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Abstract

To overcome the low accuracy, poor reliability, and delay in the current drought prediction

models, we propose a new extreme learning machine (ELM) based on an improved varia-

tional mode decomposition (VMD). The model first redefines the output of the hidden layer

of the ELM model with orthogonal triangular matrix decomposition (QR) to construct an

orthogonal triangular ELM (QR-ELM), and then introduces an online sequence learning

mechanism (OS) into the QR-ELM to construct an online sequence OR-ELM (OS-QR-

ELM), which effectively improves the efficiency of the ELM model. The mutual information

extension method was then used to extend both ends of the original signal to improve the

VMD end effect. Finally, VMD and OS-QR-ELM were combined to construct a drought pre-

diction method based on the VMD-OS-QR-ELM. The reliability and accuracy of the VMD-

OS-QR-ELM model were improved by 86.19% and 93.20%, respectively, compared with

those of the support vector regression model combined with empirical mode decomposition.

Furthermore, the calculation efficiency of the OS-QR-ELM model was increased by 88.65%

and 85.32% compared with that of the ELM and QR-ELM models, respectively.

Introduction

Currently, the water cycle is affected by several factors, and there is no clear distinction

between the occurrence, development, and end of drought, which makes it difficult to accu-

rately determine the duration of drought [1]. Therefore, accurate and timely drought forecast-

ing is still a challenge in drought resistance and disaster mitigation research. Thus, forecasting

drought, identifying the occurrence of drought several weeks or months in advance, and pre-

dicting the development and retreat process of drought are important to formulate scientific

and effective drought response strategies in a timely manner and to reduce the losses caused

by disasters [2].

To forecast drought within few days, months, or even years, hydrological forecasters have

different methods to choose from. These mainly include hydrological models based on mecha-

nism and statistical models based on data. Mechanism-driven models include those that inte-

grate rainfall, soil moisture, and vegetation dynamics, and they use soil moisture models to

track soil moisture, normalise difference in vegetation index, and finally forecast drought [3].

According to the meteorological data from weather stations, the Palmer Drought Severity

Index has been used to forecast drought. The results indicate that compared with historical
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periods, drought periods will increase in the next 30 years [4]. The distributed basin-scale

model has been used to study the effect of climate change on the hydrology of basins; the

results showed that river flow and groundwater recharge have reduced the most, and that the

degree of drought has increased [5]. However, mechanism-driven models often have the fol-

lowing problems: numerous external interference factors and poor understanding of the

mechanism [6, 7]. According to their structure, data-driven models can be divided into

monomer and hybrid models. The former uses indexes of precipitation, vegetation condition,

temperature, and soil as inputs for artificial neural network (ANN) models of drought predic-

tion and assessment. A previous study showed that the accuracy of the ANN models reached

92% [8]. Support vector regression (SVR) models are used to predict the standardised precipi-

tation evapotranspiration index for drought assessment. A previous study showed that the

support vector machine models perform well in drought prediction [9]. The Multilayer Per-

ceptron Neural Network (MLPNN) is used to predict the standardised precipitation index

(SPI), and the root-mean-square-error (RMSE), Nash efficiency index (Ens), correlation coef-

ficient, and Wilmot index are used as evaluation criteria. The MLPNN model is better than

other models in predicting the SPI [10]. However, a single model often has a poor generalisa-

tion ability and low prediction accuracy; mixed models can effectively overcome such prob-

lems [11–14]. For example, a drought prediction model, Wavelet-ARIMA-ANN, combines

the advantages of wavelet transform, autoregressive integrated moving average (ARIMA), and

ANN models. A previous study reported that the overall correlation coefficient (R) of the

ANN model was 0.423, but the R-value of the Wavelet-ARIMA-ANN model was reduced to

0.415 [15]. The drought prediction model EMD-ANFIS was constructed by combining

empirical mode decomposition (EMD) and adaptive neuro-fuzzy inference system (ANFIS)

models. When the prediction step length was 3 and 6 months, the Ens of ANFIS was 0.52 and

0.17, respectively, whereas that of EMD-ANFIS was 0.81 and 0.77, respectively [16]. However,

the EMD methods often have issues with modal aliasing [17] and end effects [18]. The varia-

tional modal decomposition (VMD) method can effectively solve the problem of modal alias-

ing in EMD [19] and has been applied in timing predictions [20]. By combining VMD,

particle swarm optimisation algorithm (IPSO), and deep confidence network (DBN), a

VMD-DBN-IPSO time series prediction model has been constructed, with mean absolute

error (MAE), RMSE, and Ens used as the evaluation criteria. The VMD-DBN-IPSO model

achieved the best performance in the training and testing phases and presented high stability

and representativeness. The Ens coefficient was maintained above 0.8, and the peak flow pre-

diction error was within 20% [21]. However, although the VMD method eliminates the prob-

lem of modal aliasing, the end effect still exists [22–24].

Based on the above discussion, in this study, we propose a new VMD-based extreme learn-

ing machine (ELM) model and applied it to regional drought prediction. Its main contribu-

tions are as follows:

• First, the output of the ELM hidden layer is redefined by orthogonal triangular matrix

decomposition (QR), and an online sequence learning mechanism (OS) is introduced to

construct the OS-QR-ELM prediction model, which can effectively improve the calculation

efficiency of the ELM model.

• Based on the mutual information extension method, both ends of the original signal are then

extended to solve the VMD end effect.

• Finally, the improved VMD and OS-QR-ELM are combined, and parallel computing ideas

are introduced to construct a drought prediction model based on VMD-OS-QR-ELM. This

can effectively improve the prediction accuracy and credibility of the model.
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The optimal calculation results based on the VMD-OS-QR-ELM indicate that this method

can effectively improve the ability and efficiency of regional disaster prevention and relief.

Correlation theory

OS-QR-ELM

An ELM is a machine learning method based on a feedforward neural network. Unlike ANNs,

the weights of the nodes in the hidden layer of the ELM model are artificially assigned and do

not require updating [25]. QR matrix decomposition is an effective method of solving all

eigenvalues of general matrices and is widely used in matrix generalised inverse calculation

and least-squares problem solving [26]. The online sequence learning mechanism can effec-

tively improve the computational efficiency of the model while ensuring its generalisation abil-

ity. Fig 1 shows the topological structure of an ELM, and its basic implementation is as follows.

The input, hidden, and output layers are defined as Q, H, and O, respectively. The input

sample Qt is defined as:

Qt ¼ Q1 Q2 . . . Qn½ �
T

ð1Þ

A neural network with m hidden layer nodes can be defined as:

Xm

i¼1

bs wixj þ bi
� �

¼ Oj; j ¼ 1; 2; . . . n ð2Þ

where, σ(x) is the activation function, wi is the input weight of the i hidden layer unit, bi is the

bias of the i hidden layer unit, βi = [β1 β2 . . . βn]
T is the output weight of the i hidden

layer unit, and wixj represents the inner product of wi and xj. The basic gradient-learning-

based algorithm adjusts the parameters in an iterative manner; however, in the ELM algo-

rithm, once the input weight wi and hidden layer bias bi are randomly determined, the hidden

Fig 1. Extreme learning machine topology.

https://doi.org/10.1371/journal.pone.0262329.g001
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layer output matrix H is uniquely determined, and training a single-layer neural network can

be transformed into a linear equation, as follows:

Hb ¼ T ð3Þ

The output weight can be uniquely determined as:

b ¼ HþT ð4Þ

where, H+ is the plus generalised inverse of the matrix HMoore-Penrose), and the smallest

and unique norm of β can be obtained [27–31].

The traditional ELM method generally uses singular value decomposition (SVD) to solve

the hidden layer output, and the SVD method can be defined as follows:

H ¼ U
X

VT ð5Þ

where, U and V are orthogonal unitary matrix
P D 0

0 0

 !

, and Δ is the invertible diagonal

matrix. In this study, we used QR decomposition to redefine the output of the ELM hidden

layer. The QR method has a higher efficiency and a simpler calculation process than the SVD

method, which can effectively improve the calculation efficiency of ELM. The basic form of

QR decomposition can be defined as follows:

A ¼ QR ð6Þ

where, Q is an orthogonal matrix and R is an upper triangular matrix. According to the related

partitioned matrix theory [32],

B D

0 C

" #� 1

¼
B� 1 � B� 1DC� 1

0 C� 1

" #

ð7Þ

where, B and C are reversible. Hence,

R� 1
lþ1
¼

Rl rlþ1

0 rlþ1;lþ1

2

4

3

5

� 1

¼

R� 1
l � R� 1

l rlþ1r� 1
lþ1;lþ1

0 r� 1
lþ1;lþ1

2

4

3

5

ð8Þ

The QR-ELM hidden layer output can then be redefined as follows:

HþT ¼ R� 1
lþ1
QT
lþ1
T

¼

R� 1
l � R� 1

l rlþ1r� 1
lþ1;lþ1

0 r� 1
lþ1;lþ1

2

4

3

5
QT
l

qTlþ1

2

4

3

5T

¼

fl � R� 1
l rlþ1f Tlþ1

f Tlþ1

2

4

3

5

ð9Þ

On this basis, the online sequence learning mechanism was introduced into the QR-ELM

model to build the OS-QR-ELM. The learning process of the output weight in the OS-Q-

R-ELM model was divided into two parts: the initial stage, where the initial output weight is
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obtained through a small number of samples, and the online learning stage, which uses a single

sample or sample data block to update the output weight of the single hidden layer feedforward

neural network learned in the initial stage. For OS-QR-ELM, βos is expressed as a function of

β,H, and T, defined as follows:

bos ¼ K � 1
1

H0

H1

" # T0

T1

" #

¼ K � 1
1

K1b � HT
1
H1bþHT

1
H1

� �

¼ bþ K � 1
1
HT

1
T1 � H1bð Þ

ð10Þ

Among them, K1 is defined as follows:

K1 ¼ HT
0

HT
0

� � H0

H1

" #

ð11Þ

VMD

VMD is a signal decomposition estimation method [33] that determines the frequency centre

and bandwidth of each component by iteratively searching for the optimal solution of the vari-

ational model in the process of obtaining the decomposed components to adaptively achieve

the frequency domain division of the signal and effective separation of the components [34,

35]. Fig 2 shows the decomposition effect of VMD, and it is realised as follows.

A given sample X is decomposed into k eigenmode components (IMF) with the same centre

frequency while ensuring that the sum of the estimated bandwidth of each IMF is the smallest.

Fig 2. VMD results of drought time series data.

https://doi.org/10.1371/journal.pone.0262329.g002
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The corresponding constraint variational expression is defined as follows:

min
ukf g; okf g

XK

k¼1

�
�
�
�@t d tð Þ þ

j
pt

� �

� uk tð Þ
� �

e� jokt
�
�
�
�

2

2

( )

; s:t:
XK

k¼1

uk ¼ X

( )

ð12Þ

where, {uk} = {u1, u2, . . ., uk} is the k IMF obtained by decomposition, {ωk} = {ω1, ω2, . . ., ωk} is

the centre frequency of the component,� is the convolution calculation, K is the total number

of modal functions, δ(t) is the Dirac distribution, and e� jokt is the centre frequency of the

modal function on the complex plane, with k as the centre frequency of the modal function.

Eq (12) is solved, the Lagrange multiplication operator λ is introduced, the constrained var-

iational problem is transformed into an unconstrained variational problem, and the aug-

mented Lagrange expression is defined as follows:

L ukf g; okf g; lð Þ ¼

�
�
�
�fRunoff tð Þ �

X

k

uk tð Þ
�
�
�
�

2

2

þa
X

k

�
�
�
�@t d tð Þ þ

j
pt

� �

� uk tð Þ
� �

e� jokt
�
�
�
�

2

2

þ l tð Þ; fRunoff tð Þ �
X

k

uk tð Þ

* + ð13Þ

The iterative terms {uk}, {ωk}, and use the alternating direction multiplier method to obtain

the saddle point of the augmented Lagrangian expression through iterative updating. Among

them, the alternating direction multiplier is a computational framework for solving convex

optimisation problems with a separable structure and is generally used to solve equation opti-

misation problems. Compared with other methods, the alternate direction multiplier has

advantages of high processing speed and good convergence performance [36–38].

Construction of drought forecasting methods

End effect improvement scheme based on mutual information extension

VMD should undergo multiple ‘screenings’ to obtain IMF during the decomposition process.

As both ends of the signal cannot be at the maximum or minimum value simultaneously, the

IMF will diverge at both ends of the screening process sequence and gradually inwards, thus

affecting the VMD; this is the end effect of VMD. Boundary extension methods such as the

endpoint mirror method, extreme value extension method, and polynomial fitting method are

usually used to solve the boundary effect of modal decomposition. Compared with other meth-

ods, the extreme value extension method comprehensively considers the influence of changes

in the end extreme value and the size of the internal extreme value on the original sequence,

and has the advantages of strong adaptability, long effective expansion distance, and high

expansion speed. This study adopts the extreme value extension method based on mutual

information criterion, and its basic realisation is as follows.

1. For a sample X of a given length N, it is necessary to obtain the maximum value sequence

and minimum value sequence of X, but it is difficult to determine whether the end point is

a maximum value or a minimum value. Therefore, the maximum value sequence and mini-

mum value sequence are defined as Tmax = {tp1 tp2 . . . tpm} and Tmin = {tq1

tq2 . . . tql}, and their lengths are defined as M and L, respectively.

2. When tp1 < tq1, then the intercept X(t1) ~ X(tp1) band is the wavelet to be matched, defined

as S1; in X, X(tpj), j 2 [i + 1, m] is used as X(tpi). The corresponding points are successively

intercepted as the wavelet to be matched with the waveband Sj of the same length as S1.
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3. The mutual information value Ij of S1 and Sj is calculated, the wavelet Sjbest with the largest

mutual information is considered as the best matching band of S1, and then the same length

band before Xjbest
is selected to extend to the left of X, where Ij is defined as follows:

Ij S1; Sj
� �

¼ H Sj
� �

� H SjjS1

� �
ð14Þ

Among them,H(Sj) is the entropy of Sj and H(Sj|S1) is the conditional entropy of Sj when S1

is known. The stronger the correlation between S1 and Sj, the smaller the conditional

entropy Sj, and the larger the mutual information Ij.
4. When tp1� tq1, the maximum value in step 2 is replaced with the minimum value for pro-

cessing to complete the left boundary extension of the signal.

5. The same method is used to extend the right boundary of the signal. After completing the

boundary extension, VMD is performed on the original signal and the bands corresponding

to the original signal position and the same length in each component are intercepted to

obtain the final decomposition result.

Drought forecast model based on improved VMD-OS-QR-ELM

By combining the improved VMD and OS-QR-ELM models, a new enhanced ELM drought

prediction model (VMD-OS-QR-ELM model) was developed. Fig 3 shows the basic process of

the model, and its basic implementation is described below.

1. Using the monthly scale meteorological data from Anyang, Xinyang, Zhumadian, and

Zhengzhou in Henan Province from 1951 to 2021 as the research objects, we predicted the

future drought level of some cities in the province. An accurate and reliable drought fore-

cast model is important for urban development in Henan Province, which has a large

Fig 3. Structure flowchart of the parallel VMD-OS-QR-ELM.

https://doi.org/10.1371/journal.pone.0262329.g003
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population and is an agricultural province. In this study, the temperature and rainfall data

obtained were first subjected to processes such as null filtering, interpolation, and dedupli-

cation. Thereafter, the filtered sample data (defined as X�) were normalised. The normalisa-

tion equation is as follows:

X� ¼
X � min Xð Þ

max Xð Þ � min Xð Þ
ð15Þ

where, max(X) is the maximum value of the sample and min(X) is the minimum value of

the sample.

2. The filtered and normalised sample data are first extended by the boundary, and the

extended sample is then used to initialise and optimise the VMD-related parameters, which

mainly include the penalty factor, noise tolerance, mode number, and initialisation centre

frequency. The optimisation equation is as follows:

J yð Þ ¼
1

2

Xm

i¼1

hy x
ið Þ � yi; min

y
Jy ð16Þ

where, h(x) represents the reconstruction data after VMD decomposition and y represents

the true value. Finally, the balance parameters, noise tolerance, number of modes, and ini-

tial centre frequency were set as 56.0, 0, 11, and 1, respectively. After VMD decomposition,

the boundary position corresponding to the original signal was intercepted to obtain the

final decomposition result. The decomposed IMFs were randomly divided into k parts, one

of which was selected as the test set, and the remaining k − 1 parts were used as the training

set.

3. First the OS-QR-ELM model is initialised and trained using the training set; the test set is

then input into the model to make future predictions. According to Eq 16, the number of

hidden layer nodes and the regularisation coefficient of OS-QR-ELM were set as 20 and 2,

respectively.

4. The predicted values of temperature and rainfall are used as inputs, and the de Martonne

drought index is used as the drought grade classification standard to establish a drought

risk assessment system. Compared with other drought indexes, the de Martonne drought

index has a calculation process with the advantages of simplicity and strong applicability,

and its definition is as follows:

Idm ¼
12R
T þ 10

ð17Þ

where, R represents monthly precipitation and T represents monthly average temperature.

A de Martonne index value less than 30 indicates the occurrence of drought. An index

value between 10 and 30 indicates moderate drought, and a value less than 10 indicates

severe drought.

Model evaluation

Ens, MAE, relative error (RE), and Run-Time were considered as the evaluation criteria to eval-

uate the reliability, stability, accuracy, and execution efficiency of the algorithm. The Ens Nash

efficiency coefficient was used to evaluate the credibility and stability of the prediction model.

Ens ranges from negative infinity to 1, and when it is close to 1, the model has a good quality
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and high credibility. When Ens is close to 0, the simulation result is close to the average level of

the observed value (i.e. the overall result is credible); however, the process simulation error is

large. When Ens is significantly < 0, the model is not credible. The RE and average MAE were

used to evaluate the real-time and overall errors, respectively.

Results

In this study, we used the monthly average temperature and monthly average precipitation

from 1951 to 2021 in Anyang, Xinyang, Zhumadian, and Zhengzhou in Henan Province as

data objects; OS-QR-ELM, QR-ELM, least squares support vector regression (LSSVR) [39, 40],

EMD-SVR, and multilayer perceptron (MLP) [41] were used as the comparison algorithms for

VMD-OS-QR-ELM, and Ens, MAE, RE, and operating time were used as the evaluation crite-

ria. A comprehensive evaluation was carried out, and the results are as follows.

Fig 4 shows the RE level of each model. Compared with QR-ELM, SVR, and VMD-SVR,

VMD-OS-QR-ELM uses a modal decomposition process, and thus, has obvious advantages in

processing non-stationary and nonlinear data. Although the EMD-SVR is better than the

Fig 4. Relative errors of different models and cities.

https://doi.org/10.1371/journal.pone.0262329.g004
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LSSVR model, the EMD method is prone to modal aliasing during the decomposition process,

because of which the error level of the EMD-SVR is higher than that of the VMD-OS-QR-ELM

model.

Table 1 shows the evaluation index results of each model, Table 2 shows the calculation

time for each model, and Table 3 shows the IMF reconstruction error after mutual information

extension and including extreme unknown endpoints. Compared with the EMD-SVR model,

VMD-OS-QR-ELM can complete adaptive decomposition of the signal according to the fre-

quency domain characteristics of the original signal, which results in higher robustness and

generalisation ability of the VMD-OS-QR-ELM model. According to the details in Table 1,

when VMD-OS-QR-ELM was compared with EMD-SVR, Ens increased by 86.19% and MAE

decreased by 93.20%. According to the information in Table 2, compared with the ELM and

OR-ELM models, OS-QR-ELM uses a highly efficient QR decomposition scheme and intro-

duces an online learning mechanism, which makes OS-QR-ELM more efficient than the ELM

and QR-ELM calculations The efficiency increased by 88.65% and 85.32%, respectively.

According to the information in Table 3, after extending the original signal by mutual infor-

mation, the end effect is weakened, and IMF has more physical meaning. Therefore, the recon-

struction error of VMD is reduced by 43.51%.

Table 1. Comparison of the numerical results for various evaluation indicators.

Evaluation index Model Anyang Xinyang Zhumadian Zhengzhou

Ens VMD-OS-QR-ELM 0.998 0.997 0.997 0.998

OS-QR-ELM 0.210 -0.020 0.124 0.257

QR-ELM 0.225 0.146 0.158 0.254

LSSVR 0.054 0.064 0.070 0.095

EMD-SVR 0.432 0.462 0.437 0.536

MLP 0.216 0.156 0.175 0.268

MAE VMD-OS-QR-ELM 0.218 0.351 0.328 0.205

OS-QR-ELM 3.554 5.641 5.350 3.522

QR-ELM 3.507 5.378 5.093 3.511

LSSVR 4.129 5.855 5.475 4.066

EMD-SVR 3.430 4.624 4.587 3.014

MLP 3.505 5.470 5.098 3.537

https://doi.org/10.1371/journal.pone.0262329.t001

Table 2. Comparison of the computing time for various models.

Model Calculation and prediction time (s)

ELM 0.141

QR-ELM 0.109

OS-QR-ELM 0.016

https://doi.org/10.1371/journal.pone.0262329.t002

Table 3. IMF reconstruction error in different scenarios.

Scenes Anyang Nanyang Zhumadian Zhengzhou

Extreme value extension method 1.180 0.443 0.804 2.333

Endpoint extreme value unknown 5.443 2.124 2.076 4.130

https://doi.org/10.1371/journal.pone.0262329.t003
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Conclusions

With the aim to overcome the problems of low prediction accuracy, poor reliability, and low

calculation efficiency in drought prediction, a new drought prediction model based on

VMD-OS-QR-ELM was proposed. First, the QR method was used to redefine the output of

the ELM hidden layer, and an online sequence learning mechanism was introduced to con-

struct an OS-QR-ELM prediction model. The mutual information extension method was then

used to improve the end effect of VMD, and the improved VMD method was combined with

the OS-QR-ELM model to construct the VMD-OS-QR-ELM drought prediction model. The

results indicated that when compared with that of ELM and QR-ELM, the calculation effi-

ciency of OS-QR-ELM was increased by 88.65% and 85.32%, respectively; compared with

those of EMD-SVR, the reliability and accuracy of the VMD-OS-QR-ELM model were

increased by 86.19% and 93.20%, respectively. Furthermore, the VMD method introduced in

this study increased the decomposition and synthesis process, which indirectly reduced the

computational efficiency of the model and increased its computational cost. Although the

introduced parallel computing idea can effectively improve the computational efficiency of the

serial model, it still cannot solve the problem fundamentally. In future research on

VMD-OS-QR-ELM, if the computational efficiency problem of the model can be overcome,

its overall performance can be improved.
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