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Abstract

Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-

cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of

paramount importance to elucidate and understand basic cellular processes. In an effort to

increase available segmentation tools that can perform across research groups and plat-

forms, we introduce a novel segmentation approach centered around optical flow and show

that it achieves robust segmentation of single cells by validating it on multiple cell types, phe-

notypes, optical modalities, and in-vitro environments with or without labels. By leveraging

cell movement in time-lapse imagery as a means to distinguish cells from their background

and augmenting the output with machine vision operations, our algorithm reduces the num-

ber of adjustable parameters needed for manual optimization to two. We show that this

approach offers the advantage of quicker processing times compared to contemporary

machine learning based methods that require manual labeling for training, and in most

cases achieves higher quality segmentation as well. This algorithm is packaged within

MATLAB, offering an accessible means for general cell segmentation in a time-efficient

manner.

Introduction

It is hard to state how important live-cell microscopy has been for our understanding of biol-

ogy. Currently, researchers are afforded a humbling window into the sheer complexity of cell

behavior thanks to advancements in both the quality and diversity of optical modalities avail-

able for live-cell microscopy [1]. Great strides have been made on the front-end to obtain both

higher quality data and larger amounts of it. However, the field has quickly realized a serious

issue on the back-end—viable methods to actually analyze the imagery in meaningful and

robust ways are often lacking [2, 3]. In terms of live-cell imaging, this analysis often means seg-

menting the cell through time lapse imagery, with the “holy grail” being robust segmentation

applicable to both labeled and label-free cells to control for perturbations to the cells observed

[4–6]. Indeed, the symptoms of this problem are readily apparent as biologists are so focused

on the difficult task of ensuring accurate experimental design and execution, that often times

little bandwidth is left over for analyzing the exquisite data strenuously collected. As a result,
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many complex biological functions are often over simplified—the fluid-like motions of the cell

membrane during migration are treated like a rigid body by tracking the cell via a nucleus, or

the dynamic process of cell adhesion is measured by the projected cell area at a single time

point are common examples.

Such data is not left on the table willingly, but rather done so because it is a hard problem.

This problem has garnered an immense amount of interest towards solving [7], which, in turn

ironically causes its own problem: researchers already overwhelmed with the complexity of the

data they have painstakingly collected are oftentimes inundated by the sheer number of pur-

ported solutions to their problems. In our own experience, many hours can be invested before

realizing a well-intentioned published segmentation method is inadequate, impractically com-

plex with regards to large numbers of tunable parameters, or requires an inordinate amount of

time to manually train, with less than satisfactory results when applied to your own data set. In

this regards, there is a research gap of robust segmentation techniques that can be applied

across cell lines, platforms and laboratories. It is perhaps unsurprising then that cell segmenta-

tion via a laborious manual tracking approach is still considered the gold standard.

Great advances have indeed been made in cell segmentation [7–9], with methods falling

into two general categories: image processing and parameter optimization approaches, or

machine learning and deep learning approaches. Image processing methods have been histori-

cally more popular and employ a variety of techniques to distinguish cells from their back-

ground based on contrast/intensity characteristics of a single image (e.g. intensity

thresholding, feature extraction, etc.). However, many methods follow an apparent common

trend—they perform well only when applied to the type of imagery they were designed for [2,

3], or they require extensive re-optimization for each set of experimental imagery. Machine

learning and deep learning have recently become appealing avenues for a more general

method of cell segmentation [4, 10–13]. Many methods require initial supervision through

manually labelled cells to teach the algorithms to correctly classify cells later on in an unsuper-

vised matter. A draw back with these methods is that the manual training process is often time

consuming, although great strides have been made to ease the burden of training [14, 15].

However, it remains an open question as to how extensive the library must be in order to

achieve robust segmentation capabilities [16, 17], and can often result in users having to re-

train algorithms for each data set, or even multiple times within a single data set if the imagery

characteristics change across the experiment (i.e. sidewall effects). Deep learning techniques

autonomously extract thousands, or even millions of parameters from the imagery, but in

doing so leave users with a lack of interpretability with regards to why the algorithm performed

adequately or failed. Thus, there is a significant gap for segmentation methods that are rela-

tively easy to implement and interpret but are robust across cell types/optical modalities/data

sets from various researchers (see S1 Fig in S1 File).

A viable, accessible solution for robust segmentation is to exploit aspects that are present in

all live-cell microscopy, regardless of the type of optical modality and subsequent generated

imagery: cellular motion and dynamic morphology. Indeed, nearly all current methods utilize

the image intensity (I) as a function of position (x, y) within in a single image, disregarding

information as to how this intensity function varies with time (t) and re-evaluating each image

as if they are completely unrelated to the previous or next. This strikes us as a rather incom-

plete strategy in terms of robustness—when one considers the sheer diversity of live-cell imag-

ery, the one unifying characteristic is that live-cell microscopy is dynamic with respect to time.

Here, we show that by leveraging the fact that live cells are morphologically dynamic, opti-

cal flow-based segmentation algorithms can offer quite robust and simple means to segment

single cells from time-lapse imagery. Optical flow-based methods have been previously

employed to quantify live-cell imagery, typically in the context of movement of fluorescently
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tagged proteins within a given cell [18–20], or tagged cells within tissues [21]. Optical flow has

also been incorporated into deep learning architectures for analysis of medical imagery [22].

However, we are aware of exceptionally few cases in which optical flow is utilized for label-free

cell segmentation [23], and are aware of no general (i.e. span multiple optical modalities)

methods. To address this research gap, we introduce a label-free cell segmentation technique

based on optical flow, and show that leveraging cellular movement via optical flow is an

appealing strategy that accurately segments single cells across cell types, phenotypes, optical

modalities, resolution and environments with relatively few parameters required to manually

optimize. This robust algorithm is computationally inexpensive, simple to use, and packaged

within MATLAB (see S1 File), offering accessibility and interpretability into dynamic single

cell behavior oftentimes unavailable to typical cell biology labs.

Methods

The foundation of the label-free segmentation algorithm outlined here is optical flow, in which

the spatial changes in image intensity I (x, y) between two consecutive time frames is quanti-

fied to characterize relative movement. The underlying principle is that at every pixel a dis-

placement is estimated that maps the image at time frame t to the image at time frame t + Δt.
This assumes that while pixels can move in x and y, their net intensity I(x, y) remains constant,

or changes negligibly between consecutive frames. More formally this can be written out as:

I x; y; tð Þ � I ðxþ u; yþ v; t þ DtÞ ð1Þ

Where u and v are the local displacements of the local image regions at x and y after time Δt.
Another way to think of it is the pixels in image t are pushed to form the pixels in image t + Δt
by the optical flow field. Applying the chain rule to the right hand side of (1) [24]:

u
Dt
@I
@x
þ

v
Dt
@I
@y
þ
@I
@t
¼ 0 ð2Þ

In which u
Dt and v

Dt are the optical flow in x and y, respectively. Eq (2) is known as the optical

flow constraint equation, and the flow field calculated from it is then used as a means to esti-

mate which pixels correspond to a cell in a given image: pixels in which there is no movement

between consecutive frames do not generate much displacement and can be considered back-

ground, while pixels in which larger displacements are generated can be considered a cell,

given that certain criteria are met. This approach does not depend on any particular image

characteristic in I(x, y), but rather how I(x, y) changes between consecutive frames, and thus

enables highly robust cell segmentation without the need for labels.

Optical flow is a general term for a variety of strategies that try to measure relative intensity

displacement between consecutive images, and methods are optimized to compute either

sparse or dense flow fields for either small or large object displacements. For instance, rigid

objects that do not undergo shape changes between consecutive frames (i.e. cars captured on

traffic cameras) are well suited for methods which employ sparse flow fields, such as Lucas-

Kanade [25]. For imagery of deformable objects that may change shape between consecutive

frames (for instance, a cell with filopodia extending or retracting), it is necessary to employ a

dense flow field method that estimates flow within objects as well as around the perimeter.

Similarly, objects that may make relatively large displacements between consecutive frames are

best dealt with methods that utilize pyramidal multi-scale resolution techniques. Considering

that the movement of cells can vary significantly between cell type or experimental set up and

lead to relatively large cell displacements between consecutive frames, we have found the Far-

nebäck method to work exceptionally well for estimating flow fields of live-cell imagery.
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A detailed description of the Farnebäck method is given elsewhere [26], but the key ele-

ments are 1) the use of multi-level resolution pyramid and 2) the use of quadratic polynomials

to quantify the intensity of pixel regions. Fig 1A depicts this resolution pyramid, in which a

grouping of four pixels are averaged to form a single pixel at the next resolution level, with the

higher pyramid levels corresponding to lower resolutions of the imagery. At the lowest resolu-

tion level, regions of pixels (i.e. 5x5 square) are fitted with a quadratic polynomial weighted

towards the center of the region for each time frame. It is assumed that a single displacement

can describe the transformation of the fitted polynomial region at frame t to the fitted polyno-

mial region at frame t + Δt, and this displacement is iteratively calculated. The final displace-

ment is a 2D vector that describes the flow of intensity in one region between consecutive

images, and is then used as a priori knowledge for the fitting of quadratic polynomials at the

next pyramid level below it (higher resolution). The displacement is then recalculated based

on polynomial fits of newer, higher resolution regions, and in turn is used as a priori knowl-

edge for the pyramid level below it, and so on. The end result is a 2D vector field that charac-

terizes the optical flow at the true resolution of the image that is quite resilient to noise,

deformable objects, and large displacements. Once the flow field is calculated at the highest

resolution, a manually selected threshold is then applied to the magnitude, shown in Fig 1B.

All pixels corresponding to a flow value below the threshold are considered background, while

pixels with a flow value above the threshold are segmented as cells. The remaining pixels are

those that exhibit significant optical flow and represent moving cells, and are subsequently

grouped together and filled to create a binary mask (Fig 1C) that can then be used to segment

cells from their background (Fig 1D).

Fig 1. Overview of the segmentation algorithm. A) Two consecutive image frames are used to calculate the optical flow via the Farnebäck

algorithm, which utilizes a multi-level resolution pyramid to estimate intensity displacements between the two frames. B) Once the flow field

is calculated, a threshold Th is applied to the magnitude of the individual flow vectors, leaving only flow vectors with a magnitude above Th.

C) The pixels associated with the remaining flow field form a binary mask to estimate where the cell is in the image. D) The mask is closed

and filled to create the segmented perimeter of the cell.

https://doi.org/10.1371/journal.pone.0261763.g001
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The optical flow algorithm has a single primary parameter that requires manual optimiza-

tion for label-free cell segmentation: the optical flow vector magnitude threshold (Th). Addi-

tionally, two secondary computer vision parameters, a size filter, and to a lesser extend

smoothing disk can be altered depending on the imagery. Each parameter is intuitive and

takes little time to optimize for a given data set. High Th values only segment areas in which

large changes in pixel intensity due to object motion (i.e. flow), and too high of Th values can

lead to an underestimation of cell area (Fig 2A). Similarly, too low of Th values can pick up

smaller intensity changes outside of a cell due to stochastic fluctuations in cameras or experi-

mental artifacts and can often times lead to an over estimation of cell area. The size filter sim-

ply prohibits the segmentation of objects smaller than the entered value to eliminate the

segmentation of cellular debris, precipitates, or other objects common in-vitro. Finally, the

smoothing disk is a standard morphological operation for filling small holes and smoothing

the segmented perimeter of the cell (Fig 2B). Oftentimes, the size filter and smoothing disk are

robust with regards to cell types or optical modalities, leaving only the threshold (Th) to opti-

mize manually for end-users. For a given experimental set up/cell type, a single Th value is

Fig 2. The effect of optical flow parameters on segmentation of a single Hs27 fibroblast under 10x phase contrast

microscopy. A) The optical flow threshold, Th, can lead to over- or under-segmentation if not optimized, and is

typically the only parameter that needs to be optimized for a given data set. Scale bar 20μm B) The smoothing disk of

the segmented cell effects the perimeter, but often times does not drastically alter the accuracy of the segmentation

itself. C) A larger field of view of MBA-MD-231 cells under 10x phase showing a single value of Th = 0.05 can

adequately segment cells under a variety of morphologies and motion characteristics. Scale bar 50μm.

https://doi.org/10.1371/journal.pone.0261763.g002
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often robust enough to capture a variety of different cell morphologies within a single field of

view, as is shown in Fig 2C.

Results

Validation

To validate the optical flow segmentation algorithm and demonstrate its robustness, segmenta-

tion of a variety of cell types and optical modalities are shown in Fig 3. To serve as a baseline

for typical segmentation techniques, a fluorescently labeled A549 cell is easily segmented based

on the cell’s motion between consecutive time frames rather than the fluorescent tag intensity

in Fig 3A. Next, Dictyostelium cells are segmented without the use of any labels under trans-

mitted light (TL) microscopy that is standard for most cell biology laboratories in Fig 3B. Dic-

tyostelium was chosen to highlight the ability of optical flow to segment many different

Fig 3. Robust segmentation via optical flow across optical modalities, cell types, and phenotypes. Scale bars are

10μm. All smoothing disks were set to 1 pixel and size filters 1000 pixels unless otherwise noted. A) A549 carcinoma

cell stably transfected with GFP actin to serve as a baseline, optical flow threshold Th = 0.003, 0x magnification. B)

Dictyostelium cells under 40x TL (Th = 0.01) exhibited a range of phenotypes: Amoeboid (left), keratocyte (center),

and intermediate (right). C) MDA-MB-231 cells accurately segmented under 10x phase contrast (left, Th = 0.01) or

40x TL (right, Th = 0.03). D) Hs27 Fibroblasts accurately segmented under 10x phase (left, Th = 0.08) or 40x TL (right,

Th = 0.0005). E) Both MDA-MB-231 cell (left, Th = 0.001) and Hs27 fibroblast (right, Th = 0.0005) segmented under

IRM. F) Multiple MDA-MB-231 cells featuring a variety of morphologies accurately segmented under a single

threshold value Th = 0.03 at 20x DIC. All images have been contrast enhanced for better visualization.

https://doi.org/10.1371/journal.pone.0261763.g003
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morphologies, behaviors, or otherwise phenotypes any given cell type exhibit, as cells of differ-

ent phenotypes can exhibit drastically different morphologies and thus image characteristics

[27, 28]. In Fig 3B, Dictyostelium cells exhibiting amoeboid, keratocyte/fan, or oscillator/inter-

mediate phenotypes are segmented, each of which has a distinct morphology and migratory

characteristics. Amoeboid phenotypes typically possess a rounded morphology leading to high

contrast boundaries around their edge when imaged under TL or phase contrast microscopy,

whereas keratocyte phenotypes exhibit a flatter, broad lamellipodia that typically have much

lower contrast at the cell boundary comparatively. The intermediate phenotype switches

between morphologies that look similar to both amoeboid and keratocyte, and all three pheno-

types are segmented accurately via optical flow despite these differences in morphology and

image characteristics.

Similarly, fibroblasts (Hs27) and epithelial (MDA-MB-231) cells were segmented under TL,

phase contrast, differential interference contrast (DIC), and interference reflection microscopy

(IRM). Phase, DIC, and TL are commonly used modalities in most cell biology labs, with cells

imaged under TL having much lower contrast compared to phase or DIC typically. IRM is a

lesser employed, but powerful modality. Fig 3C & 3D show both cell types under phase and TL

modes, covering a range of complex morphologies between the two cell types. The optical flow

algorithm is able to segment all cells tested regardless of morphology or optical modality due

to the use of cell motion between consecutive images as a means of segmentation. Fig 3C

shows two different typical morphologies of MDA-MB-231 cells exhibit—a spread out mor-

phology in phase contrast and a more complicated, five lamellipodia morphology under trans-

mitted light that are both accurately segmented via optical flow. Similarly, the optical flow

algorithm is able to segment fibroblasts exhibiting multiple lamellipodia in complex geome-

tries accurately under both phase and TL in Fig 3D. Even within the same field of view, the

optical flow algorithm is able to segment cells of different morphology, as shown in Fig 3F

where multiple MDA-MB-231 cells are segmented under 20x DIC, spanning clumped, balled

up, spread and fan-like morphologies with the same flow threshold.

IRM is a unique modality that visualizes interference patterns generated from reflections of

an incident beam of light as it passes through materials of different refractive indices,

highlighting the interactions at the cell-substrate interface [29]. In Fig 3E, both MDA-MB-231

and Hs27 cells are segmented accurately via optical flow despite having extremely different

intensity or imagery characteristics compared to more traditional modes of microscopy.

Indeed, IRM can reveal intricate cellular structures oftentimes not readily visible under trans-

mitted light [30], and it is worthwhile to note that the multi-modality capability of the optical

flow algorithm allows for direct comparison of observed cell behavior in the case of IRM vs

TL. Fig 4 shows a direct comparison of the segmentation via optical flow of a fibroblast under

both TL and IRM shown in Fig 3E, highlighting the different aspects of the fibroblast each

modality is suited to detect. Such a comparison could be useful considering that it is common

for cell adhesion to be characterized by measuring the area of spread cells, however it has been

shown that the area observed under IRM is directly related to the degree and strength of cell

adhesion [30].

A unique capability arises as a consequence of utilizing cell motion as a means for segmen-

tation—the ability to distinguish cells in complex, yet stationary environmental surroundings.

This is of particular interest as it is becoming increasingly common for research groups to

observe cells interacting with various fabricated surfaces and structures as a means to elucidate

underlying mechanisms governing cell behavior. In-vitro platforms investigate fundamental

cellular processes such as adhesion and migration through a plethora of two or three-dimen-

sional surfaces/structures including printed lines of ligands [31], nanodots [32], nanopillars

[33], and 3D matrices [34]. Each one of these techniques results in a unique architecture
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present in images that pose a distinct challenge for segmenting cells interacting with these

structures, often times resulting in the use of fluorescent or manual labeling to distinguish cel-

lular boundaries from fabricated structures. One such example are platforms that investigate

contact guidance, in which repeating grooves are etched or fabricated into a substrate to create

three dimensional structures to investigate cellular response to topographical cues [35, 36].

Our group recently introduced a contact guidance platform capable of integrating with

nearly all forms of live-cell microscopy [37], which generates a unique problem for accurate

cell segmentation against the backdrop of etched grooves that serve as topographical cues.

Fig 5 shows Hs27 fibroblasts atop such grooves under IRM, in which the etched grooves can

Fig 4. Direct comparison of a Hs27 fibroblast under A) 40x IRM and B) 40x TL. IRM highlights the cell-substrate interface while TL

projects the entire 3 dimensional cell onto a 2 dimensional image, leading to fairly different segmented areas, compared in C). Scale

bar is 20um.

https://doi.org/10.1371/journal.pone.0261763.g004

Fig 5. Hs27 under IRM with a 40x objective, atop etched contact guidance grooves of depth (D), ridge (R) and groove (G)

dimensions A) D = 0.330 um, R = 2 um, G = 4 um, and B) D = 0.725 um, R = 2 um, G = 8 um. A flow threshold of Th = 0.01 (A) or

0.02 (B) is able to segment the fibroblast with reasonable accuracy under diverse in-vitro imagery. C) Atomic Force Microscope

image depicting three-dimensional view of the contact guidance grooves.

https://doi.org/10.1371/journal.pone.0261763.g005
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scatter/diffract light differently depending on their topographical dimensions, leading to imag-

ery data much more complex than a traditional flat substrate or petri dish. The issue is further

complicated by the fact that the relative intensity/pixel values of the topographical structures

can be quite similar to those of a cell, making accurate segmentation exceptionally challenging.

However, due to the stochastic fluctuations of cell motion, our optical flow algorithm segments

the cell with reasonable accuracy against the backdrop of the etched structures with a threshold

value of Th = 0.01–0.02. To the best of our knowledge, the presented optical flow algorithm is

the only option for label-free segmentation of cells interacting with such structures in a highly

generalizable manner.

Evaluation

To evaluate segmentation by optical flow versus commonly used segmentation approaches, we

assembled a data set consisting of various cell types and magnifications spanning the optical

modalities used for optical flow validation (phase, DIC, TL, IRM, and fluorescence in S1–S5

Figs in S1 File). Two commonly used metrics to evaluate each method were calculated: F-score

and Jaccard index for method detection accuracy and segmentation accuracy, respectively

[10]. In each image, cells are manually segmented to serve as ground truth and compared

against the segmentation mask produced by each method. The true positives (TP), false posi-

tives (FP), and false negatives (FN) of each method under each optical modality are calculated,

and the F-score metric defined below:

F1 ¼
TP

TP þ 1

2
FN þ FPð Þ

ð3Þ

Along similar lines, for each data set containing the ground truth of cells T, the Jaccard

index for each method that segments cells S is given by:

J T; Sð Þ ¼
jT \ Sj
jT [ Sj

ð4Þ

As live-cell microscopy has advanced to collect large data sets using a range of optical

modalities, the onus is on segmentation methods that are both quick to optimize and robust

across different data sets within an experiment. This is particularly true as systems are increas-

ingly capable of multiplexing, or exploring many different experimental conditions that

increases throughput but can cause changes in imagery within a single experiment (i.e. side-

wall effects, illumination gradients, etc.) [38]. Thus, a brief description of the level of training

and the labeled data vs output for Ilastik and FastER are shown in the S1 File (See S7 and S8

Figs in S1 File). The approximate time it took to optimize these segmented images (not compu-

tation time) is also tabulated for each method and data set.

The F1 scores, Jaccard index, and optimization times are summarized in Table 1. Two pop-

ular trainable machine learning platforms that have a user-friendly interface, Ilastik [39] and

fastER [10], were chosen for comparison to optical flow. The highest rankings/lowest optimi-

zation times for each data set are highlighted in bold. FastER had the lowest rankings for these

conditions, requiring extensive training time per optical modality, and simply did not have

enough data to train off of for the higher magnification, single cell data sets. Ilastik, another

powerful machine learning platform, performed much better under these conditions but still

required extensive iterative training, and thus took more time before satisfactory segmentation

was achieved. By comparison, the optical flow segmentation took a small fraction of the time

of the other two methods utilized, while typically having higher or approximately equal F1
scores and Jaccard indices in the various optical modalities of this data set. It should be noted
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that this comparison is not meant to be exhaustive as it is inherently subjective to judge when

segmentation is satisfactory, but rather convey the amount of manual labor often “hidden” in

the requirements of most readily available methods compared to the optical flow method out-

lined here.

Discussion

Here we have introduced an optical flow based strategy for label-free segmentation of cells. By

utilizing the changes in image intensity (I) as a function of position (x, y) and time (t) as a

means to differentiate areas that belong to cells versus the background, the burden of segmen-

tation is largely removed from cell intensity characteristics (i.e. contrast) and shifted towards

how that intensity changes from image-to-image. This is a novel way of interpreting live-cell

imagery, and one can think of this as additional information that exists for every pixel in a typ-

ical image histogram, but has been seemingly overlooked. This approach has three clear advan-

tages to contemporary segmentation techniques, which typically require extensive parameter-

based optimization or require manual labeling of training data. First, the proposed optical flow

method is relatively simple to use–reducing the amount of parameters required for tuning

down to two, making it time effective to process multiple data sets in comparison to contem-

porary techniques (see Table 1). Second, this optical flow method is capable of accurate seg-

mentation without any specificity or otherwise training with regards to optical modality, cell

type, or experimental platform (see Fig 3). Third, segmentation results from our approach are

readily interpretable since they can be traced directly back to the physics of motion. In con-

trast, with deep learning techniques that automatically generate thousands of parameters, as

well as with techniques which incorporate dozens of tuning parameters, it can be difficult to

determine why the software did or did not give adequate results. These three advantages result

in a robust technique that is both accessible to researchers across laboratories (see S1 File) and

capable of time-effective, high throughput image analysis.

The use of the term cell “movement” that is used as a means of cell segmentation is perhaps

misleading, as it infers a drastic (i.e. noticeable) translation of the cell position between time

frames. However, in our experience, even cells that appear stationary between time frames

Table 1. Summary of evaluation rankings of F1 scores, Jaccard indices, and optimization time of optical flow and contemporary machine learning methods.

Data set Method F1 score Jaccard Index Time (min)

10x phase Optical Flow 0.73 0.59 2

Ilastik 0.68 0.52 15

FastER 0.49 0.32 15

20x DIC Optical Flow 0.90 0.82 2

Ilastik 0.88 0.79 15

FastER 0.62 0.45 15

40x TL Optical Flow 0.88 0.77 2

Ilastik 0.88 0.79 10

FastER n/a n/a n/a

40x IRM Optical Flow 0.93 0.87 1

Ilastik 0.91 0.84 5

FastER n/a n/a n/a

40x Fluorescence Optical Flow 0.94 0.88 1

Ilastik 0.94 0.89 5

FastER n/a n/a n/a

https://doi.org/10.1371/journal.pone.0261763.t001
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exhibit significant optical flow within the boundary of their area due to intensity fluctuations

from intracellular processes that are readily segmented, usually with the same flow threshold Th

suitable for segmentation of motile cells within the same experimental/optical/imagery condi-

tions. These benefits combined with relatively few and simple parameters that require tuning

make optical flow segmentation strategies appealing to the broader cell biology community.

Optical flow based strategies outlined here do however have some shortcomings and limita-

tions. First, the accurate segmentation under optical flow requires a stable experimental set up

such that the only movement between consecutive frames is that of the cells and not the experi-

mental background itself. As such, drift of the microscope stage or objective focus can lead to a

large displacement of pixel intensity values, and thus large values of optical flow that are unre-

lated to actual cell motion. To combat this, image alignment software and autofocus methods

are recommended except at the lowest magnifications. On top of the experimental set up, the

frequency of data collection is an important factor that can directly affect the quality of segmen-

tation under optical flow. Two of the underlying assumptions of the optical flow algorithm is

that the net intensity is conserved and that the net displacement is small between consecutive

frames. Thus, the longer time elapsed between frames the more likely objects (i.e. cells) move

greater distances, and the less likely these assumptions are to be valid. In our experience with the

variety of cells/experiments outlined in this manuscript, time steps of 10 min yielded similarly

accurate cell segmentation as time steps of 20s, however this is likely to be highly dependent

upon the cell type and experimental conditions. Last, similar to many other label-free segmenta-

tion approaches, is there is no inherent way to distinguish if a segmented object is a single cell or

a multicellular aggregate (i.e. Fig 3F). The issue of segmenting cells in physical contact, or

declumping, is a technical challenge that has garnered much attention towards solving ranging

from image processing techniques [8, 9] to machine learning approaches [40]. Currently, the

proposed optical flow algorithm is suitable for single cell segmentation (i.e. migration or adhe-

sion characterization). Future work could incorporate declumping methods, such as application

of watershed transform or intensity thresholding within segmented objects to unmerge con-

joined segmented cells. Furthermore, as the amount of manual intervention required is minimal

(two intuitive parameters), this optical flow based method is an appealing strategy to build upon

for future work on completely automated cell segmentation techniques.

Conclusion

The algorithm presented here, to the best of our knowledge, is the first optical-flow based

label-free technique that offers relatively simple and robust means of cell segmentation. The

notion of utilizing cell motion as a means to distinguish cells from their background is a rather

elegant strategy for segmentation in a variety of environments or optical modalities, without

the need for labels. It is worth noting that the use of optical-flow based segmentation is not

exclusive to other image processing techniques, opening the possibility of optical-flow to be

combined with segmentation techniques such as machine learning, for potential improve-

ments in segmentation accuracy, robustness and ultimately classification. With robust seg-

mentation capabilities and few parameters to manually optimize, the ease-of-use of this optical

flow segmentation algorithm stands to offer accessibility into the dynamic behavior of cells for

typical cell biology laboratories across disciplines.

Materials

Cell cultures

All human cell lines were purchased through ATCC (Hs27 #CRL-1634, MDA-MB-231 #HTB-

26, A549 #CCL-185), and cultured according to ATCC protocols in DMEM (ATCC #30–
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2002) in 10% fetal bovine serum (ATCC #30–2020) at 37˚C in 5% CO2. Cells were subcultured

according to ATCC protocols and cells were harvested between 30–80% confluence for all

experiments. A549 cells were transfected for the stable expression of GFP-actin (LifeAct) as

previously described [33]. Wild-type Dictyostelium discoideum cells of the AX2 strain gener-

ously obtained from the Devreotes laboratory (Johns Hopkins University, USA) were used in

this study and were cultured axenically in HL5 media at 22˚C as outlined in [27]. For experi-

ments involving Dictyostelium imaging, cells were harvested at ~80% confluence by gently

aspirating/rinsing the culture dish/flask and using the supernatant of suspended cells for live

cell imaging.

Microscope/in vitro set ups

All live cell experiments were conducted on Ziess Z1 Axio Observer microscope and imagery

collected on either a Hamamatsu ORCA R2, Hamamatsu ORCA Flash 4.0, or a Zeiss Axiocam

702 mono camera. Live cell imaging was performed using phase contrast (10X, 0.9 NA objec-

tive), Differential Interference Contrast (DIC, 20X, 0.8 NA objective) transmitted light (TL

40X, 1.4 NA objective), fluorescence (100X, 1.46 NA objective) or interference reflection

microscopy (IRM) (40X, 1.4 NA objective) and collected on Zeiss Zen software. For mamma-

lian cell lines: a heated stage and temperature controlled enclosure held the stage temperature

at 37.0 ± 0.04˚C (Zeiss) with humidity and CO2 regulated at 98% and 5%, respectively, by

flowing a gas-air mixture through a heated water bottle and into the enclosure. For Dictyoste-
lium imaging, cells were imaged in glass-bottomed petri dishes at room temperature (22˚C).

Focus was stabilized for the multi-hour long experiments using an integrated hardware-based

focus correction device (Zeiss Definite Focus). All mammalian cell line experiments were done

in serum free media, and conducted on either glass-bottomed well plates/petri dishes or in the

case of contact guidance structures, quartz chips detailed previously [37]. The Dictyostelium
imaging was conducted on glass bottomed petri dishes in HL5 culture media.
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