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Abstract

The automated generation of radiology reports provides X-rays and has tremendous poten-

tial to enhance the clinical diagnosis of diseases in patients. A new research direction is

gaining increasing attention that involves the use of hybrid approaches based on natural lan-

guage processing and computer vision techniques to create auto medical report generation

systems. The auto report generator, producing radiology reports, will significantly reduce

the burden on doctors and assist them in writing manual reports. Because the sensitivity of

chest X-ray (CXR) findings provided by existing techniques not adequately accurate, pro-

ducing comprehensive explanations for medical photographs remains a difficult task. A

novel approach to address this issue was proposed, based on the continuous integration of

convolutional neural networks and long short-term memory for detecting diseases, followed

by the attention mechanism for sequence generation based on these diseases. Experimen-

tal results obtained by using the Indiana University CXR and MIMIC-CXR datasets showed

that the proposed model attained the current state-of-the-art efficiency as opposed to other

solutions of the baseline. BLEU-1, BLEU-2, BLEU-3, and BLEU-4 were used as the evalua-

tion metrics.

1. Introduction

Chest diseases are fatal to human life. Common chest diseases such as pneumonia, pneumo-

thorax, and effusion [1] are diagnosed with the help of medical images, such as chest X-rays

(CXR) and CT scans. These images provide subsequent evidence of chest abnormalities cap-

tured through a proper pathological process. A radiologist conducts an analytical examination

for the presence of even a minor abnormality on an X-ray image, followed by a detailed diag-

nostic textual report of a patient. This manually created report (see Fig 1) describes the condi-

tion of the chest in general, detailed findings, and diseases, if they are projected on the X-ray

image. Writing medical reports is a laborious task. In developing countries with a large popu-

lation with poor health conditions, such as Pakistan, radiologists may have to capture
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hundreds of X-ray images of different patients every day. Generating hundreds of reports on

pathological conditions of lungs against CXR is time-consuming and tedious. The process of

describing X-rays in terms of text is not efficient, even for specialist doctors in their respective

fields. Moreover, this task is error-prone due to inexperienced radiologists, faulty reasoning by

radiologists, staff shortage in hospitals, or additional workload in the hospitals that cause

errors in the reports [2].

Additionally, writing accurate reports is very difficult task for the pathologists and radiolo-

gists with less experience and for those working in rural areas with barely any healthcare facili-

ties. To properly read and understand a radiograph, the following skills are needed [3]. (i)

Knowledge about the basic physiology of chest diseases and other information about any nor-

mality or abnormality of thorax anatomy; (ii) the ability to find the association with other

indicative diseases (respiratory function tests, test results, and electrocardiograms); (iii) the

ability to understand the changes in the radiographs over time; (iv) familiarity with patient

clinical history; and (v) the ability to analyze radiographs through a fixed pattern. In other

words, writing medical reports is a strenuous task for both experienced and inexperienced

medical professionals. The proposed research is thus derived from the motivation to improve

the clinical diagnostic systems by adding the functionality to generate reports automatically.

The current automatic report generation approaches suffer from various limitations that need

to be addressed to complete this task.

Fig 1. Examples of chest X-ray images and radiology reports.

https://doi.org/10.1371/journal.pone.0262209.g001
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The first limitation is the understanding of diseases that appear as white projections of

some well-understood patterns on the CXR, and then applying language semantics to express

these in natural languages such as English. Therefore, in addition to visual understanding, a

natural language processing model is required for report generation.

In contrast to the existing models, the proposed research presents a model to solve the

problems of visual representation as well as sentence generation. As a first step, the proposed

model takes CXR images as input I and performs the feature extraction process for disease

identification. In the second step, the model is trained to generate the desired report, which

consists of LSTM followed by an attention mechanism. To optimize the report, the probability

p(S|I) is determined, where S = {S1, S2, S3. . .} represents a set of words generated for the report

from the vocabulary that sufficiently defines the contents in the CXR images [4].

The proposed model is motivated by the recent advancements in machine translation,

where the goal is to transform the source composed of a sequence of tokens to the targeted

sequence of tokens by maximizing the likelihood p(T|S), where S is the sequence of tokens

present in a source space and T is the targeted sequence of words.

The remainder of this paper is organized as follows. Section 2 provides a review of the liter-

ature and significant work done by researchers in the past few years. Section 3 describes the

proposed methodology in detail. Section 4 presents all the datasets and experimental results in

detail with the relevant figures and tables. Finally, Section 5 concludes the paper.

2. Related work

In recent years, several chest radiograph datasets have been made publicly available. A sum-

mary of all of these datasets is presented in Table 1. A number of researchers have worked on

caption generation for general images and detailed report creation for medical images. Tanti

et al. [5] classified generative models into two types: (i) injection architecture and (ii) merge

architecture. In the injection architecture, the input is the tokenized captions and the image

vectors to an RNN block, whereas in the merge architecture, the input is only the captions to

the RNN block, and merges the output with the effective image learning computational models

by leveraging the information in the medical images and the free-text reports in the emerging

field. Such a combination of image and textual data helps to further improve the model perfor-

mance in automatic report generation (Litjens et al.) [6]. Correctly reading the CXR images is

exasperating due to the huge variability, variation, and complexity of the diseases as well as

their treatments, using computerized tomography (CT) scans (Rubin, 2015) [7].

Schlegl et al. [13] first proposed a weakly supervised learning approach to utilize semantic

descriptions in the reports as labels for better classifying tissue patterns in OCT imaging. They

specified how accurate voxel level classifiers would be and how this information increases the

classification accuracy for intraretinal SRF, IRC, and normal retinal tissues. In 2015, Shin et al.

Table 1. Summarized specification of publically available chest X-ray datasets.

Dataset Source Institution Disease Labeling No of Images No of Reports No of Patients

IU Chest X-Ray (Demner-Fushman et al.

[8])

Indiana Network for Patient Care Expert 8,121 3,996 3,996

MIMIC-CXR (Johnson et al. [9]) Beth Israel Deacones Medical

Center

Automatic (CheXpert labeler) 4,73,057 2,06,563 63,478

Chest-XRay8 (Wang et al. [10]) National Institutes of Health Automatic (DNorm + MetaMap) 1,08,948 - 32,717

PadChest (Bustos et al. [11]) Hospital Universitario de San Juan Expert + Automatic (Neural

network)

1,60,868 2,06,222 67,625

CheXpert (Irvin et al. [12]) Stanford Hospital Automatic (CheXpert labeler) 2,24,316 - 65,240

https://doi.org/10.1371/journal.pone.0262209.t001
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[14] and Wang et al. [10, 15] proposed a network that comprises a CNN and RNN in the field

of radiology that is jointly trained to find abnormalities in CXR. They mined the radiological

reports to create disease and symptom concepts as labels. They first used LDA to find the top-

ics for clustering, and then applied disease detection tools such as DNorm, MetaMap, and sev-

eral other NLP tools for downstream CXR classification using a convolutional neural network.

They also released a label set along with image data. Later, Wang et al. [16] used the same exact

CXR dataset to further improve the performance of disease classification and report generation

from medical images.

For report generation, Jing et al. [17] built a multi-task learning framework, which consists

of co-attention and a hierarchical LSTM that predicts the tags, localizes the regions with

abnormalities, and uses these for the radiological image annotation and report paragraph gen-

eration. They performed their experiments on two publicly available datasets: IU CXR [8] and

PEIR Gross [17]. Moradi et al. [18] jointly processed image and text signals to produce CXR

images of regions of interest. They proposed two architectures to find their region of interest

in CXR and then to generate a textual report. One of these architectures is comprised of CNN

and LSTM, and its training was performed using images, their corresponding reports, and the

markings of regions of interest (ROIs) for those X-rays; the second one consists of a pre-

trained network on a large dataset of the same type of images for feature learning to obtain

their findings of interest. Rubin et al. [7] trained a convolutional network to predict common

thoracic diseases using CXR images. They proposed a novel architecture called DuelNet that

processes both frontal and lateral X-ray images while emulating routine clinical practice. The

dataset used was the MIMIC dataset, which is almost four times larger than the size of the larg-

est previously used CXR dataset (ChestX-Ray8) [10].

Li et al. [19] suggested a reinforcement learning-based named HRGR agent to train the

report generator to decide whether to make a sentence using a template or generate a new sen-

tence. This work was believed to be the first to combine human prior knowledge and genera-

tive neural networks at the same time to generate medical reports. This agent was updated

using reinforcement learning. Alternatively, Gale et al. [20] generated interpretable hip frac-

ture X-ray reports by identifying image features and filling text templates. It comprises the

training of a simple RNN model to produce hip fracture reports to clarify the results of the

neural network classifiers.

Finally, Hsu et al. [21] proposed a model in which he trained radiological images and

reported joint representation through unsupervised alignment of the cross-modal embedding

spaces via both local and global information retrieval. Experiments were performed on the

MIMIC dataset, which contains both medical images and their corresponding reports.

Machine translation has already been performed for several years by defining a sequence of

different activities, such as independently translating terms, aligning phrases, and reordering;

however, recent developments have suggested easier and better ways to perform the same

tasks by utilizing a recurrent neural network (RNN) [22–24], which provides state-of-the-art

performance. RNN is composed of two parts: encoder and decoder. The encoder reads the

source sequences that may be either text or images and then transforms them into a vector

representation of a fixed length, which then acts as the initial hidden state of the decoder that

produces the targeted sequence of words.

The proposed model applies a deep convolutional neural network (CNN) as an encoder to

an RNN. This encoder converts the input CXR into a vector representation of a fixed length

for use in multiple computer vision tasks [5]. The CNN encoder obtains the details about CXR

contents that are used as the input to the decoder LSTM followed by the attention block,

which efficiently generates the medical reports (see Fig 3).

The main contributions of the proposed research in the medical report generation are
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• An innovative model that provides end-to-end solutions for the problem with state-of-the-

art sub-networks, CNN as an encoder, and LSTM followed by attention as a decoder.

• An entirely trainable neural network utilizing vision features along with attention heads for

better report generation

• Finally, substantial experiments on the IU and MIMIC CXR dataset demonstrating the sig-

nificance of our proposed approach.

3. Model

A probabilistic and neural-network-based model is proposed to produce the radiograph

report. Recent advancements in the computational machine translation have demonstrated

that with a strong sequence model, the state-of-the-art outcomes can be obtained by explicitly

optimizing the probability of the successful translation in an end to end manner, provided as

an input sequence, both for the training and the inference. Such models use an RNN that con-

verts a variable-size input of the encoder into a fixed size vector. The fixed-size representation

is then used as an input to the decoder part to convert this into a meaningful appropriate

sequence of words. Thus, in the proposed model, the variable size input is CXR, the encoder is

CNN, and the decoder is LSTM, followed by attention, which uses the same source as the tar-

get language conversion principle.

The main objective is to directly maximize the likelihood of accuracy of the medical report,

as originally described by a radiologist or pathologist. This is achieved by the mathematical for-

mulation represented in Eq 1.

y
�
¼ arg max

y

X

ðI;SÞ

log pðSjI; yÞ ð1Þ

In the above equation, θ� and θ are considered as the parameters of the proposed model. S

is the correct medical report of CXR I. Remember S can be a sentence of any length. Therefore,

the chain rule has been considered as one of the easiest approaches to obtain the combined

likelihood from S0 to SN, where N is the maximum number of words in the report. This can be

represented by Eq 2.

log pðSjIÞ ¼
XN

t¼0

log pðStjI; S0; S1; S2 . . . St� 1Þ ð2Þ

For ease, the dependency would be on θ. Training pairs are created for training (S, I). The

goal is to maximize the sum of the log probabilities of S over T over all the training pairs and

to optimize this using the gradient descent, as described in (2). Further details regarding the

training are discussed in section 4.

It is natural to implement p(S0, S1. . .St−1) with LSTM, where different numbers of words in

a sentence (up to t-1) as described in Eq 2 are stated with the help of a hidden state of a fixed

length or a memory unit ht. By using the nonlinear function f after obtaining a new input xt,

the hidden state or memory is updated. This is stated in Eq 3 as

htþ1 ¼ f ðht; xtÞ ð3Þ

Two important structural decisions must be made to render the LSTM more workable.

First, what type of functions would be appropriate for the model, as well as how it can manage

both the input CXR images and words to the same system. To provide the structural decision,

the suggested model uses a specific type of network called the long short-term memory
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(LSTM) network. LSTM has already been proven as the best network when sequence-related

tasks, such as translation, must be performed. However, before feeding the input of the

encoder to LSTM, the input is passed to the attention mechanism, whose main purpose is to

focus only on those parts of the images that are of our region of interest and have maximum

information.

A CNN was applied to describe the contents of the CXR images. CNN has already proved

itself as the current state-of-the-art network for visual classification or image-related tasks, and

the VGG16 architecture of CNN is selected because it is based on a novel approach of batch

normalization and won the ILSVRC 2014 classification competition [25]. In addition, it gener-

alized many tasks using transfer learning, such as scene classification [26]. The words are used

in the system with the help of an embedded model through which they are converted into vec-

tors using one hot scheme.

3.1 Convolutional Neural Network (CNN)

CNN is a special type of neural network that provides sophisticated performance in image pro-

cessing and visual representation tasks. Some of the best applications of CNN are feature

extraction and classification based on those features, such as image segmentation, object detec-

tion, etc. The CNN is composed of different types of convolutional layers. Similar to the multi-

layer neural network [27], there are fully connected (FC) layers after these convolutional

layers. A CNN is built in such a way as to take advantage of the 2D input image structure.

With the support of multiple local ties and linked weights, this task is accomplished along with

many pooling methods that translate the input data into invariant features. The key benefit of

CNN includes the freedom to prepare and offer fewer parameters than other networks with

the same number of hidden states.

The visual geometry group (VGG) network, which is a deep convolution neural network

for large-scale visual recognition, was used in this study [28]. The VGG has many variants.

The most famous are VGG16 and VGG19, which have 16 and 19 layers, respectively. The clas-

sification errors for both VGG16 and VGG19 were almost the same for both the validation

data and the test data, which were 7.4% and 7.3%, respectively.

The proposed model used the transfer learning approach to train the VGG16 architecture,

as shown in Fig 2, to efficiently extract the features from the input images (CXR) using a

Fig 2. VGG-16 neural network architecture with highlighted sizes and each layer units.

https://doi.org/10.1371/journal.pone.0262209.g002
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combination of multiple 3 × 3 convolution layers and max pooling layers. The Softmax layer

of VGG16 was replaced with the final 1 × 4096 FC layer. This layer now acts as an input to the

decoder as well as the generation of medical reports. The output of the VGG16 network is a

vector of size 1 × 4096, which will later be converted into a fixed vector length of 1 × 256 that is

used to represent the features of the images.

A dropout layer was added to the network with a value of 0.5, to reduce overfitting. An opti-

mal value is between 0.5 and 0.8, which indicates the probability at which the outputs of the

layer are dropped out. A dense layer is added after the dropout layer, which basically applies

the activation function to the input, the kernel with a bias. The activation function used was

rectified linear units (ReLU), and the size of the output space was specified as 256. These vec-

tors of size 256 are the output of the feature extraction model, which will then be used as the

input of the attention block followed by LSTM. Fig 3 shows detailed architecture of VGG-16

along with all parameters.

3.2 Word embedding

Word embedding is primarily responsible for processing the captions of each image given as

input during the training process. The output of the word embedding is also a vector of size

1 × 256, which is another input to the decoder sequences.

Initially, the captions present along with each CXR were tokenized. Tokenization is a pro-

cess through which the words in these sentences are converted to integers so that the neural

network can process them efficiently. The tokenized captions are padded to ensure that the

length of all sentences is equal to the size of the longest sentence with max words.

Then, an embedding layer is attached to embed the tokenized captions into fixed dense vec-

tors with an output space of 256 × 22. 22 was chosen as the maximum number of words in all

the findings of the IU CXR dataset. These vectors further ease the processing by providing a

convenient way to represent words in the vector space. A dropout layer is attached again with

a probability of 0.5, to reduce overfitting in the model.

Fig 3. VGG-16 architecture and associated parameters.

https://doi.org/10.1371/journal.pone.0262209.g003
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3.3 Attention mechanism

The attention mechanism helps the LSTM to focus on just part of an image, which is a specific

and of interest, when generating a new word while completing a caption. Thus, it is simply say-

ing that a decoder is going to generate the caption by using only some specific information.

Consequently, with this new block of attention in the architecture, we are going to predict

the next word of the medical report by not only the hidden state of the decoder, but also using

the context vector that contains information of our interest. Therefore, we divide the image

into n parts; then, at the i-th location of the report, we use the hi hidden state of LSTM. So

now, this hi is used as the context to select the relevant part of the radiograph. The attention

model output is denoted by zi. The output zi can be considered as a vector that contains only

those parts of the image that have the main information and our point of interest, and it is

now easy for LSTM to generate a new word that actually describes the content and the diseases

present in CXR and the relationship between them. One most important thing to consider is

that after LSTM generates a new word, it also returns a new hidden state ht+1 for the genera-

tion of the next word, and so on. The mathematical representation of the attention mechanism

is as follows.

ejt ¼ faTTðst� 1; hjÞ ð4Þ

• In the equation, ejt means at every i-th timestamp of the decoder and the importance of the

j-th pixel location in the input image.

• st−1 is the previous state of decoder

• hj is the state of encoder

faTT is a simple feed forward a neural network which is a linear transformation of input

Uattn
�hj+Wattn

�st and then, a non-linearity (tanh) on top of that, an again one more transfor-

mation VT
attn. This is a scalar quantity.

faTT ¼ VT
attn � tanhðUattn � hj þWattn � stÞ ð5Þ

Now, when we know the input, we need to feed the weighted sum combination of input to

the decoder.

Ct ¼
XT

j¼1

ajt � hj such that
XTx

j¼1

ajt ¼ 1 ð6Þ

where aij � 0

where Ct is the context vector.

st ¼ RNNðst� 1; ½eðŷt� 1Þ; ct�Þ ð7Þ

Here,

• st−1 is the previous state of the decoder

• eðŷt� 1Þ is the previous predicted word

• Ct is the context vector, i.e., the weighted sum of the input.
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Finally, we can say that it is a better modeling technique than the previous one, and it is

said to be a more informed model because we are trying to obtain our results in a more natural

way.

3.4 Long Short-Term Memory (LSTM)

It is difficult for a simple RNN to develop long-term stability when the problem of vanishing

gradients and exploding gradients is very common [29]. To overcome this problem, a specific

type of recurrent network called LSTM was introduced [29] and successfully extended for

translation tasks [23, 30] and sequence generation [31].

3.4.1 LSTM based sentence generator. The main idea behind the LSTM model is mem-

ory cell c, which encodes information based on what input is observed at any time (see Fig 4).

The operation of the cell is controlled by "gates" or layers that are inserted multiplicatively and

can retain either values coming from the gates as 0 or 1. In particular, three gates are being

used to track if the current value of the cell should be forgotten, whether the new cell value

(output gate o) is to be produced, or to be interpreted as its input. Eqs 8, 9 and 10 represent the

input, forget, and output layers, respectively, where Eqs 11, 12 and 13 represent the other oper-

ations of LSTM [29].

it ¼ sðWixxt þWimmt� 1Þ ð8Þ

ft ¼ sðWfxxt þWfmmt� 1Þ ð9Þ

ot ¼ sðWoxxt þWommt� 1Þ ð10Þ

ct ¼ ft � ct� 1 þ it � hðWcxxt þWcmmt� 1Þ ð11Þ

Fig 4. Complete and combined model of CNN image embedder and LSTM with the word embedding. The LSTM is shown in the

unrolled version. All LSTMs are using the same parameters.

https://doi.org/10.1371/journal.pone.0262209.g004
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ct ¼ ot � ct ð12Þ

ptþ1 ¼ SoftmaxðmtÞ ð13Þ

The weight (W) metric represents the trained parameters and� represents the multiplica-

tion with gate value.

These multiplicative gates enable the LSTM to be robustly trained as these gates cope well

with the gradients, including burst and vanish [29].

The nonlinearities are hyperbolic tangent h(�) and sigmoid σ (�). The mt used in the last

equation is fed to the Softmax function, whose primary purpose is to generate a distribution of

a likelihood pt over all the words present in the vocabulary.

3.5 Training

LSTM is trained to guess each word of the report after seeing CXR and all corresponding

words, as described by p(St|I, S0, S1. . .St−1). To gain more accuracy, it is better to place

many copies of the LSTM. A replica of the LSTM was generated for the image. For each

term where all LSTM modules share the same parameters, the word is predicted by LSTM

at a time t again serving as an input to the attention block, and then the output of that

attention block is used as the input to LSTM at time t+1, and so on (see Fig 5). This is

instructive for this reason. In the unrolled version, all recurrent connections are converted

into feed-forward links. If the input CXR image is denoted as I, and S = (S0, S1. . .SN) is a

correct medical report describing CXR in more depth, the unrolling method can be repre-

sented using Eqs 14, 15 and 16, as stated below.

x� 1 ¼ CNNðIÞ ð14Þ

xt ¼ word EmbeddingðWeÞ � St where

t 2 f0 . . .N � 1g ð15Þ

ptþ1 ¼ LSTMðAttentionðxtÞÞ; t 2 f0 . . .N � 1g ð16Þ

Every word St is represented in one hot vector scheme, where the size of the vector for one

word will be equal to the size of the vocabulary. Two words, S0 and SN, show the start and end

of the medical report. S0 is “startseq” for start and SN is “endseq” for the end of the medical

report. Specifically, the LSTM signal for a full report was produced by emitting the stop term

“endseq.” Images and words were projected onto the same space. Images are mapped using a

CNN, where the words are generated by using the word embeddings. The input CXR image is

given only once after passing from the attention block, initially at t = -1, to tell LSTM about the

disease present in the radiograph.

It has been experimentally verified that giving the input image at every time step produces

poor results as at each phase, the network may have to directly tackle the noise at each time

stamp; thus, it is less effective and causes overfitting.
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The loss of the stated model can be calculated by summing the negative log probability of

the right term at each time stamp, as described below in Eq 17.

L ðI; SÞ ¼ �
XN

t¼1

log ptðStÞ ð17Þ

The loss calculated using the above formula is minimized with regard to many parameters

of LSTM, the attention block, CNN, and word embedding. The hyper-parameters and respec-

tive configuration are given in Table 2.

Fig 5. Long Short-Term Memory (LSTM) network architecture: In the above diagram the memory block

comprises a cell c which is essentially controlled by three gates. These gates are the input, the forget and the output

gates.

https://doi.org/10.1371/journal.pone.0262209.g005

Table 2. Proposed technique hyper parameters and related configuration.

Hyper-parameters Configuration

Layers Encoder (VGG16) + 1 Dense + Decoder-LSTM (9)

Optimizer Adam

Activation Function Relu

Learning Rate 0.001

Batch Size 64

Loss function Sparse Categorical Cross entropy

Number of attention heads 1

Dropout rate 0.5

https://doi.org/10.1371/journal.pone.0262209.t002
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3.6 Inference

Many approaches can be used to produce a medical report that provides a radiograph. One of

them is Beam Search, in which the selection is performed iteratively by a collection of the best

sentences up to time t as candidates to produce size t + 1 sentences and holding only the best k

results.

Another approach is sampling in which the 1st word of the report depends on the highest

probability p1 in the vocabulary. Then, the embedding of the same previous word is used as the

input, and the next word is selected using probability p2. This process is continued until embed-

ding is performed for the end-of-sentence token, where the maximum length depends on the

condition. For the experimentation, sampling was used and discussed in the following section.

4. Experimentation

We performed a systematic series of studies to test the proposed model’s efficacy by comparing

the previously developed models as well as with the help of metrics such as the BLEU score.

4.1 Evaluation metrics

It has already been discussed that describing CXRs is a difficult task. An experienced radiolo-

gist was required to read the CXR. Human evaluation is more efficient than image captioning

through natural language. Prior research has proposed many evaluation matrices to check the

performance of the proposed model.

Human evaluation is a technique used to measure the performance of a model. However,

this is not possible in our case, as we have already discussed the difficulties faced in correctly

reading the CXR [2]. The most widely used metric in the research on sentence generation

using images has been the BLEU score [32], which is a type of word precision n-gram between

produced and referenced reports. For the proposed architecture, we measured the BLEU score

to check the accuracy of the proposed model. The possible range of the BLEU score is 0.00 to

1.00. The higher the BLEU score, the better the generation of medical reports because it is basi-

cally the comparison of candidate sentences and reference sentences. The candidate sentence

is predicted, and the reference sentence is the actual one.

Four types of the BLEU scores were observed: BLEU-1 (1.0, 0, 0, 0), BLEU-2 (0.5, 0.5, 0, 0),

BLEU-3 (0.33, 0.33, 0.33, 0) and BLEU-4 (0.25, 0.25, 0.25, 0.25). In addition, cumulative

weights have been used because they provide better output. The Adam optimizer [33] was

used for parameter learning. Researchers are focusing on this subject and have identified other

metrics that are considered more relevant for medical report assessment. We note only one

such metric, BLEU, hoping for even further debate and work to come up with a reference to

the metric preference.

4.2 Dataset

In order to show the validity of proposed technique through detailed experimentations and

comparisons, we have used two publicly available CXR datasets i.e. The Indiana University

CXR dataset [8] and MIMIC CXR dataset [9]. The Indiana University Chest X-Ray dataset (IU

X-Ray) by Demner-Fushman et al. is a collection of CXRs combined with their corresponding

medical records. The file format for the X-rays used in this dataset was PNG with a resolution

of 512x624 having 24 bits depth. The dataset includes 3,955 radiology reports from two major

health networks within the archive of the Indiana Network for Medical Care and 7,470 related

CXRs [8]. Almost every report consists of two CXRs of patients, including frontal and lateral

views. Different sections in the dataset include the impression, findings, comparison, and
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indication. In this research, we used the findings of doctors as the target medical reports to be

generated (Fig 1 provides an example).

The second dataset used in this research is MIMIC CXR dataset by Johnson et al. [9]. This

is one of the largest publicly available CXR dataset which also contains free-text reports. It

includes imaging studies for 65,379 patients, 377,110 CXR images and 227,835 radiology

reports. The dataset contains JPEG images of varying sizes having 8bits depth. There are

detailed reports along with images in this dataset and we have utilized findings section from

this whole data as this includes radiology reports against each image.

For both datasets, the first step is to pre-process the data by converting the long findings of

the doctors into a short report by converting them into multiple chunks which leads to more

than one report associated with each CXR. In addition, all tokens in the reports are converted

to lowercase, and all tokens that are not alphabetical are removed. In all experimentations, ran-

domly selected 80% of data is used for training and remaining 20% is used for testing and we

repeated the experiment 10 times to show average performance of the proposed technique.

4.3 Baselines

The proposed model is compared with different current best performing architectures, for

example, LRCN [34] by Donahue et al., Soft ATT [35] by Xu et al., ATT-RK [36] by You et al.,

and Hieratical Generation [37] by Krause, J et al. Donahue et al. [34] presented a long term

RCNN network which consider visual representations along with descriptions. They focused

more on RCNN based spatial temporal layers instead of fixed spatio-temporal receptive field.

Xu et al. [35] presented a soft attention based model along with visual features for report gen-

eration. Their model has the capability to automatically learn to fix its gaze to salient objects

while generating reports. A semantic attention based model was introduced by You et al. [36].

Their model learnt to selectively put attention to semantic concept proposals and fused them

along with RNN to generate reports. Kause et al. [37] extended same concept presented by

You et al. [36] and added hierarchal RNN model for robust captioning. However, subsequent

detailed comparative analysis showed that all these baseline methods fell short on analyzing

long sentences. We implemented all these models for the radiology report generation and

decided to use VGG-16 [28] as the CNN encoder while keeping in mind that these models

were built for a short sentence-based report.

4.4 Quantitative results

We report the results of the medical report generator results using the standard image caption-

ing evaluation metric, that is, BLEU [32].

We performed some experiments by replacing LSTM with a gate recurring unit (GRU) and

bidirectional LSTM by keeping the same VGG16 for the feature extraction and the attention

block to work on that part of the image that is of interest. Various images were tested using the

above three methods, that is, VGG + LSTM, VGG + GRU, and VGG + Bi-directional LSTM.

The training process is accomplished for the above-mentioned models, and the results are

obtained and clearly identified that the VGG + LSTM model is more accurate than the other

techniques. A comparison of the BLEU scores of all three techniques is presented in Table 3.

In Table 3, we can clearly understand that if we want to use the encoder and decoder followed

by the attention mechanism to either describe the contents of a natural image or use this for the

medical images, the combination of VGG for feature extraction and LSTM for sentence genera-

tion yielded state-of-the-art results. Although previous research efforts have used bi-directional

LSTM in which we have information of the past as well as the future so that our model can predict

better, it works better mostly in the caption generation of natural images [38].
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For the report generation, it is clear that the proposed architecture of CNN-LSTM with

the unrolled LSTM format followed by the attention mechanism performs much better

than all the other mentioned networks, as shown in Table 4. The contrast between these

models explicitly indicates the effectiveness of the proposed CNN LSTM model. This find-

ing is not unexpected, as it is already well established that a single-layer LSTM cannot

model long sentences effectively [35]. Although, Alfarghaly et al. [39] methods resulted in

relatively lower BLEU scores but they added extra information from IU X-Ray dataset

related to image tags and they also assigned final automated tags to images along with

report generation.

The proposed algorithm is also tested on MIMIC dataset and results are presented in terms

of BLEU-4 score. Table 5 shows comparison of proposed technique with state of art methods

who have used MIMIC CXR dataset. Meshed memory transform presented in [42] gives

almost comparable results with proposed technique. This meshed memory model was opti-

mized with help of 5 loss functions. This along with proposed technique clearly outperformed

simple CNN and RNN based models. The attention heads introduced in proposed technique

clearly helped it in getting state of the art results.

The model was trained on Google Colab, which provides a 1x NIVIDIA Tesla K80 GPU

with 12 GB GDDR5 VRAM. The loss calculated for the LSTM+ VGG model was less than that

for the other two models. LSTM took more time than the GRU in processing. This is due to

the lesser number of operations occurring in the GRU than in the LSTM. GRUs generally train

faster on less training data than LSTMs and are simpler and easier to modify.

Figs 6 and 7 represent the accuracy and loss graph of the proposed model between number

of epochs, respectively. We can clearly see that after the 7th epoch, the loss starts to increase in

Table 3. Comparison of proposed technique with different combination of available options in terms of BLEU score up to n gram for the medical report generated

on the IU CXR dataset.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4

VGG16 + LSTM with Attention 0.580 0.342 0.263 0.155

VGG16 + LSTM without Attention 0.522 0.262 0.201 0.119

VGG16 + GRU 0.495 0.302 0.250 0.160

VGG16 + Bi-Directional LSTM 0.533 0.321 0.253 0.153

https://doi.org/10.1371/journal.pone.0262209.t003

Table 4. Comparison of proposed technique with existing state of the art in terms of BLEU score up to n gram for the medical report generated on the IU CXR

dataset.

Dataset Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4

IU X-Ray LRCN [34] 0.369 0.229 0.149 0.099

Soft ATT [35] 0.399 0.251 0.168 0.118

ATT-RK [36] 0.369 0.226 0.151 0.108

Hierarchical Generation [37] 0.437 0.323 0.221 0.172

Conditioned Transformers [39] 0.347 0.221 0.156 0.116

CDGPT2[39] 0.387 0.245 0.166 0.111

CNN LSTM (With Attention) 0.580 0.342 0.263 0.155

https://doi.org/10.1371/journal.pone.0262209.t004

Table 5. Comparison of proposed technique with current state of the art techniques in terms of BLEU-4 for the medical report generated on the MIMIC-CXR

dataset.

TieNet[16] CNN-RNN2[40] R2Gen [41] Meshed Memory Trans [42] Proposed

BLEU-4 0.081 0.076 0.086 0.133 0.153

https://doi.org/10.1371/journal.pone.0262209.t005
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Fig 6. Graph between accuracy and epochs using proposed model.

https://doi.org/10.1371/journal.pone.0262209.g006

Fig 7. Graph between loss and epochs using proposed model.

https://doi.org/10.1371/journal.pone.0262209.g007
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the testing data. However, on the training data, the loss will decrease, thus showing the prob-

lem of overfitting. Therefore, to avoid this overfitting, we decided to use the trained model of

the 7th epoch, which is the minimum loss our model can attain while training on the CXR

images of the IU dataset.

The performance is also expected to increase when using a larger dataset for training on a

greater number of CXRs. Because of the considerable accuracy of the generated medical

reports, radiologists can gain more assistance and benefits in terms of the rapid generation of

reports.

Fig 8. Different examples of generated results. Column 1 contains the original image, column 2 contain the attention

maps and column 3 contain the actual and predicted captions.

https://doi.org/10.1371/journal.pone.0262209.g008

PLOS ONE Automated radiology report generation

PLOS ONE | https://doi.org/10.1371/journal.pone.0262209 January 6, 2022 16 / 20

https://doi.org/10.1371/journal.pone.0262209.g008
https://doi.org/10.1371/journal.pone.0262209


4.5 Qualitative results

Some of the sample reports generated by the proposed CNN-LSTM-based model are shown in

Fig 8. The medical reports are high-level descriptions of the X-ray. Sentences generated based

on different diseases present in the radiograph depend upon the features extracted by VGG or

the encoder part. Many true abnormalities present in the X-ray are correctly described by the

CNN-LSTM model, as shown below. Any sentence composed of the words like “no,” “nor-

mal,” “clear,” “stable” is considered as “normality.”

The performance of proposed system in terms of BLEU scores along with predicted labels is

shown in Fig 8. Here we have added few randomly selected best and worst cases of CXRs from

datasets used for experimentations. Here it is evident from first 2 examples of Fig 8 that pro-

posed technique has been able to capture variations in the labels and predict the labels with

good BLEU scores. However, the scores are quite low for the cases where reports are too long

as shown in example 3 of Fig 9.

Fig 9. Randomly selected CXR from datasets used along with original and predicted reports.

https://doi.org/10.1371/journal.pone.0262209.g009
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5. Conclusion

The proposed model is an application to create automated textual reports for CXR, with the

aim of assisting medical professionals in creating reports more efficiently and effectively. It is

based on a CNN feature extraction model that acts as an encoder that converts an image into a

fixed act as an encoder that converts an image into a fixed-size vector representation, followed

by an RNN decoder that generates corresponding sentences based on the learned image fea-

tures. The effectiveness of the model was analyzed quantitatively and qualitatively on the CXR

dataset. A comparative study of various methods has been presented to observe the influence

of different components on medical report generation and has also demonstrated various use

cases on the proposed system. The results show that the LSTM model generally works slightly

better than GRU although it takes a little more time for the training as well as for the sentence

generation owing to its complexity. The performance is also expected to increase when using a

larger dataset by training on a greater number of images. Different experiments on the IU

dataset validate the effectiveness of the proposed architecture.
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1. Brady A., Laoide R. Ó., McCarthy P., & McDermott R. (2012). Discrepancy and error in radiology: con-

cepts, causes and consequences. The Ulster medical journal, 81(1), 3. PMID: 23536732

2. Delrue L., Gosselin R., Ilsen B., Van Landeghem A., de Mey J., & Duyck P. (2011). Difficulties in the

interpretation of chest radiography. In Comparative interpretation of CT and standard radiography of the

chest (pp. 27–49). Springer, Berlin, Heidelberg.

3. Farhadi A., Hejrati M., Sadeghi M. A., Young P., Rashtchian C., Hockenmaier J., et al. (2010, Septem-

ber). Every picture tells a story: Generating sentences from images. In European conference on com-

puter vision (pp. 15–29). Springer, Berlin, Heidelberg.

4. Kulkarni G., Premraj V., Ordonez V., Dhar S., Li S., Choi Y., et al. (2013). Babytalk: Understanding and

generating simple image descriptions. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 35(12), 2891–2903. https://doi.org/10.1109/TPAMI.2012.162 PMID: 22848128

PLOS ONE Automated radiology report generation

PLOS ONE | https://doi.org/10.1371/journal.pone.0262209 January 6, 2022 18 / 20

http://www.ncbi.nlm.nih.gov/pubmed/23536732
https://doi.org/10.1109/TPAMI.2012.162
http://www.ncbi.nlm.nih.gov/pubmed/22848128
https://doi.org/10.1371/journal.pone.0262209


5. Tanti M., Gatt A., & Camilleri K. P. (2019). On Architectures for Including Visual Information in Neural

Language Models for Image Description. arXiv preprint arXiv:1911.03738.

6. Litjens G., Kooi T., Bejnordi B. E., Setio A. A. A., Ciompi F., Ghafoorian M., et al. (2017). A survey on

deep learning in medical image analysis. Medical image analysis, 42, 60–88. https://doi.org/10.1016/j.

media.2017.07.005 PMID: 28778026

7. Rubin J., Sanghavi D., Zhao C., Lee K., Qadir A., & Xu-Wilson M. (2018). Large scale automated read-

ing of frontal and lateral chest x-rays using dual convolutional neural networks. arXiv preprint

arXiv:1804.07839.

8. Demner-Fushman D., Kohli M. D., Rosenman M. B., Shooshan S. E., Rodriguez L., Antani S., et al.

(2016). Preparing a collection of radiology examinations for distribution and retrieval. Journal of the

American Medical Informatics Association, 23(2), 304–310. https://doi.org/10.1093/jamia/ocv080

PMID: 26133894

9. Johnson A. E., Pollard T. J., Berkowitz S. J., Greenbaum N. R., Lungren M. P., Deng C. Y., et al.

(2019). MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text

reports. Scientific data, 6(1), 1–8. https://doi.org/10.1038/s41597-018-0005-2 PMID: 30647409

10. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). Chestx-ray8: Hospital-scale

chest x-ray database and benchmarks on weakly-supervised classification and localization of common

thorax diseases. In Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 2097–2106).

11. Bustos A., Pertusa A., Salinas J. M., & de la Iglesia-Vayá M. (2020). Padchest: A large chest x-ray
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