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Abstract

Multiple cameras are used to resolve occlusion problem that often occur in single-view
human activity recognition. Based on the success of learning representation with deep neu-
ral networks (DNNs), recent works have proposed DNNs models to estimate human activity
from multi-view inputs. However, currently available datasets are inadequate in training
DNNs model to obtain high accuracy rate. Against such an issue, this study presents a
DNNs model, trained by employing transfer learning and shared-weight techniques, to clas-
sify human activity from multiple cameras. The model comprised pre-trained convolutional
neural networks (CNNs), attention layers, long short-term memory networks with residual
learning (LSTMRes), and Softmax layers. The experimental results suggested that the pro-
posed model could achieve a promising performance on challenging MVHAR datasets:
IXMAS (97.27%) and i3DPost (96.87%). A competitive recognition rate was also observed
in online classification.

Introduction

Occlusion causes information loss and failure in single-view human activity recognition [1].
Previous researchers [2-7] have attempted to resolve this issue with the use of multiple cam-
eras providing different angles of view [1, 6] and enabling 3D posture representation [8, 9].
Multi-view human action recognition (MVHAR) has a wide range of applications, including
in systems for surveillance [4, 10] and human behavior monitoring [5, 11].

Current multi-view approaches comprise conventional computer vision (CV) or DNNs
methods [12, 13]. The conventional methods require sophisticated features extraction to iden-
tify informative features from raw data [14-16]. The features extractor usually works indepen-
dently from the classifier [17, 18]. Studies based on this approach focus either on the classifier
or on feature engineering [19, 20].

Representing human action from multiple views is the major challenge in feature engineer-
ing studies for multi-view action recognition. Previous studies have encoded human move-
ment as low-level representation such as histograms of gradient (HoG) [14], silhouettes [15],
and optical flow [21] that were extracted from RGB images. Afterwards, they were used for
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direct classification or transformed to higher-level features [9, 15, 16, 22]. Action recognition
was performed either by fusing features from multiple views followed by classifier algorithms
[8, 9] or by estimating actions in an individual view and then combining or voting for predic-
tion scores [22]. Studies involving classifiers for multi-view techniques intended to improve

recognition rates based on the efficient utilization of features from multiple cameras [17, 18].

Conversely, the DNNs approach combines feature extractors and classifiers into a single
pipeline [23-25]. A DNNs model automatically discovers features representation and recog-
nizes data patterns based on an end-to-end learning algorithm [26] that trains the model to
extract informative features from the data for specific classes [27]. DNNs have outperformed
conventional methods in many CV fields, such as object recognition [28] and video classifica-
tion [29]. However, the performance of current DNN does not match that of state-of-the-art
methods [23, 30], partly because of the difficulty of training DNN with the limited number of
samples in MVHAR datasets [22, 31].

Previous works on DNNs in MVHAR have involved early [23] or late fusion to combine
multiple inputs [30]. Early fusion resulted in a DNNs model with a modest number of parame-
ters, which combined features from the early layer [23]. However, the combinations of features
of early layer had high variance, making it prone to over-fitting. Meanwhile, late fusion com-
bined features from multiple cameras by treating inputs individually with multiple models [25,
30]. Individual models in this approach may have fewer variant features but a high number of
parameters, which consume more memory. Other DNNs approaches have attempted to solve
the multi-view human action recognition by employing multimodal inputs [32-36], multi-
task training [25], and cross-view learning [24, 37] algorithm.

This paper presents a novel DNNs model based on a shared-weight application for multi-
view human action recognition, supporting late fusion with fewer parameters than the multi-
model technique. The model involved the use of multi-view images as input to produce multi-
ple hypotheses, and score-fusion was used to compute the final prediction. As the prior details
of informative input among multiple views were unknown, the proposed model was trained to
treat individual prediction scores equally with the arithmetic mean or weight the hypothesis
with the geometric mean. The model applied an attention network to filter out uninformative
features from the sequence of images.

The model comprises pre-trained CNNs, attention layers, RNNs, and Softmax layers.
Exploration studies were conducted for structural optimization, and transfer learning was per-
formed with pre-trained CNNs to prevent over-fitting in the training process. We compared
the performance of the proposed model performance to that of the-state-of-art application on
IXMAS [22] and i3DPost [31]. We conducted an online evaluation and comparative study
with the single-view model to determine its efficiency in the actual situation.

The study can be summarized as follows:

« A novel DNNs model employing shared weight for MVHAR was proposed. Despite the
model’s fewer parameters, higher accuracy was observed from the application of shared-
weight than from multi-model DNNs usage.

o The effects of applying residual shortcuts on LSTM and employing intermediate and last-
layer pre-trained CNNss to extract features were investigated.

« Effectiveness of features and score fusion for the combination of information from multi-
view inputs were compared.

« Evaluation of the model for single-view and multi-view inputs suggested an increased recog-
nition rate with the latter.

PLOS ONE | https://doi.org/10.1371/journal.pone.0262181 January 7, 2022 2/20


https://doi.org/10.1371/journal.pone.0262181
https://www.jsps.go.jp/

PLOS ONE

A deep neural network model for multi-view human activity recognition

o Evaluation of the model’s performance during actual application in online classification
indicated that longer image sequences produced higher recognition rates.

Related work

In the last decade, conventional CV approaches have dominated the MVHAR field; they repre-
sented human body configuration using 2D, 3D, and 4D models. Methods using 2D models
extracted silhouettes and optical flow from sequences of images for direct classification [9, 15]
or transformation to higher-level features [1, 18, 38, 39]. High-level features such as silhouettes
contour points and centers of mass [15] showed superiority over other methods employing 2D
data [18] to encode movement in human action.

The conventional CV approaches with 3D/4D models required a sophisticated algorithm to
extract informative features from RGB images [8, 9, 17, 21]. The existing approaches either
directly concatenated all features from multiple views [8, 9, 22] or weighted multiple hypothe-
ses [13, 21] from those inputs to discriminate the human activity. Pehlivan et al. 8] encoded
sequences of silhouettes from multiple views as cylindrical shapes with different rotations,
while Weinland et al. [22] extended motion history (MH) determined from a single view to a
motion history volume that combined MH from multiple views. With a six-step feature extrac-
tor, Holte et al. [9] determined 4D spatio-temporal interest points and local descriptions of
3-D motion features from image sequences. Another study [40] combined local and global
features with self-similarity matrix; the study did not require 3D model to represent subjects’
activity from multiple views. These approaches classified human activity by feeding the com-
bined features to a classifier algorithm.

In contrast with features-fusion, score-fusion involves separate treatment of input features,
followed by a combination of hypotheses from all inputs using weighting functions. Previous
works have involved score-fusion using the arithmetic mean [30], fixed weight operation [13],
and a data-driven adaptive weight algorithm [21]. Arithmetic means assumed that prior
knowledge of informative views was unknown; it treated all confidence scores equally [30].
Fixed weight operation involved learning to identify informative inputs from the data [13],
while adaptive algorithm weighted the hypothesis with different masks during the inference
[21].

In learning representation with DNNs, many researchers [23, 25, 30, 32, 34, 41] have
proposed MVHAR methods based on CNNs. Kavi et al. [30] proposed a DNNs model
compromising multiple models to handle multi-view inputs to determine human action.
Multi-branch of CNN has also been used to perform view-specific action recognition from
multiple views using view-specific classifier [25, 41]. Although these approaches exhibited
promising performance, multiple DNNs models required a significant number of parameters
to compromise the number of inputs. Accordingly, Khan et al. [32] employed a single pre-
trained CNNs to extract features from multi-view inputs for combination with hand-crafted
features. Then, they performed features selection [42] to select robust features before classify-
ing them. This technique allowed the proposed model to estimate human action from multi-
view with fewer parameters.

Recent studies have attempted to improve further recognition rate of DNNs in MVHAR by
training the model with multiple modalities [21, 34, 36, 43-45], multi-task [24], and cross-
view [41] techniques. Multimodal approaches combine 2D-RGB images with higher-level
inputs, such as optical flow [21, 34], depth information [43], radar sensors [45], and skeleton
features [36, 44]; the model consisted multiple streams that proceeded with different type of
modalities. Multi-task assumed the model could produce informative latent variables by
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simultaneously learning different but related tasks: predicting human activities from multi-
view inputs and the inputs’ view-index [24]. Cross-view methods trained the model to predict
how the activities videos seen from a different viewpoint [37, 41]; the methods used inputs
from different views during training and test.

In previous work [23], we proposed a DNNs model for multi-view human action recogni-
tion employing a multiple DNNs models to handle multiple inputs. Evaluated with IXMAS
dataset [22], the proposed model achieved comparable results. However, it often misclassified
actions performed by hands. Using multi-model to process multi-view inputs also increased
the number of parameters and computation complexity.

This study aimed to resolve the multi-model issue and investigate the performance of the
DNNs model with features and score fusions in MVHAR. We shared a single CNNs block and
LSTMRes block across multiple inputs and then fused multiple hypotheses produced by the
model using score fusion to predict human activity. Previous researchers combined scores
with weighting functions that determined parameter values during training [13] or inference
[21]. In contrast, in the proposed model, it was assumed that there was no prior knowledge of
informative views. Therefore, prediction scores from individual view inputs are treated equally
with the arithmetic mean or weighted with the geometric mean during training and inference.

The proposed model employed RGB images as inputs and did not combine the latent vari-
ables with another modality. The work examined the proposed model’s performance with
the IXMAS [22], and i3DPost [31] datasets and evaluated its implementation in an online
scenario.

Material and methods
Proposed DNNs model

The proposed DNNs model comprised a pre-trained CNNS, an attention layer, an RNNs layer,
and a score-fusion layer [26] (see Fig 1), with multiple inputs and outputs representing multi-
ple views and actions.

Pre-trained CNN's

Pre-trained CNNs were used to extract spatial information from RGB images in the proposed
model. The pre-trained models’ intermediate or final layers’ output were used to extract fea-
tures from sequences of images. The output comprised a feature map f of shape H x W x C,
where H, W, and C are height, width, and channel, respectively. Hence, the feature vector for
the T time-step was

E=1[f,,....fy], withf, € R°and G=Hx W x C (1)

This study involved an examination of the pre-trained models VGG-19 and VGG-16 [46]
comprising five blocks with different numbers of CNNs. VGG-16 comprised 12 stacked
CNNss: two in 1st, 2nd, and 3d blocks, and three in 4th and 5th blocks. While VGG-19 had an
extra CNN in the 4th and 5th blocks, making 14 stacked CNNs in total. This paper refers to I-
th CNN in N-th blockasblockN convI.

Attention layer

Since it was assumed that significant transformation occurred only in certain parts of image
sequences when subjects performed actions, the proposed model filtered out out uninforma-
tive features by employing an attention layer [47] that weighted important features with higher
probability and the others with lower probability.
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Fig 1. Architecture of the proposed model. Pre-trained CNNs and LSTMRes were shared across inputs.
https://doi.org/10.1371/journal.pone.0262181.9001

Given the feature vector F of shape T x G, the attention mask was computed by averaging
attention scores over G. The first step to determine relevant features was to estimate attention
probability at each time step for the G dimension. For the feature map at the ¢-th time step f,,
attention probability was given by

St = gatt(ft; 91‘) (2)

o, = softmax(s,) (3)

where g, was an attention network with weight 6,, and s, was the attention score map for the
feature map. The attention score ; was the probability produced from Softmax function
incorporating the subject of interest with a higher probability than the rest. Dense, convolu-
tional, and RNNs layers can be used as attention networks [48]; the proposed model employed
a dense layer for the attention network because, in the preliminary experiment, we found
CNNs and RNNs caused over-fitting.

After computing attention probability at each time step, the relevant features were calcu-
lated using

fi=fox (4)
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where © represents the element-wise operator or the Hadamard product [49] weighting fea-
tures extracted from pre-trained CNNs with o.

Residual learning in LSTM

A long short-term memory (LSTM) architecture [50] was proposed to solve the problem of
vanishing and exploding gradients associated with conventional recurrent neural networks
(RNNGs) [26]. The architecture, however, still can suffer from degradation problems caused by
deeper neural network structure [51]. Residual learning was proposed to tackle this issue by
introducing a shortcut connection from the earlier to the later layers that helps the earlier layer
get a-“fresh”-gradient from the latter one during backpropagation [52].

In contrast to the highway network approach [53], residual learning formulation [52]
involved an identity shortcut to ensure ongoing learning. Residual function H(z;) could be
expressed as:

H(Z) = Fi(zi7 Wi) + Wgz (5)

i i—m

where F(z;, W;) and z;_,, represent the original mapping and output from the earlier layer,
respectively and W, was a linear projection that was used when the dimension between F(z,
W,) and z;_,,, was unequal, as realized via linear mapping.

In LSTM, residual mapping could be accomplished by introducing a shortcut connection
to the adjacent layer, from layer f to t + 1 [54] (Eq 6), or by establishing a connection to the
memory cell [23] (Eq 7, implementation: Fig 2).

h, = o0, ® tanh(C,) + h,_, (6)

h, =0, ® tanh(C, + W x,) (7)

Here, o,, C;, h, represent the output gate, memory cell, and hidden units, respectively.

CEEN F ; 1 »(0)

s U L

: Neural network layer () : Point wise

Fig 2. Architecture of LSTM with residual learning. Implementation of residual learning in LSTM with shortcut
connection after forgetting of old information and addition of the new information. The dotted line shows shortcut
connection.

https://doi.org/10.1371/journal.pone.0262181.9002
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Shared weight LSTMRes

The model in our previous work used Multiple Sequence LSTMRes (MSLSTMRes) to decode
temporal deformation changes in features from multiple cameras [23]. MSLSTMRes experi-
mentally outperformed baseline topology at the expense of computational time.

To address that issue, the proposed model used shared weights of pre-trained CNNs and
stacked LSTMRes (comprising two LSTMRes with 512 units) across inputs from all cameras.
Previous work applied a shared hidden-layer network to find similarities in speech and text
[55]. This work employed a shared-weight model to learn transformation and similarity
among features from multiple cameras, enabling late fusion using only a single model.

Score fusion

Arithmetic or geometric means are used to combine prediction scores from Softmax layers.
With the former, scores from all cameras were treated as a mixture, while the latter allows one
prediction result from a single camera to veto other outcomes. The proposed model calculated
final prediction scores using arithmetic mean (Eq 8)or geometric mean (Eq 9).

Here, y,. represents the probability score of an action a from camera c¢. M and N are respec-
tively the total number of actions and cameras.

Y = Zlc\]yac (8)

v, = Vi )

Datasets and evaluation metrics

The IXMAS dataset [22] is a benchmark in MVHAR algorithm evaluation that comprises
videos of 12 subjects performing 13 actions: watch checking, arms crossing, head-scratching,
sitting, getting up, turning around, walking, waving, punching, kicking, pointing, picking
something up, and throwing. Videos were recorded using five cameras at 23 fps. Subjects per-
formed each action three times with free positioning and orientation.

The i3DPost dataset [31] was recorded using eight synchronized cameras with a resolution
of 1920x1080 and 25Hz progressive scan. The eight subjects performed 12 actions (walking,
running, jumping, bending, waving, jumping in place, sitting-standing, running-falling, walk-
ing-sitting, running-jumping-walking, hand-shaking, and pulling), creating 96 multi-view vid-
eos of human activity.

The proposed model’s performance was evaluated with categorical cross-entropy loss, clas-
sification accuracy, and F1-score metrics. The accuracy rate was computed by averaging top-1
accuracy for given data, while F1-score was the average F1-score for all classes. p-value was
computed using Student ¢ test [56].

Pre-processing and learning

To reduce distortion in images and ensure the features were on the same scale, RGB-normali-
zation and feature standardization were performed in pre-processing. The mean and standard
deviations were computed individually for each dataset to standardize the value of images.
Gamma correction was applied to images of IXMAS dataset; the gamma value was 1.5.

In the experiments, the proposed model was trained with three scenarios (Table 1):
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Table 1. Scenarios used in the experiments.

Scenario Ir D, RD MB Decay Image Size
I 1.E-4 0.5,0.3 15 No 73x73

1I 1.E-4 0.5,0.3 7 Yes 128x128
111 9.5E-5 0.1,0.1 7 Yes 128x128

Ir, D, RD, and MB represent the learning rate, input and recurrent dropout, and mini batch, respectively. The-“Decay”-column shows whether learning rate decay was

used. The decay factor was 0.31 with patience of 20 iterations. The mini-batch value depended on image size.

https://doi.org/10.1371/journal.pone.0262181.t001

1. scenario I: LSTMRes evaluation,

2. scenario II: evaluation of the pre-trained model, MSLTMRes and score fusion, and imple-
mentation of online classification,

3. scenario III: investigation of multi-view inputs and a comparison of the proposed model
with state-of-the-art methods.

In all scenarios, backpropagation with RMSProp optimizer [57] was used.

Glorot uniform [58] and orthogonal [59] initializers were used to initialize the parameter
values of kernel and recurrent weights, respectively; the bias values were initialized to be zero.
As this study used pre-trained CNNs in all experiments, it did not apply parameters initializa-
tion to CNNG.

Evaluation in scenario II and III involved one-leave-subject cross-validation, while scenario
I used train-test evaluation. We also applied early stopping during training in scenario II and
III.

Action image sequences were trimmed to 22 frames for the scenario I and 20 frames for the
other scenarios; experimental results showed that using 20 frames resulted in higher accuracy
of the proposed model. Data augmentation was performed in scenario III by sub-sampling a
frame sequence with different frequencies to prevent over-fitting. The hyper-parameters’ val-
ues were determined via grid search.

Results
Exploration studies

This section details the results of exploration studies using the IXMAS dataset. The experi-
ments included:

1. Performance comparison of LSTMRes with LSTMResKim [54], LSTM and Convolutional
LSTM (ConvLSTM) [60].

2. Investigation on the impact of fine-tuning pre-trained CNNs with VGG-19 and VGG-16;
other models, such as ResNet [52] and Inception [61] were not used because they impaired
the recognition rate of the proposed model.

3. Evaluation of the multi-model approach and shared-weight technique.
4. Comparison of features fusion with score fusion using arithmetic and geometric means.

In every experiment, we used the most optimal structure for the succeeding experiment.
LSTMRes vs LSTMResKim. Fig 3 depicts the performances of LSTM, LSTMRes, and
LSTMResKim on IXMAS based on training and validation errors. The results suggested that
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Fig 3. Training and validation errors of LSTM, LSTMRes, LS TMResKim, and ConvLSTM. From the start until the end of learning, LSTMResKim had lower

performance than the others.

https://doi.org/10.1371/journal.pone.0262181.9g003

validation errors of the proposed model with the LSTMRes were lower than that with
LSTMResKim. The training error with LSTMRes decreased steadily throughout the learning
process. Instability, however, appeared in those of LSTMResKim after the 60th iteration.

In contrast, the LSTMRes exhibited slightly lower training and validation loss than LSTM
and ConvLSTM. The performances of LSTM and LSTMRes were identical. These outcomes
indicated that performing residual learning in the LSTM memory cell provides insignificant
improvement with the model. In consideration of these results, we used LSTMRes used for the
rest of the experiments reported here.

Pre-trained CNNs. VGG-16 and VGG-19 models trained with the ImageNet dataset were
examined as CNNs blocks for the proposed model. We conducted three experiments using the
intermediate block4 pool and thelastblock5 pool layers to find an appropriate pre-
trained model and clarify the effect of fine-tuning. The first experiment used the intermediate
layer as a feature extractor without fine-tuning the parameters, while the second applied it.
The last experiment was conducted by fine-tuning the CNNs (from block4 conv2 to
block5 conv3).

Fig 4 illustrates the performance of the proposed model with different CNNs blocks. The
results demonstrated three things. First, employing VGG-16 as a CNN block produced higher

100 |- —_ B B — T ]
95 | : ; + i
+
~ i
° +
< 90 b i i .
Q A
2
s
> B : ; : -
[5Y ' '
s : :
35( ! : H
5 80 3 : ' -
o ] ' '
< L ; L L
75 ; -

VGG-19(inter) VGG-16(inter) VGG-19(inter f) VGG-16(inter f) VGG-19(last)  VGG-16(last)

Fig 4. Accuracy of the proposed model with different pre-trained CNNs. Average recognition rates of the proposed
model: VGG-19(intermediate): 90.40%; VGG-16(intermediate): 90.90%; VGG-19(fine-tuned intermediate): 88.38%;
VGG-16(fine-tuned intermediate): 91.41%;VGG-19(last): 92.92%; VGG-16(last): 94.69%.

https://doi.org/10.1371/journal.pone.0262181.9004
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Fig 5. Average accuracy rate of the proposed model. Comparison between MSLSTMRes (94.69%) and MV-DNN
(95.70%).

https://doi.org/10.1371/journal.pone.0262181.g005

accuracy rate. The proposed model achieved an average increase in accuracy rate by 1.14
+0.89% using either the intermediate or last-layer of VGG-16. Second, fine-tuning the last
block of pre-trained CNNs improved insignificantly (n = 396, average p > 0.05) the proposed
model’s performance. Fine-tuning VGG-16 and VGG-19 improved respectively the model’s
accuracy rate by 4.29% and 2.52%. Third, fine-tuning of pre-trained CNNs parameters
impaired the performance of the proposed model; its accuracy rate decreased by 2.02% with
fine-tuning block4 (intermediate) of VGG-19.

Shared weight, no MSLSTMRes. We previously found that MSLTMres yielded higher
accuracy than the baseline model [23]. However, the recognition rate came at the expense of
computational time and parameter numbers.

Given the benefits of shared-layer DNN in language modeling [55], we investigated
related effects in multi-view action recognition, sharing the pre-trained VGG-16 and stacked
LSTMRes of the proposed model across inputs from all cameras. Different attention layers
were used for different views, and feature fusion was used to compute action probability.

The proposed model obtained a 1.01% (n = 396, p = 0.617) higher accuracy than with the
use of MSLSTMRes (Fig 5). Shared-weight application also resulted in fewer parameters (the
proposed model: 70,304,393, [23]: 351,323,711) and lower complexity with the proposed
model, improving computation time.

Score fusion. This experiment compared the proposed approach’s performance when
using features and score fusions. Features fusion estimates action probability using a combina-
tion of the features from multiple cameras. Scores fusion, however, combined the prediction
scores from multi-view inputs using the arithmetic or geometric mean.

This experiment used pre-trained VGG-16 and shared-weight LSTMRes as CNNs and
RNNs layer for the proposed model, respectively. The models were trained with scenario II
(Section Pre-processing and learning).

The proposed DNNs model exhibited an average accuracy of 97.22% with the use of arith-
metic mean (Fig 6), which was 1.51% higher than using feature fusion. Scores fusion with the
geometric mean created the opposite effect, decreasing the proposed model’s accuracy rate by
1.77%. These results suggested the proposed DNNs model performed better when using the
arithmetic mean as the score fusion.
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Fig 6. Average accuracy rate of the proposed model using LSTMRes with feature-fusion and score-fusion
techniques. Accuracy of shared-weights LSTMRes with feature fusion (95.71%), and score fusion employing the
arithmetic mean (97.22%) and geometric mean (93.93%).

https://doi.org/10.1371/journal.pone.0262181.9006

Final configuration. The above exploratory studies showed that the employment of
VGG-16 (block5_pool), shared-weight LSTMRes, and shared fusion with the arithmetic mean
significantly improved (n = 396, p = 0.004) the performance of the proposed model by 7.07
+14.03%, compared to the model in our previous work [23]. The highest improvement
(4.29%) was observed with the use pre-trained VGG-16 as a CNN block and fine-tuning of
its last layer (Table 2), while the lowest improvement (1.01%) was gained when replacing
MSLSTMRes with shared LSTMRes. Although higher-resolution than in our previous research
[23] was used here (128 x 128 vs 73 x 73 pixels), the recognition rate with the proposed model
increased by 0.25%, which was insignificant, considering the small dataset.

Application of the optimized configuration also increased the accuracy of the proposed
model in recognizing actions performed by hands (e.g., watching check, arms crossing,
waving, and punching) (Fig 7). The highest improvement (25%) was achieved in the identifica-
tion of “wave” action. We used the aforementioned new configuration for the next experi-
ments: comparison of the proposed model with a single-input model and the state-of-the-art
methods.

Comparison with a single-input model

We performed an experiment on IXMAS with 13 actions to evaluate the proposed model’s per-
formance using single-view and multi-view inputs. Comparison of results (Fig 8)

Table 2. Average accuracy gain (%)with new configuration.

Configuration Accuracy Improvement
Previous work [23] 90.15 -

128 x 128 image 90.40 0.25
Pre-trained VGG-16 94.69 4.29
Shared-LSTMRes 95.70 1.01
Score fusion 97.22 1.52
Total 7.07

https://doi.org/10.1371/journal.pone.0262181.t1002
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Fig 7. Improvement of recognition rate with the new configuration. There was no improvement in recognizing the-

“sit down/get up/pick up”-actions, as perfect recognition rate was achieved by the model with the previous structure.
The highest accuracy gain was in recognizing wave action (25%).

https://doi.org/10.1371/journal.pone.0262181.9007

100.00

90.00 [

80.00
70.00
60.00
50.00 |
40.00 )
30.00
20.00
10.00
0.00

Accuracy Rate (%)

mMultiple mCam1 ®mCam2 ®mCam3 =Cam4 = Cam35

Fig 8. Comparison between multi-view and single-view approaches. Recognition rate of proposed model using
multi-view inputs (96.37+3.39%) and single-view inputs from Cam 1 (80.34+7.57%), Cam 2 (82.48+8.10%), Cam 3
(79.70+6.66%), Cam 4 (79.27+9.56%), and Cam 5 (59.19+16.37%).

https://doi.org/10.1371/journal.pone.0262181.9008
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demonstrated that combining information from multi-view inputs produced a significant
improvement in accuracy rate by 20.17+8.57% (n = 396, average p < 0.05). Compared to
multi-view applications, the outcomes also indicated that the use of input from Cam5 (top-
view) produced a 37.18% lower recognition rate, while the employment of the other views
yielded a 15.92+1.23% lower accuracy rate.

Comparison with state-of-the-art methods

We compared the proposed model to state-of-the-art methods on IXMAS and i3DPost (Tables
3 and 4). Note that their results were not reproduced and the proposed model used 2D RGB
images as inputs. Following the previous studies’ experiment protocol, we evaluated the pro-
posed model on the IXMAS dataset, with 11 subjects performing 10-action. We used data of
all subjects in the evaluation of 13 actions on IXMAS and 10 and 12 actions on i3DPost. This
experiment used learning scenario III (Sec. Pre-processing and learning).

Table 3. Comparison for recognition (%) using the proposed model with state-of-the-art methods on IXMAS.

Method Input 11 Actions 13 Actions
Holte et al. [9] 4D 100.00 100.00
Turaga et al. [17] 3D 98.78 -
Spurlock et al. [18] Dynamic 94.24 -
Weinland et al. [22] 3D 93.30 -
Pehlivan et al. [8] 3D 90.91 88.63
Vitaladevuni [39] 2D 87.00 -
Chaaraoui et al. [15] 2D 85.86 -
Liu et al. [38] 2D 82.80 -
Khan et al. [32] * 3D 99.60 -
Gaoetal. [21]* 2D + optical flow 99.60 -
Purwanto et al. [34] * 2D + optical flow 97.22 -
Gnouma et al. [33] * 2D 92.81 -
Proposed model 2D 97.27 96.37

The “Input”-column indicates type of features used in the approaches. Khan et al. [32] utilized 50:50 training and test
evaluation method, while Gnouma et al. [33] only evaluated their model with 10 actions.

* shows DNN based approach or the methods employing CNN based features.

https://doi.org/10.1371/journal.pone.0262181.t003

Table 4. Comparison for recognition (%) of proposed model with state-of-the-art methods on i3DPost.

Method Input 10 Actions 12 Actions
Spurlock et al. [18] Dynamic 97.65 -
Holte et al. [9] 4D 97.50 -
Kose et al. [16] 3D 95.50
Tran et al. [62] * 3D 96.70
Mygdalis et al. [63] * 3D 95.51
Angelini et al. [44] * Skeleton 99.47
Proposed model 2D 93.75 96.87

The “Input”-column shows the type of features used in the methods. Evaluation was performed with the proposed
model based on actions performed by one subject and two subjects (“12 Actions”-column). Mygdalis et al. [63]
validated their model’s performance using 3-fold cross-validation.

* shows DNN based approach or the methods employing DNN based features.

https://doi.org/10.1371/journal.pone.0262181.t1004
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Fig 9. Average accuracy rate of the proposed model on i3DPost. The row and column represents action: walk(1), run(2), jump(3), bend(4), hand-wave(5), jump-in-
place(6), sit-stand up(7), run-fall(8), walk-sit(9), run-jump-walk(10), handshake(11), pull(12). A and B illustrate experimental result on 10 and 12 actions, respectively.

https:/doi.org/10.1371/journal.pone.0262181.g009

In evaluation with IXMAS, the proposed model outperformed all 2D methods in recogniz-
ing 11 actions by 12.05% on average (Table 3). Performance was higher than methods employ-
ing 3D features representation [8, 22] but was slightly lower than the outcomes reported in
[17]. The proposed model also got a 4.46% higher accuracy rate than other DNN models using
2D inputs and achieved competitive results to the models using 2D + optical flow inputs. How-
ever, the accuracy rate of the proposed model was 2.33% lower than that of the adaptive score
fusion method.

In addition, the model produced a recognition rate of 96.37% in classifying 13 actions, out-
performing Pehlivan et al. [8] with the use of 3D features. However, the proposed DNN mod-
el’s recognition rate was still lower than 4D models [9].

The performance of the proposed DNN model in recognizing 10 actions on i3DPost was
comparable to state-of-the-art methods (Table 4). The proposed model often misclassified
actions with similar body configurations, such as jumping and bending, and exhibited confu-
sion with differentiation of single and combined actions, such as “walking” and “running-
jumping-walking” (Fig 9). The model achieved higher performance in classifying 10 actions
and 2 interactions.

The proposed model obtained an average F1-score higher than 0.9 for all classes with all
datasets (Table 5). The proposed model achieved the lowest F1-score when evaluated with
10-action on i3DPost and attained the highest F1-score on evaluation with 11-action on
IXMAS.

Table 5. Average F1-score of the proposed model with 11 and 13 actions of IXMAS, and 10 and 12 actions of
i3DPost.

F1-Score (mean + S.D.)
IXMAS-11 0.975 £ 0.026
IXMAS-13 0.963 £ 0.025
i3DPost-10 0.937 £ 0.062
i3DPost-12 0.969 = 0.038
https://doi.org/10.1371/journal.pone.0262181.t1005
PLOS ONE | https://doi.org/10.1371/journal.pone.0262181 January 7, 2022 14/20


https://doi.org/10.1371/journal.pone.0262181.g009
https://doi.org/10.1371/journal.pone.0262181.t005
https://doi.org/10.1371/journal.pone.0262181

PLOS ONE A deep neural network model for multi-view human activity recognition

t=42 t=48 =51 =57 t=60
A
=777 =780 =783 =786 =789 =792 =795
B

Fig 10. Example of ambiguous-action clips. A: sequence of images from early watch-checking action. B: sequence of ambiguous actions (transition from punching to
kicking action).

https://doi.org/10.1371/journal.pone.0262181.9010

Online classification

In the online scenario, we did not segment individual action sequences based on the action
labels, but used a sliding window to create clips from video content. The proposed model
should determine early and ambiguous actions (Fig 10) from unfinished sequences of actions
or transitions phases between actions. This study investigated how length of a clip affected the
performance of the proposed model by setting the value of the sliding time window ¢ to 10, 20,
30, 40, and 50. The proposed model was trained based on learning scenario II (Section Pre-
processing and learning) to estimate subjects’ activity in each frame. The final prediction was
the average probability scores over the sequence of images.

The experimental results (Fig 11) show that the highest accuracy and F1-score were attained
with t = 50. The accuracy and F1-score of the proposed model increased with longer sliding
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Fig 11. Average accuracy rate of the proposed model in online classification. A: accuracy of the proposed model with a varying number of sliding windows: t = 10
(64.24 + 4.26%); t = 20 (63.55 + 3.45%); t = 30 (69.36 + 5.43%), t = 40 (72.60 + 5.15%), and t = 50 (73.64 + 7.15%). B: average F1-score of the proposed model with a
varying number of sliding windows: t = 10 (0.63 + 0.08); t = 20 (0.62 + 0.10); t = 30 (0.7 £ 0.06%), t = 40 (0.72 + 0.07%), and t = 50 (0.73 + 0.11%).

https://doi.org/10.1371/journal.pone.0262181.9011
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https://doi.org/10.1371/journal.pone.0262181.9012

window values. However, this did not represent a proportional correlation, as the recognition
rate was 0.69% lower at t = 20 than at t = 10.

The imbalance dataset (Fig 12(A)) did not impair the overall performance of the proposed
model: the proposed model achieved F1 scores higher than 0.6 in all scenarios. Besides, the
proposed model classified sitting-down, getting-up, and picking-up actions with over 80%
accuracy rate, even though the percentage of data based on such actions was lower than the
others. However, the experimental results for t = 50 (Fig 12(B)) shows issues with the proposed
model in differentiating actions performed only by hands (e.g., head-scratching, waving,
punching, pointing, and throwing), the recognition rate at less than 70%.

Discussion

When a subject performs activity in a dynamic environment, self and inter-object occlusion
may occur. Multi-view human activity recognition helps to prevent a complete loss of informa-
tion when occlusion appears in a single camera by providing information from other cameras
[5, 11]. Previous findings have indicated that employing multiple view increased the recogni-
tion rate of human activity in a dynamic environment [6, 7].

This study presents a novel DNN model employing shared-weight and score fusion to clas-
sify human activity from multiple views. The experimental results suggested that the proposed
model achieved optimal performance with VGG-16 as the pre-trained CNNs, shared-weight
LSTMRes as RNNs layer, and average mean as score fusion. Exploratory studies showed that
fine-tuning of pre-trained CNN parameters may not improve accuracy; fine-tuning block4
of VGG-19 impaired the performance of the proposed model. We also found the model was
better co-adapted with shallow pre-trained CNNs, as shown by improved performance for
transfer learning with VGG-16. Those outcomes were attributed to VGG-16’s output, which
produced less domain-specific features than VGG-19.

Comparison between the proposed LSTMRes, and the method detailed by Kim [54] showed
that shortcut connection between adjacent layer outputs of LSTM introduced instability,
impairing performance. These results were consistent with those reported by Krueger et al.
[64] and suggested an insignificant improvement in training and generalization performance
with LSTM associated with residual learning in memory cells.
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Second, the findings of this study suggested that even with a few training data, the proposed
DNN model could attain competitive performance. The results showed that transfer-learning
and score fusion with arithmetic mean improved the model’s performance. Besides, compared
to other DNN-based methods, the proposed model outperformed models using 2D modality
[33] and achieved a lower accuracy rate than methods employing more complex modalities,
such as optical flow [21, 34] and skeleton data [44].

Another major finding of this study was that the proposed model required a longer sliding
window to attain optimal performance. That contradicts the results of previous work [65] that
found a brief sequence was sufficient for the evaluation of basic human actions. One interpre-
tation of these findings is that the applicable number of frames to recognize human activities
may differ from case to case; we used different datasets from Schindler et al. [65]. In our exper-
iment, short sequences resulted in ambiguous clips, impairing the performance of the pro-
posed model.

As seen in previous works [1, 6], this study found that combining information from multi-
ple views resulted in a higher accuracy rate of the proposed model in MVHAR. This suggested
that additional information from another view mitigated information loss caused by occlusion.
The results also suggested that the proposed model could filter out uninformative features,
since the recognition rate did not decline when input from Cam5 was combined with other
views; using single-view input from Camb5 resulted in impaired performance of the proposed
model.

Despite promising results achieved with the proposed model compared to state-of-the-art
methods, this study had several limitations. First, the model did not get satisfying results evalu-
ated for online scenario requiring classification of sequences of ambiguous action. Second, the
study only evaluated the proposed model’s performance with two benchmark datasets, which
comprised less than 15 subjects performing basic activities. Hence, the experimental results
remain preliminary. Last, only self-occlusion was observed in the datasets. Accordingly, the
proposed model’s performance for mutual occlusion is unclear. Further study is needed to
evaluate and improve model performance in an online scenario involving more subjects. It
also would be of interest to consider evaluating the model with more benchmark datasets com-
prising complex activities performed in various situations, such as CASIA [66], UCF101 [67],
MOD20 [68], and HMDB51 [69] datasets.
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