potential mutualistic, protective effect of Malassezia species.

Conclusions

The human ear microbiome remains inadequately investigated and further investigation will

be important in definition of ear health and treatment of ear disease. Using NGS as a testing

tool could improve treatment outcome, guide the selection of appropriate therapy, and limit

inappropriate antibacterial treatments and thus improve global antimicrobial stewardship.

This study highlighted the importance of pathogen classification on a per case basis.
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