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Abstract

Identifying protein complexes in protein-protein interaction (PPI) networks is often handled as

a community detection problem, with algorithms generally relying exclusively on the network

topology for discovering a solution. The advancement of experimental techniques on PPI has

motivated the generation of many Gene Ontology (GO) databases. Incorporating the func-

tionality extracted from GO with the topological properties from the underlying PPI network

yield a novel approach to identify protein complexes. Additionally, most of the existing algo-

rithms use global measures that operate on the entire network to identify communities. The

result of using global metrics are large communities that are often not correlated with the

functionality of the proteins. Moreover, PPI network analysis shows that most of the biological

functions possibly lie between local neighbours in PPI networks, which are not identifiable

with global metrics. In this paper, we propose a local community detection algorithm, (LCDA-

GO), that uniquely exploits information of functionality from GO combined with the network

topology. LCDA-GO identifies the community of each protein based on the topological and

functional knowledge acquired solely from the local neighbour proteins within the PPI net-

work. Experimental results using the Krogan dataset demonstrate that our algorithm outper-

forms in most cases state-of-the-art approaches in assessment based on Precision,

Sensitivity, and particularly Composite Score. We also deployed LCDA, the local-topology

based precursor of LCDA-GO, to compare with a similar state-of-the-art approach that exclu-

sively incorporates topological information of PPI networks for community detection. In addi-

tion to the high quality of the results, one main advantage of LCDA-GO is its low computational

time complexity.
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Introduction

Proteins work cooperatively to accomplish biological functions. The physical interaction

between proteins, known as protein-protein interaction (PPI), is the key for many biological

functions [1], for example, the transcription of DNA, the translation of mRNA, and cell cycle

[2]. Scientific progress on PPI is highly critical for applications such as protein function discov-

ery [3], disease comprehension [4], and drug discovery [5].

To infer the physical interactions of proteins, a number of experimental techniques have

been developed, such as yeast-two-hybrid (Y2H) [6] and tandem affinity purification (TAP) [7].

This resulted in the generation of several depositories and databases of experimental data on

PPI (e.g., BIOGRID). While these screening methods facilitate the comprehension of PPI, they have

been widely criticized due to the false negative (i.e., not being able to detect interacting pro-

teins) and false positive (i.e., identifying non-interacting proteins as interacting proteins) inter-

action detection. Therefore, high-throughput screening methods suffer from a considerable

lack of accuracy and thus, produce an incomplete map of the interactions among the proteins

[8–10].

The pairwise physical interaction of proteins within the PPI data suggests a network represen-

tation where nodes are the proteins and links are the interactions among the proteins. Exploit-

ing network structure with network analysis tools on such data has shifted the PPI analysis to the

network level. Besides, the existence of protein complexes justifies the high-degree clusters

within the PPI network [9]. PPI networks inherit both topological and functional information [1].

The first term refers to the physical interaction describing the arrangements of the nodes in the

network, and is associated with the densely connected proteins namely communities. The latter

explains the biological function of proteins that are achieved by groups of proteins that bind

each other and shape protein complexes. The complexes are explained by the annotations avail-

able in Gene Ontology (GO) [11, 12] databases. GO provides a specific definition of protein func-

tions and it is one of the main resources of biological information. GO provides a structured and

controlled vocabulary of terms, which are subdivided into three non-overlapping ontologies:

Molecular Function (MF), Biological Process (BP) and Cellular Component (CC) [13]. We utilize

GO terms to enrich PPI networks with functional properties of proteins.

It is acknowledged that in several cases, those proteins that are topologically interconnected

represent similar biological processes (i.e., GO terms) [14], thereby there is an overlap between

the communities of proteins and complexes. Nevertheless, the two terms are distinguished

entities in PPI networks. Moreover, biological networks such as PPI networks share a common

feature refereed as local cluster connectivity [15] that highlights the locality of the biological

functions in PPI networks that are possible only between local neighbours.

Because of the correlation that exists between protein communities and complexes, detect-

ing protein complexes from PPI networks can be translated into a community detection prob-

lem [2, 16, 17]. The purpose of a community detection algorithm for PPI networks is to divide

proteins into groups such that the proteins of the same group are more similar to each other

rather than those in the other groups. The state-of-the-art solutions consider different objec-

tives to divide the nodes of a given network into highly interconnected communities [18–20].

Some of these algorithms are adjusted to biological networks to tackle the protein complex

detection in PPI networks [21], including C-FINDER, COACH, CLUSTERONE, MCL, CMC, MCODE, and

CORE&PEEL. Even though the community detection algorithms drive optimal topological com-

munities in PPI networks, they suffer from the particular biological nature of the network due

to the disengagement of functional properties. [2, 10, 22, 23].

The extracted interactions from experimental techniques (e.g., Y2H, TAP) are sometimes

biased with incorrect inferring of existing and non-existing relationships. In other words, the
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available PPI networks could be incomplete and unreliable with respect to the detected nodes

and links [9]. That in return will impact the results of the communities if the method depends

solely on the existing topology of the network [24]. Moreover, some of the existing community

detection algorithms acquire the whole network, that could be inherently incomplete, and

hence results in large tangled communities of mixed or broad functionality [25] that do not

explain adequately the underlying PPI network [23, 26]. In addition, such algorithms perform

based on the global measures that are expensive in time complexity.

Encoding biological information in PPI networks could address the challenge of detecting

higher quality communities of proteins with respect to their biological nature. The functional-

ity hence could be achieved by incorporating biological information from the annotated data-

bases (e.g., GO, DAVID). DCAFP [27], GMFTP [28], and MTGO [23] are some of the algorithms that

are designed in a similar way. To tackle the next challenge regarding the reliability of the data

and missing information, one possible solution could be to diminish the impact of network

structure by focusing only on the local neighbours [29].

In this paper, we propose LCDA-GO, a local community detection algorithm that combines

topological and functional properties (i.e., GO terms) of PPI networks to detect associated com-

munities that are representing protein complexes. One of the main advantages of LCDA-GO is

the strong degree of locality [30] devised in the algorithm which not only reduces the depen-

dency to the network structure but also equips the algorithm with a considerably low time

complexity when compared to other state-of-the-art approaches. We compare LCDA-GO with

the state-of-the-art algorithm that incorporates the topology and functionalities by exploiting

GO to detect protein complexes. We also expand our experiments by providing a comparative

evaluation with state-of-the-art protein complex detection approaches relying only on the

topology of the network. For this experiment, we have used the LCDA algorithm [29], the local-

topology based precursor of LCDA-GO.

Related work

Many algorithms have been proposed to detect communities in PPI networks [2, 21, 31, 32].

Some of these approaches just rely on the topology of the PPI networks to detect communities,

while others combine the biological functionality of the nodes to enrich the network and

hence complex detection. We classify the existing community detection algorithms used for

protein complexes in two categories based on the properties that an algorithm incorporates to

detect the communities. We first explain community detection algorithms that perform solely

on the topology of a network, and then, we discuss algorithms that rely on both topology and

functionality.

Topological approaches

One of the earliest algorithms that has been developed for PPI networks community detection

is MCODE [33]. It enjoys a level of locality, by expanding a set of high-ranked nodes (i.e., source

nodes) into communities. MCODE often represents very large communities and hence the num-

ber of predicted real complexes is small. The Markov Cluster algorithm (MCL) [34] is also uti-

lized on PPI networks. The algorithm is a robust method based on a random walk to partition

the network into communities. CLUSTERONE is a greedy approach starting from a seed node.

The nodes with high cohesiveness are added or removed from the communities in an iterative

process. CLUSTERONE is an overlapping community detection approach and it merges those

groups of proteins that satisfy an overlap score.

For the comparative evaluation we used MCODE, MCL, and CLUSTERONE [35] to measure the

performance differences of our LCDA algorithm, a version of LCDA-GO performing based on just
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local topological properties. Other algorithms such as COACH [36] and LCMA [37], and CFINDER

[38] also benefit from topology of the network to find the communities. These algorithms are

discussed in [2, 21, 31].

Topological and functional approaches

Recent approaches benefit from functional enrichment of the network to accurately detect the

communities of proteins in PPI networks. The main motivation of such algorithms lies in the

fact that protein complexes are mostly aggregated in performing common functions. One of

the earliest approaches in this category is RNSC [39]. This algorithm is initialized with a random

partitioning that is optimized based on the minimum cost for node exchanging. It considers

density and functional homogeneity to search for better communities. Its performance, how-

ever, depends on the initial community assignment. MTGO [23] is a recent approach that com-

bines both topological and functionality of the PPI networks to detect the communities.

Similarly to RNSC, MTGO initializes the process by a random partitioning, and decides on rejoin-

ing the nodes into the communities if they share a common functionality and also if the new

node increases the modularity of the community. The algorithm relies on two parameters min
and max that control the size of the communities and impact the outcome. GMFTP [28] and

DCAFP [27] are two other algorithms that are designed similarly by exploiting functionality,

however, the biological nature of the networks are not directly involved in the main process

and it is rather processed in advance by the network topology.

Our proposed LCDA-GO approach is similar to mentioned algorithms such that it combines

both topological and functional information. However, unlike RNSC, MTGO, our proposed

model does not rely on any random partitioning nor is restricted to initial input parameters.

The results of LCDA-GO is compared to MTGO in Experiments and Results Section.

Local Community Detection Algorithm for protein complexes with

Gene Ontology (LCDA-GO)

In this section, we introduce the basic notation and terminologies that will be used through

the paper. We also describe how LCDA-GO is implemented to detect communities of proteins

exploiting topological and functional properties based on local conditional rules.

Notation and Preliminaries

We assume an undirected and unweighted network G = (V, E), where V and E represent the

set of nodes and the set of links, respectively. Our purpose is to divide G into set of communi-

ties, C, such that each node v 2 V belongs exclusively to one community ci, and C =
S
ci. A

high quality community is a densely intra-connected (topology property) group of proteins

representing lowest variation of GO terms (functional property). LCDA-GO finds communities

based on both topological and functional properties in a local manner. The algorithm allows

each node to adjust its community label, cl, given the local neighbourhoods.

On a given PPI network, LCDA-GO represents communities by a source node that is discov-

ered during the algorithm. A source node is one of the high-degree nodes of the community

and is connected to the nodes that have similar functional properties. The distance from the

source node of a community to node v is stored in hlv. A snapshot of LCDA-GO performance is

illustrated in Fig 1 showing the process for node v. In this scenario, v has three neighbours [c,
d, t], such that node c and d belong to ‘a’ and t is from x (i.e., clc = ‘a’, cld = ‘a’, clt = ‘x’). Besides,

the numbers show hl of each node, that is the hop-distance from the source node of the com-

munity. According to this example node c and node d are 1 and 2 hops away from the source

node of their community (i.e., a), respectively, and t is 3 hops away from its source node, x. It

PLOS ONE A local community detection algorithm on PPI networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0260484 January 27, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0260484


is worth mentioning that v does not have any other knowledge about the rest of the network as

shown in the transparent zone in Fig 1.

Besides the above-mentioned topological variables, cl and hl, that are consider in LCDA-GO, g
is also determined to store GO terms that a protein is contributed. To access a decision on the

community of node v, LCDA-GO calculates two parameters as defined in the following:

Definition 1. (Community influence degree.) The community influence degree of node v is

calculated between v and its neighbours from community ci as follows:

lðvÞu2½GðvÞ\ci � ¼ ln
kv
hlv

� �

:jgv \ gu2½GðvÞ\ci �j; ð1Þ

where jgv \ gu2ci j is the number of common GO functions between v and its neighbours from

community ci. The intuition behind the community influence degree is that a node is more

likely to be in the same community as a neighbour node if the following node is closer to the

source node of the community, has a higher degree, and shares similar functions with the

neighbour node. If in a community one node has a higher community influence degree, the

node could be a potential source node.

Definition 2. (Local community modularity.) The local community modularity for a node v
is calculate for a surrounded community ci as:

mðvÞci ¼
Ein � Eout

Ein þ Eout

¼ 2
Ein

Ein þ Eout
� 1;

ð2Þ

where Ein is the number of links connecting node v to nodes from community ci, and Eout rep-

resents the links to the other nodes. The value of local community modularity can vary in the

range of (−1, 1]. It takes a negative value if there is no link to community ci. The value is posi-

tive if the number of links connected to ci surpasses the number of links to other communities.

Local community modularity performs as a measure of community extension by adding v to

ci, if mciv is positive.

A list of the notations used in the paper is summarized in Table 1.

Fig 1. A snapshot of the community structures and local information that LCDA-GO is implemented on for node v.

The transparent area is unknown zone that is not available during the operations. Thus, each node performs relying on

the knowledge of its first neighbours. In this example, c and d are from community a and t is in community x. The

community label describes the source node of the community, hence, a and x are two surrounded communities of v.

The numbers attached to each node describes the hop-distance of the node from its community presenter. During the

implementation, we have considered hl of a source node equal to 1 instead of 0.

https://doi.org/10.1371/journal.pone.0260484.g001
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Algorithm description

We propose an iterative bottom-up approach, LCDA-GO, allowing each node to take a decision

of joining a community independently. Our algorithm starts from a node and discovers the

network through each node’s direct neighbours. LCDA-GO relies on a set of conditional rules to

expand or generate new communities. The Local Community Expansion Rules (LCER) operate

on each node based on the acquired local neighbourhood information as explained in Nota-

tion and Preliminaries Subsection. At each step of LCDA-GO nodes adjust their hop-distance (hl)
value according to their distance from source nodes. If a node has a higher community influ-

ence degree and meets the conditions, it will become a source node. Thus, its hl is updated to

1. In this case, all neighbour nodes adjust their hl according to their hop-distance from the

source node. LCDA-GO converges when all nodes agree with their community labels. A pseudo

code of the proposed LCDA-GO is described in Alg. 1 LCDA-GO. The algorithm starts by initializ-

ing the node list R (line 1), that records the visited nodes and their neighbours. The initial

node is either a given node or randomly selected from the network. As a first-time-visited

node in the list, the community label cl of the node is assumed as it ID, in this case, v, and its

hop-distance hl is set to the constant value of HL (line 2-3). We chose HL = 4 initially, however,

it can be any value larger than 1. The next step is to adjust v.hl: If v.hl is the highest compared

to v’s neighbours, then it will be reduced by 1 (lines 7-8). Afterwards, λ(v) and μ(v) is calcu-

lated (lines 10-11) and v is transmitted to Alg. 2 LCER (line 12) to make a decision regarding its

cl. employing LCER on v, its attributes such as cl and hl will be updated consequently. Next, R
expands by including neighbours of v. The processes continue such that all nodes of V is

included in R and updated by LCER. Finally, if all nodes come to an agreement such that no fur-

ther changes occur in community structure and each node of the network is declared in one

community, the algorithm will converge. The stopCondition is defined as follows:

stopCondition ¼
1; if ðR ¼¼ VÞ & ðfor v in R; v:cl doesnt changeÞ

0; otherwise:

(

ð3Þ

After the convergence of LCDA-GO, the set of communities is obtained by retrieving each node’s

cl from R.

Algorithm 1 LCDA-GO

Input: Network G
Output: C set of communities
Initialisation:

1: R  v from V
2: v.hl = HL

Table 1. Notation exploited in LCDA-GO.

G A PPI network

C Set of solution that consists of communities of ci such that C =
S
ci

v The current node

Γ(v) Neighbours of node v
k(v) Degree of node v
cl(v) Community label of v
hl(v) Hop-distance from the community source node

g(v) GO terms of node v (i.e., functional properties)

λ(v) Community influence degree on node v
μ(v) Local community modularity

https://doi.org/10.1371/journal.pone.0260484.t001

PLOS ONE A local community detection algorithm on PPI networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0260484 January 27, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0260484.t001
https://doi.org/10.1371/journal.pone.0260484


3: v.cl = v
4: v.g = GO[v]
Procedure:

5: while stopCondition do
6: for v in R do
7: if kv > max(kΓ(v)) then
8: v.hl  v.hl − 1
9: end if
10: v.λ = λ(v)
11: v.μ = μ(v)
12: LCER(v)
13: R.update  Γ(v)
14: end for
15: end while
16: return C.update  cl from nodes of R

We defined Alg. 2 LCER to decide the corresponding community of v. For an input node v, it

first calculates the local community modularity. Instead of computing the function for each ci,
we only consider the larger community(ies) which has the larger number of links to v. We

assume that u is the larger community. If μ(v) is positive, v joins community u. Thus, the com-

munity label of v changes to u (line 3), and the hop-distance shift to the shortest path from v to

the source node u (line 4). To measure the shortest path, we simply consider the minimum hl
of the neighbours plus 1. In case μ(v) is negative or zero, one of these two scenario may occur:

First, the algorithm checks for the possibility of v itself being a source node. It means that node

v is selected by the neighbours as the source node, while its attributes are not updated. Hence,

the attributes of v are changed to fit the condition (line 7-8). Otherwise, v changes its attributes

to follow the most similar node in its neighbourhood, which is node p with highest community

influence degree (line 9-10). then, either v itself is selected by the neighbours to be a new com-

munity, or it will temporarily follow the best candidate among its neighbourhoods.

Algorithm 2 LCER

1: if (μ(v) > 0) then
2: v.hl = min(Γ(v).hl) + 1
3: v.cl = u
4: else if (μ(v) <= 0) then
5: if v.cl is u then
6: v.hl = 1
7: v.cl = u
8: else
9: v.hl = p.hl
10: v.cl = p.cl
11: end if
12: end if

Computational complexity

The complexity of the proposed algorithm is determined by two loops in the algorithms. The

outer while-loop in Alg. 1 LCDA-GO—line 5 coordinates the convergence of LCDA-GO to ensure

that all nodes have come to an agreement about their community assignments. The recurrence

(t) of the outer loop is independent from the size of the network. Our experiments with various

networks’ sizes [29] shows that 8� t� 15. The inner for-loop of LCDA-GO described in 1 line 6,

operates a set of conditional rules over each node from list R. The performance of the inner

loop has the highest impact on the overall complexity of LCDA-GO.

The complexity of the inner loop on a network G of size n can be estimated as follows. The

repetition of the loop changes as R is updated. The list of neighbours (i.e., R) initially starts
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with the neighbours of node v. Let us assume k is the average degree of G. In this case, The ini-

tial size of R, in other words, the repetition of the first loop is k (t1 = k). As R progressively is

extended by adding other nodes, the next loop repetitions t2, t3, . . ., tm increases as well. To cal-

culate the complexity, we need to sum up all recurrences of the loop: {t1 = k, t2 = k2, . . ., tm =

km}. Considering the size of the network, the final R includes all nodes of G, therefore, tm = km

= n. Then, the complexity of the series that is combining the loops is O(t × n), with t represent-

ing the iterations over the outer while-loop. In addition, according to our experiments [29] t
log(n), hence the average-case complexity of LDA-GO is in the order of nlog(n).

The worst-case scenario happens when the inner-loop runs over V instead of R. In this case,

each iteration performs on n nodes instead of k. The recurrence of the inner-loop is then, {t1 =

n, t2 = n, . . ., tm = n}. However, the iterations of outer-loop remains the same since it is inde-

pendent from the inner-loop. Hence, the worst case complexity stays as same as the average

complexity, O(nlog(n)).

Experiments and results

In this section, we first describe the PPI network dataset, GO [12] terms that are used to enrich

the network, and the benchmark dataset. Next, we define the metrics and measures that we use

to evaluate the performance of our algorithms, LCDA and LCDA-GO. Finally, we provide a com-

parative evaluation to show the performance of our algorithm compared to state-of-the-art

algorithms.

PPI network and Gene Ontology (GO)

To evaluate LCDA-GO and LCDA, Krogan [40] dataset is selected. It includes a set of nodes (i.e.,

proteins) and associated links (i.e., interactions) built on yeast Saccharomyces Cerevisiae data.

We download the dataset from BioGrid database [41]. To include the functionality we exploit

Gene Ontology (GO) terms from Panther database [42]. GO terms are subdivided into three cat-

egories of Molecular Function (MF), Biological Process (BP) and Cellular Component (CC). We

extract the GO terms of Krogan PPI network. For evaluating the outcome, we use gold standard

protein complexes CYC2008 [43] as target sets to evaluate the predicted communities resulted

from LCDA-GO. The information associated with the database and datasets are described in

Table 2.

Table 2. Datasets of networks used for the experiments.

PPI Network

Datasets |V| |E| avg. degree # CC |Gcc|

Krogan [40] 2674 7079 5.29 62 2527

PPI + MF 1014 2135 4.21 7 995

PPI + BP 1154 2502 4.33 8 1130

PPI + CC 1160 2710 4.67 10 1130

PPI + All 1523 3708 4.86 9 1498

Gene Ontology (GO)

Database Proteins # MF functions # BP functions # CC functions All functions

Panther [42] 2358 8 11 3 22

Benchmark

Database Proteins Complexes # \ Krogan # \ Panther

CYC2008 [43] 1920 408 970 813

https://doi.org/10.1371/journal.pone.0260484.t002
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Krogan PPI network [40] dataset, includes 2674 proteins in total. Our analysis found 62 con-

nected components with a giant connected component including 2527 proteins, while 42 of

the components had less than 3 nodes. For the community detection, we removed all those 42

components that will not shape a community. The final PPI network includes 2590 proteins.

We generated four PPI networks from the original Krogan PPI network according to GO term

categories: PPI + MF, PPI + BP, PPI + CC, PPI + ALL, such that the last network includes all the functions.

We also keep the original Krogan network without annotations for further analysis. All five net-

works are refined by filtering the connected components with the size of less than 3 proteins.

Evaluation metrics

Before presenting the evaluation results, we describe various metrics that are mostly used in

the literature [2, 23, 31, 32] to assess detected complexes in PPI networks. Exploiting these met-

rics, we then compare the state-of-the-art algorithms with our proposed algorithm and

describe them.

Neighbour affinity score. To quantify the similarity of the detected complex p = (Vp, Ep)
with the benchmark b = (Vb, Eb), we use the neighbour affinity score (AS) as defined in Eq 4.

This metric considers both the size of the two complexes and the common proteins in the two

sets to measure the similarity between the two. In case the predicted complex is exact equal to

the real complex, then AS will be equal to 1. For two complexes of p and b the affinity score is

defined as follows:

ASðp; bÞ ¼
jVp \ Vbj

2

jVpj:jVbj
ð4Þ

where Vp is the number of proteins from the predicted complex and Vb is the number of pro-

teins in the benchmark complex. We define a threshold θ, AS(p, b)� θ, to control the strength

of the similarity measured by AS. We consider θ = 0.1 to get results from all algorithms.

Precision, recall, and F-measure. Among the standard metrics to evaluate the predicted

values based on the benchmark are Precision, Recall, and F −measure. However, the metrics

that we have implemented in this paper for the evaluation are slightly different than the com-

mon definition for the Precision, Recall, and F-measure and are similar to [2, 44]. We use AS as

defined in Eq 4 to choose a good match between the predicted and benchmark complexes.

Assume that p is a predicted complex from the set of all predicted complexes P, and b is a

benchmark complex from set B that includes all benchmark complexes. In this case, Ncp and

Ncb are defined as follows:

Ncp ¼ jf8pjp 2 P; 9b 2 B;ASðp; bÞ � ygj;

Ncb ¼ jf8bjb 2 B; 9p 2 P;ASðp; bÞ � ygj:
ð5Þ

Based on the Ncp and Ncb values from Eq 5, Precision, Recall are defined as the fraction of

the matched complexes from the predicted set P, and benchmark set B respectively, according

to the Eq 6.

Precision ¼
Ncp

jPj
; ð6aÞ

Recall ¼
Ncb

jBj
: ð6bÞ
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The harmonic average of Precision and Recall, known as F-measure, is then calculated as

follows:

F � measure ¼
2� Precision� Recall
Precisionþ Recall

ð7Þ

We use these metrics to evaluate the overall performance of the detected complexes over

the complexes within the benchmark.

Sensitivity, positive predicted value, and accuracy. Besides the metrics defined above,

Sensitivity (Sn) (also called Coverage), Positive Predicted Value (PPV), and Accuracy (Acc) are

used to evaluate the performance and accuracy of the detected complexes [2, 9, 32]. Consider

Tij equal the number of common proteins between ith benchmark complexes and jth predicted

complex. Ni is the number of proteins the ith benchmark complex. Given n is the overall num-

ber of b benchmark complexes and m predicted complexes p, then Sn and PPV are defined as

follows:

Sn ¼
Pn

i¼1
maxjðTijÞ

Pn
i¼1

Ni
; ð8aÞ

PPV ¼
Pm

j¼1
maxiðTijÞ

Pm
j¼1

Pn
i¼1

Tij
: ð8bÞ

Larger values of Sn indicate that the community detection algorithm has well-covered the

proteins in the real complexes. On the other hand, PPV highlights the probability of true posi-

tives of protein complexes in predicted communities. The accuracy of the prediction, as a sum-

mary metric, can then be defined as as the geometric average of Sn and PPV as follows:

Acc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn� PPV
p

ð9aÞ

In addition to the above-mentioned metrics, several studies [23, 35, 45] rely on another

measure known as Composite Score [46] to make a comprehensive evaluation. Therefore, as a

final global performance measure, we calculate the Composite Score by summing up the three

values of Precision, Sn, and Acc. This value is important to avoid the advantage of evaluation

metrics to another.

Comparative evaluation

We provide a set of experiments to compare the communities resulted from our algorithm

with the state-of-the-art algorithms. We compared LCDA-GO and LCDA [29] with MCODE [33],

MCL [34], CLUSTERONE [35], and MTGO [23]. We choose these algorithms to explore the benefits

of topological and functional properties in the performance of protein complex detection

methods.

Except our two algorithms, LCDA and LCDA-GO, other algorithms require setting up initial

parameters such as min size of the community, in their software. Clearly, tuning the parame-

ters could result in better performance, however, there is no principled way to discover the

optimal values for these parameters rather than using their defined values. Table 3 describes a

general overview of the results of employing different community detection algorithms on PPI

networks. In all experiments, we benefit from the gold standard protein complexes of CYC2008

[43] as the benchmark.

To provide fair comparisons and for a detailed analysis, we have designed two experiments.

In the first experiment, we only consider the communities that are detected by the algorithms
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only considering the topology of the network, namely, MCODE [33], MCL [34], ClusterOne [35],

LCDA [29]. The second experiment is for evaluating the communities resulting from algorithms

that are incorporating both topology and functionality. For this evaluation, we compared

LCDA-GO with MTGO [23]. The next two subsections present the comparisons of these

experiments.

Topological algorithms analysis. We compare our LCDA [29] algorithm that solely con-

siders the topological interaction of the PPI network with other algorithms from the literature

that perform in a similar manner. We select MCODE [33], MCL [34], and CLUSTERONE [35] for this

comparison. We have used Cytoscape software [47] and exported the communities resulted

from these methods. The input networks are extracted from Krogan dataset and divided based

on GO functionalities. The assessments are described for all four algorithms in Table 4 based on

the metrics explained earlier in this section. As presented in the table, the performance of

MCODE is considerably low compared to the other algorithms, even though we have set θ = 0.1

to relax the condition for AS. MCL has overall the highest Recall, Fmeasure, and Acc, while our

LCDA algorithm outperforms other algorithms with the highest Precision, Sn, and particularly

Composite Score. The performance of ClusterOne algorithm is also high and relatively close to

both MCL and and our algorithm LCDA. The Composite Score is shown in Fig 2. The total height

of each bar is the value of the Composite Score and the larger scores are better. The figure

describes how the three algorithms are competing for a higher performance rank and LCDA is

outperform them.

Topological and functional algorithms analysis. We implement and test our proposed

algorithm for protein complex detection, LCDA-GO on all the networks extracted from Krogan

dataset. The results are described in Table 5.

We choose MTGO to compare the results of LCDA-GO with since it also considers functionality

as a parameter involved in the community detection and not as an in dependant process that

Table 3. An overview of the resulted communities from each algorithm including our method on Saccharomyces Cerevisiae Krogan interaction datasets.

PPI + MF

Algorithms MCODE MCL ClusterOne LCDA LCDA-GO

#communities 37 244 209 65 383

Ncb 4 160 142 69 167

Ncp 2 112 117 36 154

PPI + BP

Algorithms MCODE MCL ClusterOne LCDA LCDA-GO

#communities 38 256 236 71 416

Ncb 3 192 170 76 202

Ncp 3 149 146 51 196

PPI + CC

Algorithms MCODE MCL ClusterOne LCDA LCDA-GO

#communities 51 277 237 71 425

Ncb 6 196 180 80 210

Ncp 5 158 153 54 211

PPI + All

Algorithms MCODE MCL ClusterOne LCDA LCDA-GO

#communities 52 347 142 79 548

Ncb 4 213 122 78 223

Ncp 4 178 106 52 237

https://doi.org/10.1371/journal.pone.0260484.t003
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could apply after community detection algorithm. We have exploited the MTGO software to run

over the Krogan networks from Table 2, however, considering the large time complexity of

this algorithm the final results could not converge by the time of writing this paper. Therefore,

we decided to rely on the experiments attached to their studies for this comparison. We choose

only Sn, PPV, and Acc to compare the results due to the fact that they are independent from

the threshold required for AS score. The results are presented in Fig 3. As shown in this figure,

even though MTGO has better Sn compared to LCDA-GO, PPV and Acc of LCDA-GO is larger. Over-

all, the two algorithms are competitive based on these assessments.

Computational complexity analysis. Besides, the relatively close results from LCDA-GO

and MTGO is the complexity of the two algorithms. Due to the locality of LCDA-GO, our algorithm

enjoys from the loglinear time complexity while MTGO is a polynomial time algorithm. Our

algorithm is more than 1400 times faster than MTGO when performing on Krogan dataset with

2674 nodes. The time complexity of LCDA-GO and MTGO is compared in Table 6.

Discussion and conclusion

Identifying protein complexes is an important step for biological knowledge discovery since

several biological processes are accomplished in the formation of protein complexes. In this

paper, we propose a local community detection algorithm, LCDA-GO, for protein complexes by

exploiting Gene Ontology (GO). LCDA-GO exploits networks’ topological properties such as

degree and shortest path in conjunction with protein’s functional properties derived from GO

Table 4. Performance comparison of the communities of the algorithms that are based on only topology on Saccharomyces Cerevisiae Krogan interaction datasets. θ
is 0.1.

PPI + MF

Algorithms Precision Recall F-measure Sn PPV Acc Composite Score

MCODE 0.05 0.01 0.02 0.02 0.65 0.11 0.19

MCL 0.45 0.39 0.42 0.26 0.60 0.39 1.11

ClusterOne 0.55 0.35 0.42 0.25 0.58 0.38 1.19

LCDA 0.55 0.16 0.26 0.29 0.33 0.31 1.16

PPI + BP

Algorithms Precision Recall F-measure Sn PPV Acc Composite Score

MCODE 0.07 0.00 0.01 0.02 0.68 0.12 0.22

MCL 0.58 0.47 0.52 0.34 0.62 0.45 1.38

ClusterOne 0.61 0.41 0.49 0.31 0.63 0.44 1.37

LCDA 0.72 0.17 0.30 0.35 0.35 0.35 1.41

PPI + CC

Algorithms Precision Recall F-measure Sn PPV Acc Composite Score

MCODE 0.10 0.01 0.02 0.03 0.78 0.15 0.28

MCL 0.57 0.48 0.52 0.34 0.65 0.47 1.39

ClusterOne 0.64 0.44 0.52 0.34 0.63 0.46 1.45

LCDA 0.76 0.20 0.31 0.38 0.34 0.36 1.50

PPI + All

Algorithms Precision Recall F-measure Sn PPV Acc Composite Score

MCODE 0.08 0.01 0.02 0.03 0.75 0.15 0.26

MCL 0.51 0.52 0.51 0.39 0.63 0.50 1.40

ClusterOne 0.74 0.30 0.45 0.30 0.60 0.42 1.46

LCDA 0.66 0.20 0.30 0.44 0.31 0.37 1.47

https://doi.org/10.1371/journal.pone.0260484.t004
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databases. Our algorithm employs both topological and functional properties in local measures

to perform on PPI networks in a local procedure.

We evaluate LCDA-GO and another variation of the algorithm called LCDA, the latter relying

only on the topology of the network. Experimental results demonstrate their performance on

real-world PPI networks from the Krogan dataset and their capabilities in finding protein

complexes.

In addition, the promising performance of LCDA and LCDA-GO show the capability of our

algorithms in successfully detecting protein complexes in PPI network with significantly lower

Fig 2. Composite score including Precision, Sn, and Acc.

https://doi.org/10.1371/journal.pone.0260484.g002

Table 5. Performance of LCDA-GO on Saccharomyces Cerevisiae from Krogan interaction datasets.

Network Precision Recall F-measure Sn PPV Acc Composite Score

PPI + MF 0.40 0.41 0.41 0.19 0.62 0.35 0.94

PPI + BP 0.72 0.17 0.30 0.35 0.35 0.35 1.41

PPI + CC 0.50 0.51 0.51 0.27 0.64 0.41 1.17

PPI + All 0.43 0.55 0.48 0.28 0.65 0.43 1.15

https://doi.org/10.1371/journal.pone.0260484.t005
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time complexity than the state-of-the-art. LCDA-GO surpasses the state-of-the-art algorithms by

performing on a log-linear time complexity, while recent algorithms such as MTGO run on poly-

nomial time complexity.

One of the limitations of LCDA-GO is that it can only discover networks including one con-

nected component. The algorithm relies on breadth-first search to discover the network, it

thus could not converge if the network consists of more than one connected components.

One solution to avoid this issue is to identify the connected components of the network

before executing LCDA-GO and provide one node from each component as the input for the

algorithm.

To extend our algorithm, we plan to evaluate LCDA-GO from functionality aspects. A GO term

analysis could provide an evaluation on the significance of the functions within each commu-

nity. Moreover, considering the various attributes utilized in PPI networks, we plan to analyze

PPI networks from attributed network [48] prospect. We believe that the algorithm could

expand for applications in the context of attributed networks.

Fig 3. Comparing the results of LCDA-GO with MTGO on Krogan dataset.

https://doi.org/10.1371/journal.pone.0260484.g003

Table 6. Complexity and run time of algorithms incorporating GO on Krogan network.

Algorithm Time (sec) Complexity

LCDA-GO 47.05 O(nlog(n))

MTGO 54000 O(kn3)

https://doi.org/10.1371/journal.pone.0260484.t006
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