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Abstract

Currently, a significant amount of research is focused on detecting Marine Debris and

assessing its spectral behaviour via remote sensing, ultimately aiming at new operational

monitoring solutions. Here, we introduce a Marine Debris Archive (MARIDA), as a bench-

mark dataset for developing and evaluating Machine Learning (ML) algorithms capable of

detecting Marine Debris. MARIDA is the first dataset based on the multispectral Sentinel-2

(S2) satellite data, which distinguishes Marine Debris from various marine features that co-

exist, including Sargassum macroalgae, Ships, Natural Organic Material, Waves, Wakes,

Foam, dissimilar water types (i.e., Clear, Turbid Water, Sediment-Laden Water, Shallow

Water), and Clouds. We provide annotations (georeferenced polygons/ pixels) from verified

plastic debris events in several geographical regions globally, during different seasons,

years and sea state conditions. A detailed spectral and statistical analysis of the MARIDA

dataset is presented along with well-established ML baselines for weakly supervised

semantic segmentation and multi-label classification tasks. MARIDA is an open-access

dataset which enables the research community to explore the spectral behaviour of certain

floating materials, sea state features and water types, to develop and evaluate Marine

Debris detection solutions based on artificial intelligence and deep learning architectures, as

well as satellite pre-processing pipelines.

Introduction

Marine Debris, such as plastics, is a major global issue with important environmental, eco-

nomic, human health and aesthetic aspects. Plastics remain in the ocean for a long time, and

have been found in various areas worldwide [1–3], affecting marine life at different trophic lev-

els [4]. To tackle the Marine Debris issue, several solutions for detecting [5, 6], cleaning [7] and

preventing [8] have been developed and validated. Among those, detecting and monitoring

floating litter has recently gained the attention of most research and development efforts [9].
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In particular, earth observation data from public and commercial satellite programs [10–

14] have been employed for detecting and monitoring Marine Debris, as well as remote sens-

ing data from manned aircraft [15], unmanned aerial vehicles (UAVs) [16–20], bridge-

mounted [21] and underwater-cameras [22]. Spectral indices have also been proposed to

enhance the detection of Marine Debris on multispectral satellite data, like the Floating Debris

Index (FDI) [13] and the Plastic Index (PI) [23] that have been developed based on artificial

plastic targets.

Furthermore, to better understand the spectral behaviour of Marine Debris, hyperspectral

measurements have been conducted, exploring sensors’ capabilities in distinguishing plastics

from other features such as vegetation, natural material, and water types [24–28]. Investigating

Marine Debris characteristics (including its spectral behavior) has been also attempted via

multispectral satellite observations [10, 12, 13, 29], highlighting that spectral discrimination of

Marine Debris from other sea surface features (e.g., ships, foam) is not straightforward.

Indeed, differentiating floating plastic debris from bright features, such as waves, sunglint,

clouds, is currently considered very challenging [5, 6]. This is due to the fact that plastics have

complex properties, diversifying in color, chemical composition, size and level of water sub-

mersion [30, 31]. A high-quality dataset can address the challenges mentioned above, support-

ing also the development and improvement of Marine Debris detection methods, and

assessing the operational aspects of any given solution (e.g., scalability).

However, despite the challenging and continuously growing issue of Marine Debris, the

currently available datasets are relatively limited in number and do not usually employ open-

access high-resolution satellite data over geographically extended areas. These facts prohibit

satellite data exploitation from ML frameworks and operational solutions. In addition, most of

the currently available marine remote sensing datasets focus on detecting specific objects such

as vessels [32–35]. Datasets for cloud detection over the ocean [36] and Sargassum macroalgae

extraction [37, 38] have also been developed with a limited number of classes.

To this end, this study aims to fill this gap with a new, open-access benchmark dataset,

named MARIDA—MARIne Debris Archive, based on S2 multispectral satellite data. MAR-

IDA offers real cases with Marine Debris events, providing globally distributed annotations,

ready for ML tasks. The produced dataset takes an innovative step forward by containing sea

features that co-exist in remote sensing images, ultimately forming 15 thematic classes in total.

Along with MARIDA, ML baselines for the weakly supervised semantic segmentation task

[39] are presented, including shallow ML and deep neural network architectures. To enlarge

the benchmark application area, the multi-label classification task is also considered.

Materials and methods

Dataset specifications

MARIDA is an open-source dataset consisting of annotated georeferenced polygons/pixels on

S2 satellite imagery. MARIDA was designed to be temporally and geographically well-distrib-

uted; thus, we used open-access data from the S2 satellite sensor which coverage includes

global coastal waters. S2 is capable of detecting and continuous monitoring large floating

debris, as it provides multispectral data at a spatial resolution of 10 m and 20 m with a frequent

revisit time of 2–5 days.

Regarding Marine Debris ground-truth data, reported events were collected from citizen

scientists and social media over coastal areas and river mouths. After identifying these cases in

S2 satellite data, the events were verified with very high-resolution satellite data (whenever pos-

sible due to availability), and the corresponding Marine Debris pixels were annotated. Addi-

tionally, sea surface features that co-occurred on satellite images were annotated: Ships,
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Sargassum macroalgae, Foam, Waves and Natural Organic Material (i.e., vegetation and

woody), water types (i.e., Clear, Turbid Water and Sediment-Laden Water), Shallow Coastal
Waters including benthic habitats, Clouds and Cloud Shadows. Regarding the annotation pro-

cedure, three image-interpretation experts annotated the satellite images by assessing the spec-

tral and spatial patterns of all features, considering the limitations of the S2 sensor (i.e.,

different band resolutions and limited signal-to-noise ratio) [40]. Finally, an inter-annotator

agreement protocol was established to merge the annotated data and aggregate the confidence

levels derived from the three experts (see the Annotation process and protocol section).

The current benchmark dataset aims to support real-world scientific issues that could even-

tually not only facilitate research efforts in Marine Debris, but also offer operational monitor-

ing solutions. Thus, MARIDA consists of realistic, non-iconic and non-ideal (e.g., with term

ideal, we refer to cloud-free data during calm sea state conditions) satellite observations. MAR-

IDA’s annotations are also sparse to reduce the potentially noisy labels due to the complexity

of sea surface features. The annotated polygons with real cases on S2 images (10 m resolution)

do not correspond to thematic class endmembers or pure/clear pixels (in some cases, we anno-

tated sparse Marine Debris pixels or floating materials pixels under very thin clouds).

Data collection and annotation

For constructing MARIDA, a specific process was designed and followed, including three

major steps (Fig 1): i) collection of reports (ground-truth data and literature) regarding float-

ing Marine Debris events in coastal areas, ii) satellite data acquisition and processing, auxiliary

weather data collection, spectral indices calculation, image interpretation and annotation, sta-

tistical analysis, and iii) MARIDA dataset generation and ML benchmarking.

Marine Debris reports. For a seven-year period (2015–2021), we gathered reports on

marine litter and plastic pollution across coastal areas and river mouths in several countries

(Table 1). The reports included observations gathered by photographers and citizen scientists,

and information extracted from media, social media, and ocean clean-up activities. The URLs

of the reports used are included in the S1 Table.

In addition to ground-truth data collection, the MARIDA dataset also included published

satellite-derived data on Marine Debris detection [10, 13], and observations from rivers that

have been reported in the literature as major polluters [2, 41–45]. Table 1 demonstrates the

source of the reported data (i.e., ground-truth and indicated by literature), as well as the

Fig 1. Schematic diagram representing the different steps for the construction of Marine Debris Archive-MARIDA.

https://doi.org/10.1371/journal.pone.0262247.g001
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corresponding date and location, when available. For each area, corresponding S2 tiles are also

included (Table 1).

Satellite data. Based on the ground-truth events, the corresponding S2 level1C images

were acquired from Copernicus Hub (https://scihub.copernicus.eu/) for the exact reported

dates and locations using a mean time window of 10 days. Additionally, for the regions that

are significantly affected by plastic pollution (such as river discharges), the seasonality and the

periods of maximum plastic presence were examined. We also extended our research for the

entire 2015 to 2021 period, focusing on the major recorded rainfalls (https://power.larc.nasa.

gov/data-access-viewer/).

At an early stage for selecting images with potential Marine Debris, we visually inspected S2

Red-Green-Blue (RGB) composites along with very high-resolution Planet (https://www.

planet.com) and Google Earth imagery, when available (see S2 and S3 Tables). The S2 data in

which the visual inspection indicated Marine Debris occurrence were further processed. Ray-

leigh reflectance values were extracted at 10 m resolution for 11 bands using ACOLITE atmo-

spheric processor [46], excluding Vapour (Band 9) and Cirrus (Band 10). To improve the

accuracy of the following annotation step, FDI [13] and FAI [47] spectral indices were

calculated.

Annotation process and protocol. During this step, three image-interpretation experts

had access to the gathered data, including reports, S2, Planet satellite imagery, and computed

spectral indices. The annotators digitized Marine Debris based on ground-truth events, con-

sidering S2 sensor limitations, and employing domain knowledge about its spectral behaviour

[10, 12, 13, 29, 30, 40] and its accumulation patterns (i.e., fronts, marine litter windrows) [48].

A laborious and intensive image interpretation and manual assessment of each pixel were per-

formed for all selected images leading to Marine Debris annotations at pixel level. In addition,

Table 1. Collected Marine Debris reports across different countries and continents for the period 2015–2021. The table shows the regions along with the reported

events information (source, date and exact location).

Continent/ Country S2 Tile Source Date Location (WGS’84)

C. America/ Guatemala 16PCC Citizen Scientist 18/9/20 15.836206˚ N, 88.022087˚ W

C. America/ Guatemala 16PCC Photographer 16/6/18 15.827222˚ N, 88.047500˚ W

C. America/ Guatemala 16PCC Kikaki et al. (2020) 4/9/19 14.9827˚ N, 89.5442˚ W

C. America/ Honduras 16PDC Citizen Scientist 18/9/20 16.1490˚ N, 87.6282˚ W

C. America/ Honduras 16PEC, 16QED Citizen Scientist 23/9/20 16.042194˚ N, 86.432081˚ W

C. America/ Honduras 16PEC Kikaki et al. (2020) 29/11/15 16.0667˚ N, 86.3965˚ W

N. America/ S. Domingo 19QDA Media 13/7/18 18.467723˚ N, 69.886808˚ W

N. America/ Haiti 18QWF/ QYF/ QYG 4ocean Clean-Ups 20/3/20 -

N. America/ Haiti 18QWF/ QYF/ QYG 4ocean Clean-Ups 5/1/21 -

N. America/ Haiti 18QWF/ QYF/ QYG 4ocean Clean-Ups 9/12/20 -

N. America/ Haiti 18QWF/ QYF/ QYG 4ocean Clean-Ups 15/12/20 -

Asia/ Indonesia 50LLR Social Media 4/3/18 8.715828˚ S, 115.446799˚ E

Asia/ Vietnam 48PZC Social Media 23/11/19 15.994762˚ N, 108.27417˚ E

Asia/ Philippines 51PTS Social Media 18/5/19 -

Asia/ Philippines 51PTS Social Media 16/7/16 -

Europe/ Scotland 30VWH Biermann et al. (2020) 20/4/18 -

Africa/ South Africa 36JUN Biermann et al. (2020) 24/4/19 -

Asia/ South Korea 52SDD Jang et al. (2014) - -

Asia/ Indonesia 48MXU/ MYU Cordova & Nurhati (2019) - -

Asia/ China 51RVQ Zhao et al. (2019) - -

https://doi.org/10.1371/journal.pone.0262247.t001
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diverse floating objects, sea state features, water types and clouds were annotated based on

image interpretation and established spectral patterns [31, 49–53]. Wind data were also uti-

lized (https://power.larc.nasa.gov/data-access-viewer/) to examine the possibility of whitecaps,

which may appear similar to plastics in human eye [31].

Expert annotators recorded the thematic class and their confidence level for each digitized

polygon. In particular, all annotated polygons were labelled with three confidence levels (i.e.,

#1 for high confidence, #2 for moderate and #3 for low confidence level). After the annotation

step, an inter-annotators agreement protocol was established, which is described below:

i. For Marine Debris, Natural Organic Material and Sparse Sargassum, which occasionally can

have similar spectral behaviour [40], the intersection per two annotators extracted (i.e., an

agreement between at least two annotators regarding the class label). If so, the lowest confi-

dence level that was originally assigned was kept for these cases.

ii. For the other features, the union of the annotated data was calculated. If at least two contra-

dictory annotated classes existed for the same digitized area, the annotation was excluded.

For the rest of the cases, where the three experts agreed regarding polygon labeling, the low-

est confidence score was kept.

For each annotation, Marine Debris report existence was also recorded (i.e., #1 when exact

date and locations were identified and matched to the available reports, #2 when patches were

identified at a distance of either up to 20km or up to 6 days apart from the reported locations

and dates; and #3 for no recorded reports close to the detected debris). Additionally, the cases

that debris was detected based on previous studies reporting river discharges, were labelled

under category 3 (Table 1).

For further details regarding our annotation strategy (cloud annotation and cases with

floating materials and thin clouds interference) the reader is referred to the S1 Appendix.

Refining data. In order to improve the quality of our annotated data, the structure of the

recorded high-dimensional observations (i.e., 11 multispectral bands) was visualized and

explored. Specifically, to examine the pairwise distances between the high-dimensional anno-

tated pixels, we utilized t-distributed Stochastic Neighborhood Embedding (t-SNE) algorithm

proposed by Van der Maaten [54], using Spectral Angle Mapping (SAM) [30, 40, 55] as a dis-

tance metric. By representing our data in a 2D space, spectral patterns of thematic classes were

mapped and outliers were identified and further explored (revisit the data to determine if they

had been erroneously annotated).

The annotation procedure resulted in a vector dataset of the digitized polygons, in shapefile

format. The dataset was converted into a raster structure, which was finally cropped into non-

overlapping 256x256 pixel-sized patches. After the cropping, each patch was available for extra

visual inspection.

Machine learning frameworks

Baselines. In order to trigger more research efforts towards Marine Debris detection

methods and solutions, we provide software baselines for weakly supervised pixel-level seman-

tic segmentation tasks, by employing a Random Forest model (RF) [56] and an U-Net archi-

tecture [57].

In particular, RF is a well-established supervised model, which has been widely used in

remote sensing and computer vision community. A RF classifier consists of many decision

trees and uses averaging to improve the predictive performance and control over-fitting. For

our RF model, we extracted features similar to the first place team of Track 2 of the 2020 IEEE

GRSS Data Fusion Contest [58]. We trained three different RF models: i) one based on spectral
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signatures of each pixel (RFSS), ii) one based on spectral signatures and calculated spectral

indices (RFSS+SI), and iii) one with spectral signatures, spectral indices, and extracted Gray-

Level Co-occurrence Matrix (GLCM) [59] textural features (RFSS+SI+GLCM) in order to incor-

porate the spatial information. The extracted spectral indices were NDVI, NDWI, FAI, FDI,

Shadow Index (SI), Normalized Difference Moisture Index (NDMI), Bare Soil Index (BSI) and

NRD [40, 60], which are broadly used in remote sensing studies. To compute the GLCM fea-

tures, Rayleigh corrected RGB composites were converted to grayscale images which conse-

quently were quantized in 16 bins-level. The selected GLCM features were Contrast (CON),

Dissimilarity (DIS), Homogeneity (HOMO), Energy (ENER), Correlation (COR) and Angular

Second Moment [59]. For those features extraction, a window of size 13 x 13 was used.

The U-Net is a well-established deep learning model for semantic segmentation. Its archi-

tecture consists of two parts, the down-sampling and the up-sampling part. The first part

encodes the input image yielding a low dimensional representation using successive blocks of

3 x 3 convolutions for features extraction and max-pooling layers for down-sampling. The fea-

ture maps/ produced channels are doubled in each block, while the spatial dimensions are

reduced by half. The second part decodes the internal representation using successive up-con-

volution layers to create the final segmentation output.

For our task, the first input layer of U-Net was modified to adapt to the 11 Rayleigh reflec-

tance S2 bands, and the final classification layer was changed to output the MARIDA classes.

We also used 4 down-sampling and up-sampling blocks, as well as 16 hidden channels pro-

duced by the initial down-sampling block.

To assess pixel-level semantic segmentation performance, we relied on three metrics. Our

main evaluation metric was the Jaccard Index or Intersection-over-Union (IoU) [61]. In addi-

tion, the average for each class F1 score (Macro-F1/ mF1) and the Pixel Accuracy (PA) for the

per-class assessment were employed (S2 Appendix).

Through MARIDA, we also provide multi-labels in patch-level, which formulate a weakly-

supervised multi-label classification task with positive, and absent labels that are not necessar-

ily negative [62, 63]. For the baseline of the multi-label classification task, we adopted the

Residual neural network (ResNet) [64]. The evaluation metrics for the multi-label classification

task are demonstrated in the S2 Appendix and the proposed baseline in the S4 Appendix.

MARIDA dataset and analysis

MARIDA contains 1381 patches, consisting of 837,357 annotated pixels, based on 63 S2 scenes

acquired from 2015 to 2021. MARIDA provides patches with corresponding masks of pixel-

wise annotated classes and confidence levels in the format of GeoTiff. For each patch, the

assigned multi-labels are given in a JSON file. In addition, MARIDA includes shapefiles data

in WGS’84/ UTM projection, with file naming convention following the below scheme:

s2_dd-mm-yy_ttt, where s2 denotes the S2 sensor, dd denotes the day, mm the month, yy the

year and ttt denotes the S2 tile. Shapefiles data include the class of each annotation, along with

the confidence score and the report description. The produced dataset is composed of geodata,

covering different sites around the globe (Fig 2). The selected study sites are distributed over

eleven countries (i.e., Honduras, Guatemala, Haiti, Santo Domingo, Vietnam, South Africa,

Scotland, Indonesia, Philippines, South Korea and China).

Thematic class distribution

To demonstrate the descriptive overview of MARIDA, the class and pixel distributions are pre-

sented in Tables 2 and 3 and their spectral and statistical analysis are illustrated in Figs 3 and 4.

More specifically, the 15 different classes of MARIDA are shown in Table 2, which includes
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the class description, the corresponding number of provided image patches, and all acronyms

of the annotated classes. Regarding the class distribution, the MWater class has been digitized

in 870 patches due to its implicit abundance in satellite data and straightforward annotation.

As proposed by Hu [40], we have included additional MWater pixels that were close to Marine

Fig 2. The sites (red dots in the map) where Marine Debris events were reported, and corresponding Sentinel-2 satellite images were acquired and processed.

Marine Debris and other features that co-existed were annotated in considered satellite data. The corresponding map is acquired from Natural Earth (http://www.

naturalearthdata.com/).

https://doi.org/10.1371/journal.pone.0262247.g002

Table 2. The thematic classes of MARIDA. Name, description and corresponding number of patches are presented for each class. All acronyms are stated here.

Class Name Acronym Description Number of Patches

Marine Debris MD Floating plastics or other polymers, mixed anthropogenic debris 373

Dense Sargassum DenS Dense floating Sargassum macroalgae 49

Sparse Sargassum SpS Sparse floating Sargassum macroalgae 106

Natural Organic Material NatM Vegetation & Wood 71

Ship Ship Sailing & Anchored Vessels 182

Clouds Cloud Clouds including thin Clouds 181

Marine Water MWater Clear Water 870

Sediment-Laden Water SLWater High-Sediment river discharges with brown colour 51

Foam Foam Foam recorded at river fronts or coastal wave breaking area 59

Turbid Water TWater Turbid waters close to coastal areas 220

Shallow Water SWater Coastal waters, including coral reefs and submerged vegetation 64

Waves Waves Waves 54

Cloud Shadows CloudS Cloud Shadows 71

Wakes Wakes Wakes & Waves from a sailing vessel 106

Mixed Water MixWater Water near floating materials 140

Total 1381

https://doi.org/10.1371/journal.pone.0262247.t002
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Debris pixels, in order not only to facilitate further experiments with SAM, but also run experi-

ments on pixel windows (3x3 or 5x5) and reflectance difference. The second-highest number

of 373 patches were labelled as Marine Debris, indicating the high variety of annotations in dif-

ferent patches. Cloud, Ship and Turbid Water were annotated in a sufficient number of patches

(~200), as they are plenty in the natural environment and easily identified by annotators.

The rest of the categories were digitized in fewer patches (appr. 50–100). Some of the con-

sidered categories, such as SLWater, Sargassum blooms, CloudS, SWater were easily digitized

with compact, not extended polygons, while Foam, NatM, Wakes and Waves required a labori-

ous and intensive manual assessment. Considering that MARIDA is a Marine Debris-oriented

Table 3. MARIDA’s class distribution at pixel-level. For Sentinel-2 tiles description, the reader is referred to Table 1. For classes acronyms, the reader is referred to

Table 2.

S2 Tile MD DenS SpS NatM Ship Cloud MWater SLWater Foam TWater SWater Waves CloudS Wakes MixWater # of

pixels

# of S2

scenes

16PCC 1496 2048 574 78 3322 62082 60169 285886 712 99501 3960 3417 3585 5929 191 532950 19

16PDC 143 49 226 78 96 13507 15258 85449 334 24923 2251 0 883 253 75 143525 6

16PEC 129 222 645 193 485 11678 19341 11 86 27080 3782 108 1733 1115 51 66659 6

16QED 0 474 691 0 90 4098 1719 0 0 0 5910 0 1841 221 0 15044 2

18QWF 0 0 0 0 0 0 324 0 0 0 0 1461 0 0 0 1785 1

18QYF 1112 4 200 154 408 7977 1360 0 0 0 1038 0 314 48 58 12673 13

18QYG 90 0 0 7 0 373 222 0 0 831 277 0 106 0 15 1921 1

19QDA 0 0 21 3 11 0 110 0 0 5 40 0 0 0 0 190 1

30VWH 27 0 0 0 36 3505 24393 0 0 0 0 0 1975 0 0 29936 1

36JUN 46 0 0 0 625 3500 600 0 0 300 0 0 0 18 0 5089 1

48MXU 208 0 0 0 71 5807 194 0 0 382 45 0 489 15 12 7223 2

48MYU 24 0 0 0 223 0 291 0 0 10 48 0 0 611 0 1207 2

48PZC 24 0 0 0 298 4108 2079 0 48 4129 0 0 765 171 1 11623 3

50LLR 41 0 0 3 27 402 485 0 41 0 18 841 0 72 5 1935 1

51PTS 38 0 0 20 17 0 35 0 0 0 0 0 0 0 0 110 2

51RVQ 17 0 0 0 0 363 163 0 0 0 0 0 37 0 0 580 1

52SDD 4 0 0 328 94 0 2416 1591 4 451 0 0 0 37 2 4927 1

Total

pixels

3399 2797 2357 864 5803 117400 129159 372937 1225 157612 17369 5827 11728 8490 410 837377 63

Perc. % 0,41 0,33 0,28 0,1 0,69 14,02 15,42 44,54 0,15 18,82 2,07 0,70 1,40 1,01 0,05 100

https://doi.org/10.1371/journal.pone.0262247.t003

Fig 3. The spectral signatures of the Marine Debris and Natural Organic Material classes derived from the annotations with the high confidence levels. The mean

spectral signatures are presented with 25–75 percentiles as error bars.

https://doi.org/10.1371/journal.pone.0262247.g003

PLOS ONE MARIDA: A Sentinel-2 dataset for Marine Debris detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0262247 January 7, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0262247.t003
https://doi.org/10.1371/journal.pone.0262247.g003
https://doi.org/10.1371/journal.pone.0262247


dataset, we provide only a certain number of indicative cases with the classes mentioned

above. The artifact due to the dissimilar S2 band resolutions led to a specific spectral signature

primarily recorded on surrounding water pixels of Marine Debris, SpS and Ship. This class was

labelled as MixWater, as it corresponds to water, and digitized around annotated Marine

Fig 4. A 2D embedding using T-SNE algorithm with SAM metric for the classes: Marine Debris, Ships, Sparse Sargassum, Natural Organic Material and Waves.

Each class is represented with a different color. Different symbols demonstrate the confidence level of annotations.

https://doi.org/10.1371/journal.pone.0262247.g004
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Debris pixels. For more details about patches and class co-occurrence, readers are referred to

the online material (https://marine-debris.github.io/).

Apart from the per-patch analysis, we also discuss the pixel-level distribution of MARIDA

classes. Table 3 summarizes the class distribution in pixel level for each S2 tile, indicating that

MARIDA provides numerous pixels annotated in 17 S2 tiles. Overall, most given pixels corre-

spond to Honduras Gulf, a known plastic polluted region where a thorough remote-sensing

study has been previously conducted by Kikaki et al. [10], based on ground-truth data. It

should be noted that, although we avoided digitizing extended regions with water or clouds,

the produced dataset cannot be balanced at pixel-level due to the implicit different size and

characteristics of considered sea features. Indeed, our goal was to create a Marine Debris-ori-

ented dataset.

To this end, we provide a significant number of 3339 Marine Debris pixels in total. The

1625 pixels were digitized and annotated with high confidence, based on reports and domain

knowledge. Additionally, 1235 pixels were labelled with moderate and 539 pixels with low con-

fidence (S4 Table). For scenes with large garbage trajectories and high confidence annotations,

the readers are referred to 18 September 2020 (tile 16PCC) and 14 March 2020 (tile 18QYF),

where ground-truth events were available. An indicative case with dense marine litter patches

at Motagua river mouth was also evident on 4 September 2016 (tile 16PCC). For other scenes

with high-confidence Marine Debris annotated data, the reader can consider the online mate-

rial (https://marine-debris.github.io/).

Spectral signatures

To study the spectral behavior of Marine Debris annotated data, we extracted the mean spec-

tral signatures for each scene, leading to a detailed analysis presented thoroughly in the online

material. The mean spectral reflectance of annotated pixels with high confidence in MARIDA

is depicted in Fig 3. The mean spectral signatures are presented along with 25–75 percentiles

as error bars to demonstrate the variation along with the skewness of their distribution. Atmo-

spheric correction process, diverse proportions of floating Marine Debris within pixels, differ-

ences resulting from colours and immersion, and mixed conditions in the natural

environment led to high variability of recorded Marine Debris spectral signatures.

However, the recorded Marine Debris mean spectral reflectance is very similar with the cor-

responding simulated signature proposed recently by Hu [40]. Slightly higher values in our

data indicate different debris proportions within pixels. In comparison with previous studies

[10, 12, 13], which exploited S2 imagery, higher reflectance at Green and Red bands was

observed, possibly due to the denser patches that we recorded. Additionally, the mean spectral

signature of high-confidence NatM was considered for comparison, as in some cases with low

subpixel proportions, their spectral discrimination was not straightforward. Regarding Marine

Debris and NatM comparison, it was found that their discrimination might be possible in 865

nm and SWIR bands.

Statistical analysis

By applying t-SNE algorithm along with spectral signatures analysis described above (Figs 3

and 4, online material), important insights were gained about spectral behaviour of floating

Marine Debris and the potential of spectral discrimination from other features with similar

patterns such as SpS, Ship, Waves and NatM.

Fig 4 presents t-SNE results for the considered features, indicating the different confidence

level for each annotation with a different symbol. Based on the recorded data, a well-shaped

Marine Debris cluster was developed, which is discrete from other clusters. Very sparse
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recorded Marine Debris (e.g., 20 April 2018 in Scotland) led to a smaller separate cluster

between Waves and Marine Debris. A well-shaped Ship cluster was also mapped, yet some

annotated Ship pixels were depicted in Marine Debris cluster due to the similar polymer types.

Respectively, some dense Marine Debris pixels were mapped in the Ship cluster. Some Ship
pixels were also depicted close to Waves pixels; this is evident in cases with moving vessels,

where discrimination of boundary Ship pixels from water-related classes (i.e., Wakes) was chal-

lenging for a human expert.

Occasionally, NatM cannot be spectrally separated from Marine Debris (e.g., 18 September

2020 at Motagura river mouth). Mixed conditions at the river mouth, low coverage at pixel-

level and potentially colored marine litter (e.g., green or brown) led to uncertainties repre-

sented with low confidence Marine Debris and NatM annotations. However, dense Natural
woody debris has a discrete spectral signature (e.g., 7 October 2018 at Nakdong river mouth).

This fact was also confirmed by a smaller (but well-shaped) NatM cluster depicted in brown

color (Fig 4). A discrete SpS cluster was also formed, including NatM (i.e., vegetation). In

some cases the SpS annotated pixels have been mapped in the Marine Debris and Waves clus-

ters, though, the majority of these cases corresponded to sparse floating materials that were

detected at a lower subpixel level. This fact confirms that sparse floating vegetation pixels in

some cases cannot be spectrally discriminated from sparse marine litter pixels (e.g., 4 March

2018 in Bali) [40].

MARIDA benchmark and ML baselines

MARIDA is designed to be beneficial for several remote sensing applications and tasks which

are described in detail in the following section (Discussion). However, it primarily aims to

benchmark weakly supervised pixel-level semantic segmentation learning methods. In particu-

lar, the produced dataset falls into incomplete-supervision due to sparsely annotated data,

inexact-supervision due to sensor limitations (i.e., 10 m resolution, different bands resolution),

and inaccurate supervision derived from potential slightly noisy annotations (i.e., sensor noise,

human error) [40].

Dataset split and training procedure

MARIDA was split into train, validation and test disjoint sets. The data were not split ran-

domly; instead, each data split was produced as a representative subset of the whole dataset.

For instance, the dataset was divided into subsets which were ensured to have balanced class

distribution (S5 Table). It should be noted that the data of each scene/unique date were

retained in the same set. The split was selected to be ~50/25/25%. More specifically, the split

contains 694 training (429,412 px), 328 validation (213,102 px) and 359 test (194,843 px)

patches.

Due to the moderate size of MARIDA and aiming at a Marine Debris-oriented dataset, the

initial 15 classes were aggregated to 11 classes. The categories of Wakes, CloudS, Waves and

MixWater were grouped with MWater and formed a water super-class, as they semantically

belong to the same class as well as present similar spectral profiles (see online material).

Regarding RF training, all models (RFSS, RFSS+SI, RFSS+SI+GLCM) were composed of 125

trees, each with a maximum depth of 20 nodes. Due to pixel-level class distribution, which is

by nature imbalanced (e.g., Marine Water px contrary to Marine Debris px), we used class

weighting inversely proportional to class frequencies in the training set. Additionally, the

annotators’ confidence score was utilized such that low confidence samples contribute less to

the training process. Specifically, the weights for high, moderate and low confidence samples
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were 1, 2/3 and 1/3, respectively. The final selection of RF hyperparameters described above

was based on grid search in the validation set.

During the U-Net training process, the Adam algorithm was employed to minimize the

Cross-Entropy loss with an initial learning rate of 2x10-4. Moreover, we utilized early stopping

based on the loss of the validation set and trained for 44 epochs. After the 40th epoch, the learn-

ing rate was reduced to 2x10-5. The selected batch size was 5 samples. We also employed ran-

dom rotations of the input images by -90˚, 0˚, 90˚, or 180˚ and horizontal flips in order to

augment the dataset. The selection of the hyperparameters above and training set-up was

based on grid search in the validation set. It should be noted that the U-Net model was trained

from scratch. A weighting scheme on the Cross-Entropy loss was also utilized, to address the

unbalanced data issue [65] (S3 Appendix). Finally, it should be mentioned that in our U-Net

baseline, in contrast to RF, we did not experiment with the annotators’ confidence levels.

Baseline experiments and evaluation

This subsection describes the quantitative and qualitative assessment of our ML baseline out-

comes in MARIDA. To evaluate our results quantitatively, we demonstrate the scores for all

metrics per class on the test set (Table 4). Overall, our results indicate that RFSS+SI+GLCM leads

to the highest average scores for all metrics, followed by RFSS+SI and RFSS, which provide

almost equivalent average scores. Regarding scores per class, for SWater, U-Net provides the

highest scores, while for Ship, Clouds, MWater and Foam, RFSS+SI+GLCM performs best. For

DenS, RFSS+SI leads to the highest scores, as for SpS, RFSS+SI+GLCM leads to higher scores for

IoU and F1. For TWater, both RFSS+SI+GLCM and U-Net achieve similarly high scores. It is

noteworthy to highlight that for SLWater, all RF models and U-Net achieve for all metrics the

highest scores (i.e., 1).

Regarding Marine Debris, RFSS+SI performs the highest scores, while adding spatial infor-

mation does not improve the classification performance results (i.e., IoU and F1 decreased

slightly). Future experiments with different window sizes for the extraction of GLCM textural

features may lead to higher scores. We have to note that, for the NatM class, all models lead to

low scores. NatM presents similar spectral behavior to Marine Debris, while both follow the

same spatial patterns (e.g., linear trajectories). In this case, adding spectral indices or textural

Table 4. Evaluation scores obtained by RFSS, RFSS+SI, RFSS+SI+GLCM and U-Net for each class on Marine Debris Archive. The highest scores are highlighted. All acro-

nyms are stated in Table 2.

RFSS RFSS+SI RFSS+SI+GLCM U-Net

Class IoU PA F1 IoU PA F1 IoU PA F1 IoU PA F1

MD 0.55 0.91 0.71 0.67 0.92 0.8 0.65 0.92 0.79 0.33 0.7 0.5

DenS 0.87 0.92 0.93 0.88 0.93 0.93 0.87 0.93 0.93 0.6 0.6 0.75

SpS 0.53 0.91 0.69 0.69 0.92 0.82 0.83 0.9 0.91 0.66 0.89 0.79

NatM 0.31 0.47 0.47 0.17 0.27 0.29 0.18 0.31 0.31 0.02 0.02 0.04

Ship 0.54 0.72 0.7 0.47 0.7 0.64 0.67 0.82 0.8 0.62 0.76 0.76

Clouds 0.75 0.85 0.86 0.74 0.82 0.85 0.84 0.86 0.91 0.62 0.62 0.76

MWater 0.66 0.82 0.79 0.65 0.83 0.79 0.75 0.93 0.86 0.61 0.88 0.76

SLWater 1 1 1 0.99 1 1 0.99 1 1 0.99 0.99 1

Foam 0.23 0.29 0.37 0.31 0.48 0.47 0.6 0.74 0.75 0.55 0.55 0.71

TWater 0.74 0.78 0.85 0.8 0.83 0.89 0.88 0.92 0.94 0.84 0.95 0.91

SWater 0.08 0.25 0.16 0.13 0.33 0.23 0.3 0.37 0.46 0.45 0.67 0.62

Average 0.57 0.72 0.69 0.59 0.73 0.7 0.69 0.79 0.79 0.57 0.69 0.69

https://doi.org/10.1371/journal.pone.0262247.t004
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information leads to lower scores than the initial. Especially, U-Net predicts only few anno-

tated NatM pixels on the test set.

Except for the quantitative evaluation described above, a qualitative (visual) assessment of

our baseline results on the test set was also performed (Fig 5). As it is easily noticed, the two

models, RFSS+SI+GLCM and U-Net, provide similar results. Nevertheless, U-Net seems more

robust to S2 noise and single pixels with sharp spectral differences than RF. U-Net is capable

of modeling the shapes and spatial patterns of sea features, and appeared to be no sensitive in

isolated pixels/ spikes, potentially due to the inherent multiple-scale information (successive

convolutional layers). On the other hand, RFSS+SI+GLCM is more prone to S2 noise and mixed

bands resolutions artifact. In particular, in RFSS+SI+GLCM results, some pixels around Marine

Debris and SpS are classified as Cloud (Fig 5B and 5D).

In both models, small vessels are classified as Marine Debris (Fig 5C), which is expected

due to similar polymer types that are composed and possibly similar floating material propor-

tion within pixel. Regarding Cloud, RFSS+SI+GLCM predicts more accurately the considered

class than U-Net (Fig 5C and 5D), while U-Net predicts better the SWater habitats (Fig 5C).

The latter fact can be also seen in the highest scores in all U-Net metrics (Table 4). In the

coastal zone, both models lead to similar results. However, in U-Net classification images,

some Foam pixels are predicted as Marine Debris, while in RF results, some TWater pixels are

classified as MWater (Fig 5A).

By assessing our baseline experiments quantitatively and qualitatively, we observe that there

is a consistency between metric scores and classification outputs in general. Yet, in some cases,

the classification is still challenging. For instance, although both models achieve high scores

(in comparison with other classes) for SpS (Table 4), in some cases with very sparse conditions,

SpS pixels are classified as Marine Debris (Fig 5D).

Fig 5. Classification results extracted by the baseline RFSS+SI+GLCM and U-Net models. Selected indicative cases demonstrate (A) S2_12-12-

20_16PCC_6, (B) S2_22-12-20_18QYF_0, (C) S2_27-1-19_16QED_14 and (D) S2_14-9-18_16PCC_13 patches on test set. RGB patches are

derived from Sentinel-2 data which were freely downloaded from https://earthexplorer.usgs.gov/. All acronyms are stated in Table 2.

https://doi.org/10.1371/journal.pone.0262247.g005
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For the evaluation scores regarding the multi-label classification task (ResNet) the reader is

referred to the S6 Table.

Discussion and challenges

In this work, a new dataset (MARIDA) is introduced towards triggering the research commu-

nity at improving and developing new methods for detecting Marine Debris and discriminat-

ing from other sea surface features that co-exist. Based on the collected ground-truth,

literature review and intensive image interpretation, MARIDA provides 3399 Marine Debris

pixels, labelled in different S2 tiles across various countries, different seasons, years and sea

state conditions. Thus, MARIDA is an important geodata source for evaluating existing detec-

tion methods and developing new techniques based on available S2 data.

After training four different models, the results showed that the developed RFSS+SI+GLCM

achieved the highest scores for all metrics; yet it seems more prone to S2 noise and different

bands resolutions than the deep U-Net architecture. Further experimentation with RFSS+SI

+GLCM indicated that the most distinctive feature is the spatial feature CON (i.e, a measure of

the intensity difference between a pixel and its neighbour), followed by NDWI, NDVI and

FDI (Fig 6 and S5 Appendix and S1 Fig). This fact is also in line with Tasseron et al. [27] who

recommended that the combination of FDI and NDVI can be efficient in the separation of veg-

etation and Marine Debris.

Low-confidence annotations were also included in our dataset, revealing challenging cases

where no ground-truth events existed, and thus, human-experts attempted to identify the

Fig 6. Features importance using permutation on RFSS+SI+GLCM model. Each feature represents a different highly correlated group. The largest mean pixel accuracy

decrease occurs by permuting CON, NDWI, NDVI and FDI.

https://doi.org/10.1371/journal.pone.0262247.g006
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floating materials/ features based on domain knowledge, image interpretation and statistical

analysis. Indicative cases include the sparse floating materials detected at fronts (e.g., 1 Decem-

ber 2019 in Jakarta Bay), very turbid conditions (e.g., 12 January 2017 in Honduras), and

windrows (29 August 2017 at Yangtze river mouth) where human-experts could not easily

define if they were dominated by dense foam or plastic concentrations. In addition, the spec-

tral discrimination of Marine Debris from NatM was not straightforward in some cases (e.g.,

18 September 2020 PCC). This issue was also observed in a previous study by Moshtaghi et al.

[66], demonstrating that the considered floating materials (e.g., brown Marine Debris and

woody debris) can have similar spectral patterns.

Regarding MARIDA limitations, it should be noted that the dataset is not optimally bal-

anced geographically due to the lack of open-access in situ data reporting marine litter cases

worldwide. MARIDA dataset can be augmented in future works with other datasets (e.g.,

clouds), other recorded features such as macroalgae species (e.g., Ulva, Noctiluca), jellyfish

blooms [29] and future collections of additional verified Marine Debris events.

Due to S2 spatial resolution, the annotation procedure was occasionally not straightfor-

ward. For example, the discrimination between boundary Ship pixels and Wakes in moving

ships was challenging for all experts. Thus, these cases potentially induced slight noise to the

dataset. Certain S2 images with erroneous atmospheric corrections, such as the S2 image

acquired on 23 September 2020 (Bay Islands, Honduras), were excluded, even though a major

Marine Debris event was reported in the region during this date. Furthermore, high cloud cov-

erage did not allow marine litter detection in all available S2 images in Santo Domingo, where

a significant event was reported (July 2018).

The ACOLITE Dark Spectrum Fitting (DSF) algorithm was selected in this work after the

recommendation from several studies [10, 12, 13, 40], reporting that ACOLITE performed

well in detecting marine litter. However, ACOLITE performs simple pixel replication and no

interpolation (such as bilinear or cubic) or other more sophisticated methods such as pan-

sharpening to resample the S2 20 m and 60 m bands to 10 m.

Despite the limitations mentioned above, MARIDA is designed to be a multi-task dataset

with various future aspects. Firstly, the RF model used here can be further enhanced by using

spatial information at multiple scales (e.g., GLCM features at different windows size). Further

feature-engineering and selection of the most distinctive bands, might improve the RF perfor-

mance as well. Also, the experimentation with the denoising of the prediction masks (as a

meta-classifier) can create more accurate classification outputs.

Regarding U-Net, experimentation with different loss functions and different weighting

schemes can potentially address the class imbalance. For instance, the Focal Loss [67] may

help the model focus on classes that have not been trained well. Furthermore, the exploitation

of annotators’ confidence level information should be incorporated into the learning process.

Another arising challenge is the combination of the predictions from multiple models (ensem-

ble methods), potentially leading to more promising results. Experimentation with other

improved or more sophisticated architectures can also be examined. The integration of

advanced pre-processing techniques (i.e., cloud masking, denoising algorithms) should

improve Marine Debris detection and sea features classification outcomes [37].

Beyond weakly supervised semantic segmentation, MARIDA can be re-used for several remote

sensing and ML applications. One straightforward task, which is being proposed in the S4

Appendix, is the weakly supervised multi-label classification task (missing labels). Concerning this

task, exploring different Curriculum Learning-based strategies for predicting missing labels [63]

might be essential. In addition, experimentation with different loss functions can further improve

the results. For instance, although the multi-class Cross Entropy loss (Softmax loss) is not tailored

for multi-label settings and can be counter-intuitive, it often shows better results [68].
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Other tasks derived by MARIDA that could be further explored are the unsupervised classi-

fication methods and/or clustering analysis, for better understanding the spectral patterns of

sea features. In addition, the produced dataset can be used to evaluate existing spectral indices

such as FDI, FAI and optimal thresholds tuning, as well as the development of new spectral

indices. Last but not least, by providing annotated water pixels close to Marine Debris, we

encourage the readers to further experiment with subtracting nearby water pixels (i.e., reflec-

tance difference), windows-size and x subpixel proportion [40].

Conclusions

In this work, we present MARIDA, a benchmark dataset for the detection of Marine Debris on

S2 multispectral satellite data. MARIDA challenges the research community by: i) offering

annotations of Marine Debris and various sea features that co-occur in realistic cases, ii) pro-

viding a detailed overview of MARIDA as well as spectral signatures analysis of annotated

data, iii) evaluating ML algorithms, and iv) identifying application cases and open issues. Con-

sidering that marine litter research is increasing significantly and plastic debris monitoring

using remote sensing is still challenging, we provide a Marine Debris dataset appropriate for

future detection experiments and ML classification tasks. We envisage the continuous expan-

sion of this dataset, including additional cases from the global oceans.
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