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Abstract

Containers have emerged as a more portable and efficient solution than virtual machines for

cloud infrastructure providing both a flexible way to build and deploy applications. The qual-

ity of service, security, performance, energy consumption, among others, are essential

aspects of their deployment, management, and orchestration. Inappropriate resource allo-

cation can lead to resource contention, entailing reduced performance, poor energy effi-

ciency, and other potentially damaging effects. In this paper, we present a set of online job

allocation strategies to optimize quality of service, energy savings, and completion time,

considering contention for shared on-chip resources. We consider the job allocation as the

multilevel dynamic bin-packing problem that provides a lightweight runtime solution that

minimizes contention and energy consumption while maximizing utilization. The proposed

strategies are based on two and three levels of scheduling policies with container selection,

capacity distribution, and contention-aware allocation. The energy model considers joint

execution of applications of different types on shared resources generalized by the job con-

centration paradigm. We provide an experimental analysis of eighty-six scheduling heuris-

tics with scientific workloads of memory and CPU-intensive jobs. The proposed techniques

outperform classical solutions in terms of quality of service, energy savings, and completion

time by 21.73–43.44%, 44.06–92.11%, and 16.38–24.17%, respectively, leading to a cost-

efficient resource allocation for cloud infrastructures.
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I. Introduction

Nowadays, data centers are growing exponentially due to cloud services’ popularization [1].

Cloud Service Providers (CSPs) use this kind of infrastructure to offer different tools and

resources. They are mostly grouped into several types of services: Software as a Service (SaaS),

Platform as a Service (PaaS), Infrastructure as a Service (IaaS), Storage as a Service (STaaS),

Communications as a Service (CaaS), Network as a Service (NaaS), Monitoring as a Service

(MaaS), a rapidly grooving Serverless computing, etc. [2]. Virtual Machines (VMs) and Con-

tainers (CTs) are the backbones of the virtualized services provided on-demand.

The efficient use of the data center infrastructures is fundamental for users and CSPs. For

example, the low utilization of the servers is a critical factor for energy consumption ineffi-

ciency. Traditionally, researchers have focused on CPU utilization, where the VM placement

problem is usually solved by NP-hard bin-packing. Few studies consider additional factors,

such as reducing power consumption and avoiding SLA violations due to resource contention.

From a business perspective, reducing energy consumption leads to a significant reduction

of environmental concerns and costs, hence reducing the final price for the user and increasing

earns for CSPs [3].

The optimization of energy consumption is a challenge despite the diversity of existing

energy management strategies. The energy efficiency of clouds has become a crucial research

issue [2], mainly after introducing the green computing paradigm. An underlying technology

involved in resource utilization and energy consumption of data centers is virtualization.

Resource virtualization refers to the abstraction of the hardware in a computer. Efficient

resource usage, portability, scalability, and fast deployment are advantages of virtualization in

the cloud infrastructure. The Virtual Machine Monitor (VMM), also called the hypervisor, is

the main component of the hardware virtualization systems. This software allows the simulta-

neous execution of multiple guest VMs on a single server [4]. Some responsibilities of the

VMM are strengthening the isolation between VMs and the management of the hardware

resource.

The Operating System-level (OS-level) virtualization can be used either alternatively or in

addition to hardware virtualization. Virtual CTs can be created on each OS [5,6]. Nowadays,

the containerization technique is a buzzword for the cloud industry, especially in data centers

[7]. The CTs are beneficial for CSPs since they can be more densely packed than VMs.

Each CT provides an isolated space for the user by encapsulating a group of processes sepa-

rated from others in the system. The CTs can share the host kernel, libraries, and binaries,

making them adequate technology to be used in scientific workflow platforms [8]. Examples of

container implementations include Linux Containers (LXD), Docker, Kubernetes, OpenVZ,

Singularity, etc.

In general, efficient job scheduling and load balancing over computational nodes remain

challenging in massive, dynamic, elastic, diverse, and heterogeneous computational environ-

ments such as clouds.

The introduction of CTs technology brought several advantages to the cloud domain, but

relevant topics in its field must be improved. Scheduling, load balancing, security, energy con-

sumption, among others, are current topics of high importance to make cloud environments

more efficient and accessible for the users.

Several researchers address the problem of energy consumption and/or makespan in data

centers. The speed scaling method is highly used to aboard problems where the main objective

is to save the energy subjected to the execution time constraint [8–11].

Unfortunately, these strategies affect the Quality of Service (QoS), which can be expressed

using priorities, and Service Level Agreements (SLA), among others. Moreover, priority-based
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job scheduling introduces additional challenges because jobs with higher priorities must be

served before those with lower priorities. Furthermore, priorities might influence the resource

assignment, e.g., high-priority jobs might receive higher computing power than lower-priority

jobs.

Several contention-aware resource allocation strategies to reduce energy consumption and

increase performance are proposed [12–16]. Resource contention emphasizes avoiding co-

hosted applications that contend for shared resources. These works study the power consump-

tion in environments with bare metal and VMs infrastructure. However, environments with

CTs can increase the number of applications competing for shared resources, increasing

energy consumption.

This paper focuses on the online jobs’ allocation that contends for resources in a container-

based cloud environment. Our contribution is multifold:

• We present job allocation as the multilevel dynamic bin-packing problem that provides a

lightweight runtime solution that minimizes contention and energy consumption while

maximizing utilization.

• The energy model considers types of applications and their execution on shared resources

generalized by the job concentration paradigm.

• Two and three-level hybrid heuristic algorithms with container selection, capacity distribu-

tion, and contention-aware allocation are designed to consolidate resources to maximize uti-

lization and reduce resource contention.

• Extensive experiments with eighty-six scheduling heuristics considering scientific workloads

with memory and CPU-intensive jobs demonstrate that proposed techniques outperform

classical solutions in terms of energy savings and completion time.

The proposed heuristics use different amounts of information in the allocation process.

They improve the performance of well-known heuristics and provide a good compromise

between QoS, makespan, and energy. We demonstrate that they are suitable for containers in

cloud environments as more efficient and valuable solutions.

The rest of the paper is structured as follows. Section II discusses related work. Section III

defines the infrastructure, scheduling, and energy model for allocating jobs into a container-

based cloud. Section IV describes the processing speed models of the jobs. Section V discusses

job allocation strategies. Section VI introduces the experimental setup. Section VII presents

the experimental analysis. Finally, we conclude and discuss future work in Section VIII.

II. Related work

The interest and usage of container-based technologies in cloud environments have been

growing significantly. Several works pointed out that CTs are the future of clouds [17].

Several container technologies were developed, where each of them provides different

deployment, management, orchestration, and communication. In this section, we review some

of these container-based technologies. Then, we present the latest advances in the area of our

interest.

An LXD container [18] is an OS-level virtualization technique that runs multiple isolated

Linux systems on a single Linux control host. The LXD resides directly on top of the host ker-

nel. Hence, it does not need any extra abstraction layer or another guest OS. A namespace pro-

vides an interface for the Linux kernel features and isolations of resources for each CT. The

control group manages the allocation of resources (metering and limiting).
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Docker [19] is an open-source container project that simplifies the deployment of services

with the methodology of one process per container. The Docker Container Engine, an addi-

tional abstraction layer, runs a single application in each virtualized instance. This methodol-

ogy of execution attaches the CT lifetime with the finish time of the application. Docker

daemon constructs a writable layer at the top of the CT read-only image to execute the

processes.

Kubernetes [20] is an open-source system for managing the lifecycle of heterogeneous con-

tainerized applications (deployment, scaling, orchestration, etc.). The smallest deployable

computing unit (POD), created and managed by Kubernetes, encapsulates a set of containers

tightly coupled with some shared resources. It groups containers with shared storage/network

resources for easy management of logical units of an application. A POD can be replicated

along with several machines for scalability and fault tolerance purposes. Still, two services that

listen on the same port cannot be deployed inside a POD.

OpenVZ [21] is a container-based virtualization technology to manage multiple secure and

isolated Linux containers on a single physical server. Virtual Private Servers (VPSs) and CTs

are basic units that share hardware and run on the same OS kernel as the host system. Kernel

namespaces allow each CT to have an independent set of resources.

Singularity [22] is an open-source scientific container solution supporting an application in

existing and traditional High-Performance Computing (HPC) resources. It offers computing

mobility, reproducibility, user freedom, and integration with any scientific computational

workflow. A Singularity CT image encapsulates the OS-system environment and all applica-

tion dependencies necessary to run a defined workflow.

Table 1 shows the relevant characteristics of the related works. It highlights a research gap

in the domain of CTs and resource contention. Our approach focuses on the completion time

and energy consumption of allocation strategies in container-based cloud environments under

resource contention.

Xu et al. [23] discuss the brownout model to reduce data center energy consumption. This

approach can reduce energy consumption by selectively and dynamically deactivating optional

Table 1. Characteristics of related works.

Ref. Objectives Bare metal VMs CTs Contention Evaluation

[23] Energy - • • - Simulation

[24] Energy - • • - Simulation

[25] Energy, QoS - - • - Real

[26] Energy, QoS - - • - Real

[27] Energy, QoS - • • - Simulation

[28] Energy, SLA/QoS - • • - Simulation

[29] Energy, performance - • • Simulation

[30] Response time - - • - Real

[31] Energy - - • - Simulation

[32] Deadline, cost - - • - Simulation

[33] Cost, QoS - • • - Simulation

[12] Energy • • - • Simulation

[14] Utilization - - - • Simulation

[15] Energy • - - • Real

[16] Accuracy - • - • Simulation

[34] Energy, Utilization - • - • Simulation

[35] Energy, Utilization - - - • Real

https://doi.org/10.1371/journal.pone.0261856.t001
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application components. The experimental evaluation considers two types of hosts and four

types of VMs.

Xu and Buyya [24] increase the functionality of the brownout to reduce data center energy

consumption. They proposed a brownout-based approximate Markov Decision Process

approach to improve tradeoffs between energy-saving and user discounts.

Xu et al. [25] propose several scheduling algorithms for managing microservices and CTs

to reduce power consumption with QoS constraints. They achieve better performance in both

objectives than the baseline algorithms.

Xu and Buyya [26] develop BrownoutCon to deal with overloads and reduce power con-

sumption on cloud systems. It is integrated with Docker Swarm [36] to demonstrate its effi-

ciency in managing containers under several policies.

Gholipoura et al. [27] propose a multi-criteria decision-making method for cloud environ-

ments with VMs and CTs. The consolidation defines the migration policy based on the virtual

resource, CTs, and VMs.

Piraghaj et al. [28] present a set of allocation policies for energy saving on the Containers as

a Service (CaaS) cloud paradigm. The authors propose an architecture and several algorithms

to minimize energy consumption while maintaining the required SLA and QoS.

Khan et al. [29] study consolidation algorithms for effective migration of VMs, CTs, and

applications to save energy without negatively impacting service performance. The results

show the impact between the migration of applications and the migration of VMs, the resource

consolidation considering various workloads, resources, and datacenter set-ups.

The cloud-based solutions community has also generated Internet of Things (IoT) research

using VMs and CTs. The IoT workloads contain workflows with different types of jobs: CPU

Intensive (CI), Memory Intensive (MI), and Bandwidth Intensive (BI) [33].

Celesti et al. [30] study the overhead costs of CT virtualization on an IoT device with a

Raspberry Pi and Docker engine. The authors highlight the overhead introduced by container

virtualization in a real scenario.

Dambreville et al. [31] discuss energy consumption reduction by introducing a prediction

process in the scheduling task. The authors modify the available servers to fit the prediction

and schedule all of the jobs on the available servers.

Cui and Xiaoqing [32] propose a scheduling solution in cloud computing for workflow

tasks based on genetic algorithms. The fitness function defined the weighted sum of the user-

defined deadline and the total cost of the workflow application execution. A top-down leveling

is defined as the longest path from the task to the leaf task in the workflow for each task. This

level is used as a task priority. According to a descending order of these priorities, the tasks are

scheduled for the available hosts.

Tchernykh et al. [33] analyze several solutions for a digital twin workflow allocation in the

virtual resource in a cloud infrastructure. The goal is to minimize the rent cost and satisfy the

computational resources demand; the workloads include CI, MI, and BI jobs in order to model

applications with different requirements. The authors propose allocation algorithms based on

heuristics, metaheuristics, and mixed-integer programming to find low-cost solutions.

Several approaches focus on resource contention issues, where co-hosted applications con-

tend for shared resources increasing energy consumption and reducing performance.

Armenta-Cano et al. [12,13] propose a resource allocation model for online energy-aware

scheduling with job concentration. The authors characterize the energy consumption of appli-

cations and their combinations. It is used for heterogeneous job allocation to avoid resource

contention.

Sheikhalishahi et al. [14] propose a multilevel resource contention-aware scheduling for

energy-efficient in distributed systems. The authors define a resource contention metric for
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high-performance computing workloads. The approach models the interaction between sys-

tem and scheduler information concerning jobs and resources.

Muraña et al. [15] study the power consumption for scientific computing applications in

multicore systems. The authors evaluate the power consumption of applications in single and

combined executions on Intel and AMD servers. The results indicate a strong dependency

between the type of applications and power consumption.

Van Beek et al. [16] develop a CPU-contention predictor for Business-Critical Workloads

(BCW) in data centers. It estimates performance degradation for VMs, hence, the risks of SLA

violations.

Lovász et al. [34] present an energy-performance aware model for VMs allocation in het-

erogeneous servers as a variant of the multidimensional vector packing problem. The authors

propose a prediction model to estimate performance degradation when different services are

consolidated.

Blagodurov et al. [35] propose scheduling strategies to mitigate different resource conten-

tion sources on multicore processors. The authors define a classification scheme for conten-

tion in a cache space, memory controller, memory bus, and prefetching hardware.

In general, the different types of containers allow running a higher number and variety of

applications in a single resource. Moreover, the energy consumption of the system is increased

if the applications contend for resources. The following section defines the model to character-

ize job allocation in a container cloud environment aware of resource contention.

III. Model

In this section, we formulate the infrastructure, job, and energy consumption models, and

define the optimization criteria of the job allocation problem. The main notations are summa-

rized in Table A1 of Appendix.

A. Scheduling model

The IaaS environment is represented by a set of M servers (processors), P = {p1, p2,. . .,pM}.

Each server pk, for all k = 1,. . .,M, has a maximum processing capacity Qk expressed in Millions

of Instructions Per Second (MIPS), and runs a set of mk containers, Ck ¼ fck
1
; ck

2
; . . . ; ck

mk
g.

Each container ck
i , for all i = 1,. . .,mk, has a processing capacity (CPU quota) qk

i , expressed in

MIPS, such that
Pmk

i¼1
qk

i � Qk.

The total number of containers running in the infrastructure is denoted by m ¼
PM

k¼1
mk: Jðck

i Þ defines the subset of jobs running in the container ck
i and aðck

i Þ is the number of

SLA violations.

We consider a set of n independent jobs, J = {j1, j2,. . .,jn} that must be scheduled on the set

of containers C ¼
SM

k¼1
Ck. Each job jj is described by a tuple (rj, sj, wj, ρj, oj) that consists of its

release time rj�0, the minimum required processing speed sj in MIPS, the total amount of

work wj in millions of instructions, the job type ρj (CI and MI), and the priority expressed by

an integer value oj.

rj is not available before the job is submitted, and ρj is only used for the system to compute

the energy consumption. At any given time t, a processing speed s0jðtÞmight be assigned to job

jj, when s0jðtÞ < sj then the resource incurs in SLA violations aðck
i Þ ¼ aðc

k
i Þ þ 1 for jj in ci.

Additionally, wj can be used as an estimator of the finish time of jj, concerning s0jðtÞ. Several

techniques can be used to estimate an accuracy value of wj.

In this paper, we limit its use to identify CTs with a major amount of pendant processing.

The idea is to study dynamic performance degradation and energy consumption increase due
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to shared resource contention and present consolidation heuristics based on contention-aware

resource provisioning.

We consider this problem as a special case of multilevel dynamic bin-packing (online and

non-clairvoyant). Bins represent CTs, and the jobs define the contribution to CT utilization.

An additional element to the traditional dynamic bin-packing focuses on the contention-

aware distribution of available processing capacity.

The processing speed of a job can be changed during its execution. It can be increased and

reduced but should not be lower than the minimum required processing speed sj to satisfy

SLA. When a job finishes its execution, the available processing capacity of the container is dis-

tributed between running jobs according to the strategies described in Section IV.

Cmax is the maximum finishing time (completion time or makespan) of all jobs.

Let fi be the finishing time of jj job. Cmax is defined as:

Cmax ¼ maxðf jÞ8j 2 J ð1Þ

The total number of SLA violations is calculated as follows:

SLAv ¼
PM

k¼1

Pmk
i¼1

αðcki Þ ð2Þ

In this paper, we consider three conflicting objectives for optimization: SLAv, E, and Cmax:

minimizeðSLAv; E;CmaxÞ ð3Þ

The measure of the energy consumption E depends on the model. Traditional energy mod-

els do not take into account the types of applications and heterogeneity of workloads.

The next section describes an energy model that considers system performance degradation

due to jobs contend for resources [12].

B. Energy model

Let us describe the energy consumption model used in our experimental evaluation. The

power consumption of the system is defined by

E ¼
R Cmax

t¼1
EopðtÞdt ð4Þ

where Eop(t) is the energy consumption of the infrastructure at time t calculated as a sum of

the energy consumption eproc
k ðtÞ of all individual processors k at time t:

EopðtÞ ¼
PM

k¼1
eproc

k ðtÞ ð5Þ

Two types of consumption are distinguished in the processor: static and dynamic. The static

one is the power consumed by the component without performing useful work due to the leak-

age current, also known as idle power or base power eidle. The dynamic energy consumption is

produced when an application utilizes components during its execution eused.

The energy consumption of the processor k at time t, eproc
k ðtÞ of Eq (5), is computed as:

eproc
k ðtÞ ¼ oðtÞðeidle

k þ eused
k ðtÞÞ ð6Þ

where o(t) = 1, if the processor is on at time t, and o(t) = 0, otherwise, and the constant value

eidle
k does not depend on the time t.

The energy consumption of the processor k at time t depends on its utilization level and

concentration of different types of jobs:

eused
k ðtÞ ¼ ðe

max
k � eidle

k Þ � FkðtÞ � gkðφ
k
CIðtÞÞ ð7Þ
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where emax
k defines a constant for the maximum energy consumption of the processor at full

capacity, 0�Fk(t)�1 is the portion of the power consumed by different types of jobs, and gk is a

fraction of the total energy consumption introduced by job type combinations.

Known energy models are based on the observation that CPU utilization is highly corre-

lated with overall energy consumption. Linear and nonlinear models are frequently used. In

this work, we follow a nonlinear hybrid energy consumption model proposed in [12,13] as a

function of CPU utilization and concentration of jobs of different types.

We calculate Fk(t) as a sum of the portion of the power consumed by each job as follows:

FkðtÞ ¼
P
8d

f k
d ðU

k
dðtÞÞ; 0 � FkðtÞ � 1; d 2 fCI;MIg ð8Þ

where f k
d defines the fraction of energy consumption of a given job type d when its processor

utilization is Uk
dðtÞ at time t.

Fig 1 shows f k
d of CI and MI applications versus CPU utilization. We see that each job type

contributes differently to the total energy consumption with the same CPU utilization.

Results are obtained by the well-known performance tool suite LIKWID for the GNU/

Linux operating system and SysBench benchmark.

The server used in the experiments is an Express x3650 M4, with two Xeon Ivy Bridge pro-

cessors E5-2650v2 95W, default clock speed of 2.6 GHz. Each processor has eight cores and

two threads per core (16 with hyperthreading), level 1 memory of 32 kB, level 2 of 256 kB, level

3 of 20 MB. Two Non-Uniform Memory Access (NUMA) domains of 32 GB each, with a total

memory of 64 GB are used. The server OS is a CentOS Linux release 7.1.1503.

The combination of applications is considered in the following manner. Let us assume two

types of jobs. The total CPU utilization is calculated as:

Uk
TðtÞ ¼ Uk

CIðtÞ þ Uk
MIðtÞ ð9Þ

where Uk
CIðtÞ and Uk

MIðtÞ are the utilization of all jobs of type CI and MI, respectively, executed

on the processor at time t. They are calculated as:

Uk
CI tð Þ ¼

Pmk
i¼1

P
8j2Jðck

i Þ
s0jðtÞ

Qk
; rj ¼ CI
n o

ð10Þ

Fig 1. Energy profiles f kd of CI and MI applications.

https://doi.org/10.1371/journal.pone.0261856.g001
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Uk
MI tð Þ ¼

Pmk
i¼1

P
8j2Jðck

i Þ
s0jðtÞ

Qk
; rj ¼ MI
n o

ð11Þ

where s0jðtÞ is a processing speed assigned to job jj at time t.
gkðφk

CIðtÞÞ is a fraction of the total energy consumption introduced by the job types’

combination.

φk
CIðtÞ is the concentration (proportion) of the job CI (quantity of job utilization in a proces-

sor utilization) at time t. It is a measure of the total fraction of CPU capacity consumption of

all jobs of a given type in the total capacity.

φk
CI tð Þ ¼

Uk
CIðtÞ

Uk
CIðtÞ þ Uk

MIðtÞ
ð12Þ

φk
MIðtÞ ¼ 1 � φk

CIðtÞ ð13Þ

gkðφk
CIðtÞÞ ¼ 1 when jobs just with one type are running on the processor.

Fig 2 shows gkðφk
MIðtÞÞ versus φk

MIðtÞ for two job types. We see that gk = 1 when MI jobs are

not executed, hence φk
MIðtÞ ¼ 0 and φk

CIðtÞ ¼ 1, or only MI jobs are executed, hence φk
MIðtÞ ¼ 1

and φk
CIðtÞ ¼ 1.

According to Fig 2, we see a reduction in energy consumption when jobs of both types are

allocated to the processor.

The coefficient with the lowest energy consumption for CI and MI concentration is between

0.125 and 0.88. For instance, the concentration 0.125 is obtained for one MI and seven CI
applications per eight-core processor. The concentration 0.88 is obtained for seven MI and

one CI applications. If both concentrations are about 0.5, gk = 0.84.

The concentration φk
CIðtÞ ¼ 0 implies that all applications in the processor are MI type,

φk
MIðtÞ ¼ 1, and vice versa. In both cases, there is no reduction in energy consumption because

gkðφk
CIðtÞÞ ¼ 1.

A Lagrange interpolating polynomial represents the energy profile of each job type [15].

We use the obtained equations to estimate the energy consumption of jobs in the energy

model.

Fig 2. Fraction of energy consumption of two job types.

https://doi.org/10.1371/journal.pone.0261856.g002
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IV. Processing capacity model

In this section, we focus on three models of the processing capacity distribution between jobs

during allocation and execution: required capacity, full proportional capacity, and full priority

capacity.

A. Required capacity

In the Required Capacity model (RC), the assigned job speed s0jðtÞ cannot be higher than the

minimum required processing speed sj to satisfy SLA.

The main idea of the RC model is to limit the utilization of CTs to avoid that jobs conflict

for shared physical resources. We limit the utilization of the CTs to avoid the saturation of the

resource due to several CTs can be hosted in it.

The threshold of the job allocation and available capacity redistribution is the minimum

processing speed of each job. Formally,

s0jðtÞ ¼ qk
i � vj; where

vj ¼ 1; if
P

j2Jðck
i Þ

sj � qk
i ;

vj ¼
sj

P
j2Jðck

i Þ
sj
; other cases:

ð14Þ

8
><

>:

Fig 3 illustrates an example of the job allocation with the RC model. We consider three jobs

with the following specifications: j1 = (0, 300, 3�1014, 1), j2 = (50, 400, 2�1014, 3), j3 = (70, 500,

3.5�1014, 2), and container ck
j with capacity qk

i ¼ 1; 000 MIPS.

Initially, the scheduler defines the processing speed of j1 to s01(0) = 300 because it is avail-

able at time 0. When j2 arrives, at time t = 50, the scheduler assigns the required processing

speed s02(50) = 400. At time t = 70, job j3 cannot be allocated in the container because ck
i does

not have enough available resources to fulfill s03(70) = 500. So, the processing capacity qk
i is dis-

tributed using Eq (14), violating SLA.

Job j2 ends its execution at the time f2 = 646, and the scheduler updates the speed of jobs in

the container, s01(646) = 300 and s03(646) = 500. The finish time of jobs are f3 = 866, and f1 =

1,096.

The two additional models keep resource utilization in full. The only difference is the distri-

bution of the exceeding capacity, additional capacity after satisfying the basic requirement of

jobs running in the CT.

Fig 3. Example of container capacity distribution with the required capacity model.

https://doi.org/10.1371/journal.pone.0261856.g003
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B. Full proportional capacity

In the Full Proportional capacity model (Prop), unallocated available capacity in the container

is distributed proportional among jobs. Formally, we assume that ji is assigned to the container

ck
j .

s0j tð Þ ¼ qk
i � vj; where vj ¼

sj
P

b2Jðck
i Þ

sb
ð15Þ

Fig 4 shows an example of allocation jobs with Prop model. Similar to the previous example,

we consider the three jobs j1, j2, and j3 and one container ck
i .

Job j1 is available at time 0, with the Prop model, j1 can use the full capacity of the container

s01(0) = 1,000. Job j2 arrives at time t = 50, the capacity of ck
i is divided between both jobs

according to Eq (15), so the scheduler defines the jobs processing speed with s01(50) = 429 and

s02(50) = 571. During the execution of job j3, from t = 70 to t = 635, the speed values for the

three jobs in the container are 250, 334, and 416, respectively. Job j2 ends its execution at a

time f2 = 635 and the speed of the jobs in the container are updated to s01(635) = 375, and

s03(635) = 625. The finish times of jobs j3, and j1 are f3 = 819, and f1 = 850.

C. Full priority capacity

In the Full Priority capacity model (Prio), unallocated or available capacity in the container is

distributed between jobs based on their priorities. Formally, it assumes that jj is assigned to the

i container,

s0jðtÞ ¼ factor � oj � qk
i ; 8Jj 2 Jðck

i Þ [ Jj ð16Þ

where

factorck
i
¼

1

ðoj þ
P

Jj2Jðck
i Þ

ojÞ
ð17Þ

Fig 5 presents an example of allocation jobs with the Prio model. Similar to the two previous

examples, we consider three jobs j1, j2, j3, and one container ck
i .

Fig 4. Example of container capacity distribution with a full proportional model.

https://doi.org/10.1371/journal.pone.0261856.g004
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The scheduler assigns the total CPU capacity to job j1 at time 0, s01(0) = 1,000. Job j2 arrives

at time t = 50, then the capacity of ck
i is distributed between both jobs according to Eq (16), the

speed of both jobs is set up to s01(50) = 250 and s02(50) = 750. When job j3 arrives, the scheduler

reassigns the CPU capacity and the values of processing change to s01(70) = 167, s02(70) = 500,

and s03(70) = 333. Job j2 ends its execution at the time f2 = 440 and the CPU capacity is redis-

tributed between jobs j1 and j3, in this way s01(440) = 333 and s03(440) = 667. After 340 seconds,

job j3 finishes its execution and all the CPU capacity is reassigned to j1. The finish time of both

jobs are f3 = 780 and f1 = 850. Note that two of the three jobs finish their execution before the

previous examples.

V. Job allocation

This section describes the set of scheduling heuristics for job allocation. They are similar to the

well-known dynamic bin-packing problem, a variation of the classical NP-hard optimization

problem.

Several heuristics were proposed to affront bin-packing problems producing solutions in a

reasonable time frame. Both time and performance are fundamental in online resource alloca-

tion. Therefore, we propose heuristic-based scheduling strategies for the job allocation to CTs.

The scheduler performs two main tasks: CT selection and CPU assignation. In the selection

stage, the scheduler decides whether the job is placed into one of the available CTs or a new

CT should be invoked.

In the CPU assignation stage, the scheduler establishes the capacity inside the CT to execute

the job. We use different factors in the system to allocate the jobs in the CT selection stage.

A. Container selection strategies

As an example, we assume that the scheduler follows the RC model. According to this model,

the processing speed s0jðtÞ assigned to a job jj at time t must never be higher than the minimum

required processing speed sj, i.e., s0jðtÞ � sj.

The first two baseline strategies are:

• Random (Rand)–the scheduler allocates a job to a random container

ck
i 2 C; 1 � k � M; 1 � i � mk.

Fig 5. Example of container capacity distribution with the full priority model.

https://doi.org/10.1371/journal.pone.0261856.g005
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• Round Robin (RR)–the scheduler allocates a job using a Round Robin strategy, distributing

to containers in rotation.

These strategies are “blind” because they do not use specific information about job alloca-

tions. Other strategies take into account information about the job to be assigned and CTs.

We consider three scenarios in the selection of a CT:

1. At least one container has sufficient capacity to execute the arriving job without SLA

violation.

2. At least one container is not running at its full capacity.

3. All containers are using their maximum capacity.

Several policies can be used to face each scenario. A specialized policy per scenario can pro-

vide strategies with better results.

Whenever a job arrives, the scheduler uses the first policy to select a CT with enough capac-

ity to execute it. If the job cannot be allocated without SLA violation, the scheduler employs a

second policy to choose between CTs with available capacity. Finally, if all containers are run-

ning at full capacity, the scheduler uses the third policy to choose a CT.

Table 2 presents the selection policies of CTs that have sufficient capacity to execute the

arriving job. Table 3 shows the policies to select one CT among sufficient capacity containers.

The preferred candidates are those that are not running at their full capacity.

Finally, we use two policies for CT selection when all CTs are working with full capacity:

MinTasks and MinSLAv. Both strategies are described in Table 3.

B. Resources allocation strategies

Once a CT is selected, the scheduler assigns the CPU capacity to a job inside the selected CT. If

the CT is selected with enough capacity, there are no SLA violations; otherwise, SLA violations

can occur.

The capacity assignment is provided by the three models defined in section IV.

1. Required capacity model (RC).

2. Proportional capacity model (Prop).

Table 2. Selection policies of containers with sufficient capacity.

Strategy Description

First Fit (FFit) Allocates job jj to the first container capable of executing it, the first CT that satisfies

qi � ð
P
8d2JðciÞ

sd þ sjÞ � 0 for ci.

Best Fit (BFit) Allocates job jj to the container with the smallest utilization left, Min
�

qi �

ð
P
8d2JðciÞ

sd þ sjÞ
�

for ci.

Worst Fit (WFit) Allocates job jj to the container with the largest utilization left, Max
�

qi �

ð
P
8d2JðciÞ

sd þ sjÞ
�

for ci.

Minimum Amount of Work

(MinAW)

Allocates job jj to the container with the minimum total amount of pending work for

jobs running in the container, Minð
P
8d2JðciÞ

w0dÞ where w0d defines the amount of

work processed of jd from rd to t in ci.

MaxSLAv Allocates job jj to the container with more SLA violations, Max(α(ci)) for ci.

MinSLAv Allocates job jj to the container with less SLA violations, Min(α(ci)) for ci.

Rand Allocates job jj randomly to an active CT that satisfies qi � ð
P
8d2JðciÞ

sd þ sjÞ � 0 for

ci.

https://doi.org/10.1371/journal.pone.0261856.t002
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3. Priority capacity model (Prio).

RC strategies combine three policies to allocate jobs to CTs. For instance, FFit–MinTask–

MinSLAv strategy selects between CTs with enough capacity using the FFit policy. MinTask

policy is used when some CTs have free capacity but not enough to satisfy the capacity

requested by the job, and MinSLAv policy selects CT at maximum capacities. The RC strategy

reassigns capacity when it is overpassed by the requested capacity of the jobs.

As an example, Algorithm 1 presents the FFit–MinTask–MinSLAv strategy.

The worst-case occurs when all CTs are full and active. Then the scheduler searches in the

list of active CTs to allocate the job (line 2) with complexity O(k) for k containers. It cannot

assign the job at this stage, so it uses the second strategy (line 8) with the same complexity O
(k). Finally, the strategy runs the procedure in line 10 with O(k) complexity. The procedure is

performed each time a job arrives, so the algorithm has an asymptotical complexity O(nk).
Algorithm 1: FFit – MinTask – MinSLAv strategy
Input: List of active CTs (CTA) and job ji
Output: Index of container to execute job ji
1.ctIndex  -1
2.ctIndex  FFit (CTA, ji)
3. if ctIndex < 0 then
4. if can create a new]
5.container is true then
6. create a new
7.container nCT
8. add nCT to CTA and
9.ctIndex  index of nCT
10. else
11. ctIndex  MinTask
12.(CTA, ji)

if ctIndex < 0
then

ctIndex  
MinSLAv (ji)
reassign CPU speed in
container ctIndex with RC
return ctIndex

In Prop and Prio strategies, the CT selection is a combination of two policies. CT always has

full capacity, but the strategy can estimate if an allocation generates SLA violation. For

instance, with the FFit–MinTask–Prio strategy, the scheduler selects a CT using FFit strategy

as a first policy and MinTask as the second policy. Once a container has been selected, Prio
model reassigns the processing capacity using Eq (16). Algorithm 2 presents the FFit–MinTask

strategy.

Similar to Algorithm 1, the complexity of Algorithm 2 is bounded by O(k) in lines 2 and 8,

so the complexity of the procedure is defined by O(nk). Note, if we can create an unlimited

Table 3. Selection policies of containers with available capacity.

Strategy Description

MinTask Allocates job jj to the container with the minimum number of assigned jobs, Min(J(ci)) for ci.

MaxCap Allocates job jj to the container with maximum capacity available, Minðqi �
P
8d2JðciÞ

sdÞ for ci.

MinCap Allocates job jj to the container with minimum capacity available, Maxðqi �
P
8d2JðciÞ

sdÞ for ci.

MinSLAv Allocates job jj to the container with less SLA violations at time t, Min(α(ci)) for ci.

https://doi.org/10.1371/journal.pone.0261856.t003
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number of CTs in the infrastructure then both procedures have an asymptotical factor of (n2)

in the worst-case.
Algorithm 2: FFit – MinTask strategy
Input: List of active CTs (CTA) and job ji
Output: Index of container to execute job ji

ctIndex  -1
ctIndex  FFit (CTA, ji)

if ctIndex < 0 then
1. if can create a new
2.container is true then
3. create a new
4.container nCT
5. add nCT to CTA
6.and ctIndex  index of nCT
7. else
8. ctIndex  MinTask
9.(ji)
10.reassign CPU speed in

container ctIndex with Prio
return ctIndex

VI. Experimental setup

All experiments are performed on the standard trace-based simulator CloudSim v3.0.3 [37]. It

supports the modeling and simulation of large-scale cloud computing environments. Cloud-

Sim includes classes and interfaces such as data centers, single computing nodes, an autono-

mous platform for modeling clouds, service intermediaries, provisioning policies, allocation

strategies, among others.

We extended its functionality with our scheduling algorithms, energy model, dynamic jobs

arrival, container deployment, statistical analysis, and workload processing. The simulator rep-

resents an excellent tool to develop our experiments [38].

Algorithms are implemented using jdk 1.8.0_221 64-bit. The execution was performed by a

computer with Windows 10 Pro OS, an Intel (R) Core (TM) i5-8400HQ CPU 2.8 GHz, 8 GB

of memory, and 500 GB of HDD.

A. Scenario

We use a two-tier topology with M processors at the first level and m containers at the second

level. We perform an experimental analysis with a limited but a representative number of

physical resources. In the experimental environment based on CTs on bare metal, two CTs

can be executed in one physical resource. Under this scenario, the jobs of both CTs contend

for the underlay resources.

The setup defines a basic cloud environment that simplifies the analysis and evaluation of

the proposed strategies and maintains the relevant elements of real environments. This config-

uration can be generalized considering the characteristics and size of resources, CTs capabili-

ties, and workloads. Moreover, the energy model of specific resources and job energy profiles

(i.e., BI) and their combination (concentration).

eidle and emax values are defined according to [12,13]. The collected data from a Power Dis-

tributor Unit (PDU) showed that the eidle of the server is 86 Watts (W) on average. A similar

procedure under a fully busy processor was performed to find emax. Table 4 presents the exper-

imental setup.
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B. Workload

The workload is based on HPC traces of parallel workloads [39] and grids from Grid Work-

load Archive [40]. We use the Standard Workload Format (SWF) with two additional fields to

describe the requested work speed and the type of work. Several filters were applied to work-

loads to eliminate jobs with inconsistent information.

The performance of our strategies was evaluated in a homogeneous resource environment

using 30 workloads of 24 hours to obtain valid statistical values. Variability of the arriving

time, size, and types in the workload is fundamental to evaluate our strategies’ efficiency under

different scenarios properly.

Fig 6 shows the number of jobs of two types during 30 days. We observe that there is no

predominance of one type of job in logs. Some weeks have more jobs of type CI, and others

more jobs of type MI. The total number of jobs in the workload is 109,345. Day twenty-two

has the biggest workload among all, with more than 20,000 jobs.

CI jobs request high computational power in their processing, e.g., calculate prime num-

bers, sorting, search, graph traversal, etc. In MI jobs, the job processing is limited by the speed

of memory to feed data to the processor, e.g., work with datasets much larger than the available

cache on the system.

Fig 7 shows a histogram with the total number of jobs arriving per hour on an average of 30

days. It can be seen that most jobs arrive between 7 AM and 3 PM.

C. Analysis methodology

The optimization problem is to minimize three conflict objectives: SLAv, Cmax, and E, see Eq

(3). In multi-objective optimization, one solution can represent the best solution concerning

Table 4. Experimental setup.

Procs Container

Number of resources 25 50

Cores 1 1

MIPS 1,000 500

Memory 1,000 500

eidle (W) 86 -

emax (W) 180 -

Type - OS

https://doi.org/10.1371/journal.pone.0261856.t004

Fig 6. Number and type of jobs per day.

https://doi.org/10.1371/journal.pone.0261856.g006
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Cmax, while another solution could be the best one concerning E or SLAv. The goal is to obtain

a set of compromise solutions that represents a good approximation to the Pareto front.

If a solution cannot be improved in terms of all objective functions, then the outcome is

Pareto optimal. Pareto fronts can be compared via visual observation of the solution space and

formal approaches.

Set Coverage (SC) metric is a formal and statistical approach to calculate the proportion of

solutions dominated between two sets [41]. Larger values of SC represent a better approxima-

tion of the Pareto front. The dominance operator is not symmetric, so it is necessary to com-

pute the dominance of one set over the other and vice versa.

A multi-objective optimization problem can be simplified to a single objective through dif-

ferent methods. The prevalent approach is the aggregation method, which defines weights for

each objective to model preferences and performs a single weighted sum. That is, the prefer-

ences can explicitly specify the importance of every criterion or relative importance between

criteria.

The degradation in performance (relative error) indicates the ratio of a metric generated by

the algorithms to the best-found solution [42]. The analysis is conducted as follows. First, the

degradation in performance of each strategy is computed as follows:

strategy criterion value
best found criterion value

� 1 ð18Þ

Then, the strategies are ranked based on the average of their computed values considering

all the scenarios. The best strategy with the lowest average performance degradation has a rank

of 1. Low ranks identify strategies that perform reliably well over different scenarios, they rep-

resent a good compromise for all test cases.

One disadvantage of the degradation approach is to use the mean values to analyze the

results. Hence, they can be influenced by a small portion of data with a large deviation. For

deeper analysis, we present the strategies’ performance profiles to help with the interpretation

of the data.

The Performance Profile (PP) defines a non-decreasing, piecewise constant function δ(τ)

that presents the probability that a ratio τ is within a factor of the best ratio. The function δ(τ)

is the cumulative distribution function. Strategies with a large probability for small τ are to be

preferred [43].

To choose an adequate strategy, we compare the performance of all strategies by the three

analysis methodologies: degradation, PP, and SC.

Fig 7. Online distribution of jobs per hour.

https://doi.org/10.1371/journal.pone.0261856.g007
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VII. Experimental evaluation

In this section, we present results of evaluation of 86 strategies. Their names are combinations

of strategies on the first, second, third levels, and capacity models. Table 5 shows 56 strategies

for RC model. Table 6 shows 14 strategies that can be combined with Prop and Prio model (28

in total), Random (Rand), and Round Robin (RR).

The performance of our strategies is evaluated based on the simulation of 30 days of 24

hours each. Runtime of one strategy simulation of the 24 hours workload takes about 1–2 sec-

ond, on average.

Let us consider the best and worst performance strategies for each objective independently.

The results of other strategies were omitted for simplicity and clarity.

Fig 8 presents SLAv for the best and worst strategies during 30 days on 24 hours average.

WF_MinTask_Prio has the best performance. Its SLAv varies from 27 to 5,294 per day. SLAv

Table 5. Strategies for RC model.

No. Level No. Level

1 2 3 1 2 3

1 First Fit (FFit) MinTask MinTasks 33 MaxSLAv MinTask MinTasks

2 MaxCap 34 MaxCap

3 MinCap 35 MinCap

4 MinSLAv 36 MinSLAv

5 MinTask MinSLAv 37 MinTask MinSLAv

6 MaxCap 38 MaxCap

7 MinCap 39 MinCap

8 MinSLAv 40 MinSLAv

9 Best Fit (FFit) MinTask MinTasks 41 MinSLAv MinTask MinTasks

10 MaxCap 42 MaxCap

11 MinCap 43 MinCap

12 MinSLAv 44 MinSLAv

13 MinTask MinSLAv 45 MinTask MinSLAv

14 MaxCap 46 MaxCap

15 MinCap 47 MinCap

16 MinSLAv 48 MinSLAv

17 Worst Fit (WFit) MinTask MinTasks 49 Rand MinTask MinTasks

18 MaxCap 50 MaxCap

19 MinCap 51 MinCap

20 MinSLAv 52 MinSLAv

21 MinTask MinSLAv 53 MinTask MinSLAv

22 MaxCap 54 MaxCap

23 MinCap 55 MinCap

24 MinSLAv 56 MinSLAv

25 Minimum Amount of Work (MinAW) MinTask MinTasks

26 MaxCap

27 MinCap

28 MinSLAv

29 MinTask MinSLAv

30 MaxCap

31 MinCap

32 MinSLAv

https://doi.org/10.1371/journal.pone.0261856.t005
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of WF_MinTask_Prop varies from 0 to 7,752. RR and Rand are the worst strategies, their

SLAvs vary from 636 and 716 to 16,653 and 15,869, respectively.

Fig 9 shows Cmax of the best and worst strategies during 30 days on 24 hours average. Com-

paring these strategies, we see that the total Cmax of all jobs of a day varies between 32.33 and

54.44 hours on average. MaxSLAv_MaxCap_MinTask, FF_MinTask_Prio, and WF_Min-

Task_Prio are the best strategies showing a similar behavior. RR and Rand are the worst

strategies.

Fig 10 presents E during 30 days on 24 hours average. BF_MinTask_Prop is the best strat-

egy. It provides allocation of jobs that consume between 48 and 157 Kw per day. The worst

two strategies are RR and Rand with energy consumption between 70 and 71 to 200 and 220

Kw per day, respectively.

A. Degradation in performance analysis

Table 7 presents the average degradation of SLAv, E, Cmax, and their means, see Eq (18). The

last five columns contain the ranking of SLAv, E, Cmax, Rank mean, Rank, their means, and the

final ranking. Rank SLAv is based on the number of SLA violations. Rank E depends on the

Table 6. Strategies for Prop and Prio models.

No. Level model

1 2

1 First Fit (FFit) MinTask Prop
2 MinSLAv

3 Best Fit (BFit) MinTask

4 MinSLAv

5 Worst Fit (WFit) MinTask

6 MinSLAv

7 Minimum Amount of Work (MinAW) MinTask

8 MinSLAv

9 MaxSLAv MinTask

10 MinSLAv

11 MinSLAv MinTask

12 MinSLAv

13 Rand MinTask

14 MinSLAv

15 First Fit (FFit) MinTask Prio
16 MinSLAv

17 Best Fit (BFit) MinTask

18 MinSLAv

19 Worst Fit (WFit) MinTask

20 MinSLAv

21 Minimum Amount of Work (MinAW) MinTask

22 MinSLAv

23 MaxSLAv MinTask

24 MinSLAv

25 MinSLAv MinTask

26 MinSLAv

27 Rand MinTask

28 MinSLAv

https://doi.org/10.1371/journal.pone.0261856.t006
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energy degradation. Rank Cmax refers to the position to the completion of the total jobs. The

most significant values are highlighted in bold and red.

The Rank refers to the relative position to all 86 strategies. It considers the mean of SLAv, E
and Cmax. The best strategies in each criterion are highlighted.

For SLA violations, the best strategies are WF_MinTask_Prop, MinAW_MinTask_Prop,

and MinSLAv_MinTask_Prop with 22.3%, 24.7%, and 72.3% away from the best solutions

found, respectively. RR and Rand are 12,236.5% and 12,955.1% worse.

For energy consumption, the best strategy is BF_MinTask_Prop, with an average E degra-

dation 0.027. It allocates the arriving job to the container with the smallest available capacity. If

any container has enough space to provide the required speed to the job, the scheduler selects

the container with the least number of tasks. MaxSLAv_MinTask_Prio and MaxSLAv_Min-

Task_Prop follow the best strategy with degradation 0.037 and 0.038, respectively.

For Cmax degradation, WF_MinTask_Prop is the strategy with the best performance with a

degradation of 0.087. The arriving job is assigned to the container with the biggest available

capacity. At the second level of assignation, it selects the container with the least number of

tasks. The second and third best strategies with degradations of 0.87 and 0.96 are FF_Min-

Task_Prio and MaxSLAv_MaxCap_MinTask.

Fig 8. SLAv for the best and worst strategies.

https://doi.org/10.1371/journal.pone.0261856.g008

Fig 9. Cmax for the best and worst strategies.

https://doi.org/10.1371/journal.pone.0261856.g009
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According to the final Rank, strategies with a good compromise between SLAv, E and Cmax,

are BF_MinTask_Prop, MinAW_MinTask_Prop, and MaxSLAv_MinTask_Prop. The final

Rank of RR is 85. It means that at least 84 strategies performed better than RR. Rand and RR

provide 129,551% of worse solutions with respect to the best solutions found in the simulation.

While, BF_MinTask_Prop is away from the best solutions between 78.1% for SLA, 2.7% for E,

and 10.3% for Cmax.

B. Performance profile analysis

Fig 11 shows the PP of SLAv in the interval τ = [1, 4]. WF_MinTask_Prop generastes all solu-

tions in the interval τ = [1, 2.5]. Hence, it does not produce solutions with SLAv more than 2.5

worse than the best found. MinAW_MinTask_Prop generates 96.7% solution in the same

interval. Both strategies have similar performance.

Fig 12 presents PP of Cmax in the interval τ = [1.0, 1.3]. WF_MinTask_Prop provides 67%

of its solutions within a factor of 1.13 from the best found. It is followed by FF_MinTask_Prio,

with 83% of their solution within a factor of 1.18. MinAW_MaxCap_MinTask strategy gener-

ates all the solutions within a factor of 1.24.

Fig 13 shows PP of E in the interval τ = [1.0, 1.14]. All solutions of FF_MinSLAv_Prio are

within a factor of 1.1. It has the best global performance. Two strategies with a high probability

of offering good performance are MinSLAv_MinTask_Prop and MaxSLAv_MinTask_Prio.

Fig 10. E for the best and worst strategies.

https://doi.org/10.1371/journal.pone.0261856.g010

Table 7. Average degradation and ranking for the best strategies.

Strategy SLAv E Cmax Mean Rank SLAv Rank E Rank Cmax Rank mean Rank

WF_MinTask_Prop 0.223 0.047 0.087 0.119 1 14 1 1 2

MinAW_MinTask_Prop 0.247 0.045 0.103 0.132 2 10 8 2 3

MinSLAv_MinTask_Prop 0.723 0.040 0.126 0.296 3 4 21 4 5

BF_MinTask_Prop 0.781 0.027 0.103 0.304 5 1 9 5 1

MaxSLAv_MinTask_Prio 11.545 0.037 0.104 3.895 45 2 10 45 12

MaxSLAv_MinTask_Prop 0.729 0.038 0.120 0.295 4 3 19 3 4

FF_MinTask_Prio 8.152 0.046 0.087 2.762 35 11 2 35 9

MaxSLAv_MaxCap_MinTask 11.820 0.053 0.096 3.990 49 24 3 47 19

Rand 129.551 0.299 0.837 43.562 86 86 86 86 78

RR 122.365 0.278 0.724 41.122 85 85 85 85 77

https://doi.org/10.1371/journal.pone.0261856.t007

PLOS ONE Dynamic contention-aware consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0261856 January 20, 2022 21 / 29

https://doi.org/10.1371/journal.pone.0261856.g010
https://doi.org/10.1371/journal.pone.0261856.t007
https://doi.org/10.1371/journal.pone.0261856


The first strategy provides 70% of its solutions within a factor of 1.05. The second strategy has

95% of solutions below a factor of 1.08.

Fig 14 presents the PP of eight strategies according to mean E and Cmax in the interval τ =

[1.0, 1.3]. If we choose a factor of 1.08 from the best result as the scope of our interest, Max-

SLAv_MinTask_Prio has a 72% probability of being the winner. FF_MinTask_Prio is the strat-

egy with 92% of solutions within a factor of 1.18. MaxSLAv_MaxCap_MinTask is the strategy

with all its solution within a factor of 1.28.

We see that the best strategies include MinTask allocation. Minimizing the number of the

running of jobs on the resource reduces possible contention and SLAv increasing the assigned

speed to each job. Hence, it reduces the energy consumption and job completion time.

C. Set coverage analysis

Let us analyze Pareto fronts of strategies considering three optimization criteria: SLA, E and

Cmax.

Two sets of non-dominated solutions are compared using the SC metric. The rows of the

Table 8 show the values SC(A, B) for the dominance of strategy A over strategy B. The columns

indicate SC(B, A), that is, the dominance of B over A.

The column “Average best” shows SC of row A over each of the best strategies. The column

“Average all” shows SC of row A over all studied strategies. The rankings “Rank best” and

“Rank all” are based on the average dominance over best and all studied strategies,

respectively.

Fig 11. Performance profile of SLAv.

https://doi.org/10.1371/journal.pone.0261856.g011

Fig 12. Performance profile of Cmax.

https://doi.org/10.1371/journal.pone.0261856.g012
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Similarly, the last four rows show average dominance B over A, average dominance B, and

two ranks in each column, respectively. The higher ranking implies that the front is better. The

most significant values are highlighted in bold and red.

According to the SC metric, the strategies with the best compromise between SLAv, E and

Cmax are WF_MinTask_Prop, BF_MinTask_Prop, and MaxSLAv_MinTask_Prop considering

all strategies, and WF_MinTask_Prop, BF_MinTask_Prop, and MinAW_MinTask_Prop

according to the best strategies.

WF is trying to allocate jobs with more capacity left to avoid resource contention. WF_Min-

Task_Prop improves the non-dominated fronts of other strategies in the range of 10–36.7%,

with 33.3% for the best strategies and 51.6% for all strategies, on average, occupying the first

and the second ranks, respectively. We see that WF_MinTask_Prop can provide solutions

with better quality, on three objectives, with respect to other strategies.

SC(A, WF_MinTask_Prop) displays that strategy is dominated by other strategies with a

maximum of 16.7%. These ranges show that other strategies have a better performance than

WF_MinTask_Prop. In general, a desired strategy exhibits the behavior of WF_MinTask_-

Prop. SC(A, RR) and SC(A, Rand) are equal to 1, hence, all the strategies dominate RR and

Rand. Moreover, SC(RR, B) and SC(Rand, B) are zero, so any solution of Rand and RR is domi-

nated by other strategies. We see that similar to the performance profile analysis, best strategies

include MinTask allocation. Moreover, the MinTask and Prop provide the four best strategies

in both ranks.

Fig 13. Performance profile of E.

https://doi.org/10.1371/journal.pone.0261856.g013

Fig 14. Performance profile of E and Cmax average.

https://doi.org/10.1371/journal.pone.0261856.g014
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VIII. Conclusion

Consolidation of services is a key technology to reduce resource overprovisioning and energy

consumption. However, when multiple jobs and processes run on a multicore CPU, they can

compete for shared resources such as caches, memory controllers, memory buses, prefetching

hardware, disks, networking, etc. This resource contention can invoke performance degrada-

tion defeating the benefits of the consolidation, leading to QoS violation and increasing energy

consumption.

In this paper, we consider potentially damaging effects of job consolidation. We propose a

novel method of consolidation based on the job concentration paradigm that avoids allocation

of jobs of the same type on shared resources. It reduces resource contention and makes job

placement more efficient with the energy-utilization tradeoff.

We present online job allocation heuristics for heterogeneous infrastructures as a multilevel

variant of the dynamic bin-packing problem considering container selection, capacity distri-

bution, and contention-aware allocation. We study eighty-six scheduling heuristics. We distin-

guish them depending on the type and amount of information they use for allocation. We

provide their comprehensive analysis on a real workload.

The results show that proposed allocation strategies carefully guided by the energy, perfor-

mance, and QoS provide a reduction of 21.73–43.44%, 44.06–92.11%, and 16.38–24.17% of

these criteria, respectively, with respect to known strategies used in the literature.

However, further study is required to assess allocation strategies on bigger variety of infra-

structures, processors, and containers. It is important to analyze network-intensive, disk-

intensive, etc. job types, combining their execution over different scenarios.

IX. Appendix

Table A1. Notation.

Notation Description

CI CPU intensive jobs

MI Memory intensive jobs

BI Bandwidth intensive jobs

RC Required Capacity model

Prop Full Proportional capacity model

Prio Full Priority capacity model

SC Set Coverage metric

PP Performance Profile

P = {p1, p2,. . .,pM} M servers or processors.

Qk Maximum processing capacity of pk in Millions of Instructions Per Second (MIPS)

mk Number of containers running in pk

Ck ¼ fck
1
; ck

2
; . . . ; ck

mk
g Containers running in pk

qk
i Processing capacity of container ck

i (CPU quota)

m The total number of containers running in the infrastructure is denoted by m ¼
PM

k¼1
mk

Jðck
i Þ Subset of jobs running in the container ck

i

aðck
i Þ Number of SLA violations in the container ck

i

J = {j1, j2,. . .,jn} Set of n independent jobs

rj Release time of jj
sj Minimum required processing speed of jj

(Continued)
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Table A1. (Continued)

Notation Description

wj The total amount of work of jj in millions of instructions

ρj Job type of jj
oj Priority of jj

s0jðtÞ Processing speed of jj at time t

Cmax Maximum finishing time (completion time or makespan) of all jobs

E Total energy consumption

SLAv Total number of violations of the service level agreements

Eop(t)dt Energy consumption of the infrastructure at time t

eproc
k ðtÞ Energy consumption of the processor k at time t

o(t) If the processor is on at time t then o(t) = 1, otherwise o(t) = 0

eidle
k A constant for idle power or base power of processor k

eused
k ðtÞ Dynamic energy consumption of processor k at time t

emax
k A constant for the maximum energy consumption of the processor k at full capacity

Fk(t) Portion of the power consumed by different types of jobs

gkðφk
CIðtÞÞ Fraction of the total energy consumption introduced by job type combinations

φk
CIðtÞ Concentration (proportion) of the job CI (quantity of job utilization in a processor

utilization) at time t

f k
d ðUk

dðtÞÞ Fraction of energy consumption of a given job type d

Uk
dðtÞ Utilization of all jobs of type d at time t

vj Percentage of qk
i assigned to the job jj

factorck
i

Percentage of qk
i assigned to the job jj considering the priority of the job

δ(τ) Piecewise constant function

SC(A, B) Dominance of strategy A over strategy B

https://doi.org/10.1371/journal.pone.0261856.t009
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