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Abstract

Wireless networks are among the fundamental technologies used to connect people. Con-
sidering the constant advancements in the field, telecommunication operators must guaran-
tee a high-quality service to keep their customer portfolio. To ensure this high-quality
service, it is common to establish partnerships with specialized technology companies that
deliver software services in order to monitor the networks and identify faults and respective
solutions. A common barrier faced by these specialized companies is the lack of data to
develop and test their products. This paper investigates the use of generative adversarial
networks (GANSs), which are state-of-the-art generative models, for generating synthetic
telecommunication data related to Wi-Fi signal quality. We developed, trained, and com-
pared two of the most used GAN architectures: the Vanilla GAN and the Wasserstein GAN
(WGAN). Both models presented satisfactory results and were able to generate synthetic
data similar to the real ones. In particular, the distribution of the synthetic data overlaps the
distribution of the real data for all of the considered features. Moreover, the considered gen-
erative models can reproduce the same associations observed for the synthetic features.
We chose the WGAN as the final model, but both models are suitable for addressing the
problem at hand.

1 Introduction

Wireless networks are characterized by complex features, such as signal properties, channel
quality, and frequency bands [1]. On the other hand, communication performance depends
on several factors, including resource allocation, queue management, and congestion control.
To handle this complex scenario, machine learning techniques have been widely used in the
area of wireless networks [2]. Nowadays, with the increasing popularity and use of mobile
devices, it is necessary to adapt and evolve the existing communication infrastructures to max-
imize user experience. In particular, wireless networks must support exploding traffic volumes
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and agile management of network resources and, for this reason, wireless networks are becom-
ing more and more complex. This increasing complexity requires machine learning systems to
analyze bigger datasets, and it has also highlighted the need for more intelligent and flexible
algorithms [2]. To answer this call, recent years have witnessed the rising popularity of deep
learning (DL) in the area of wireless networks [3]. By taking advantage of the existing hard-
ware, better optimization algorithms, and the availability of a vast amount of data, DL fully
exploits the power of artificial neural networks [4], and it is nowadays used in various settings
and domains [5, 6]. In particular, DL models can accept as input several network parameters
and can automatically discover complex hidden patterns that may successfully address com-
plex tasks, such as interference alignment management [7] and signal detection and optimiza-
tion [8]. As discussed in one research [3], compared to traditional machine learning
techniques, DL provides several advantages in the context of wireless network applications,
including higher prediction accuracy, and there is no need to pre-process input data. Due to
these properties, DL-based systems have been used in the wireless network field to address sev-
eral optimization problems at various layers. At the physical layer, DL was used for interfer-
ence alignment [7], classifying the modulation modes [9], and designing efficient error
correction codes [10]. At the data link layer, DL was used for resource allocation [11] and link
quality evaluation [12]. At the routing layer, DL can optimize the routing path [13], whereas it
was used to improve data compression [14] at the application layer. Altough the vast majority
of the existing DL-based models are focused on the optimization of the functions related to the
wireless network layers [3], DL models can be employed in other important areas. In particu-
lar, recent literature has focused on the security and privacy of wireless networks [15], thus
showing the suitability of DL in addressing various tasks. In this paper, our focus is on the
quality of a wireless network’s service. The work is motivated by the urgent need of service
provider companies to promptly deal with technical problems in their network. These prob-
lems can affect the final user and cause failures in internet connectivity. Consequently, they
will also affect the client’s satisfaction with the company, and, in the worst-case scenario, they
will result in ubscription churn [16]. To ensure a high-quality service and customer satisfac-
tion, service providers are continuously looking for solutions to avoid service interruption or,
at least, solve possible connection troubles as soon as possible. To achieve this objective, tele-
communication companies are working with partner companies that specialize in the develop-
ment of software packages that can collect and analyze data from telecommunication
networks. Collecting this data allows service providers to detect possible interruptions in the
service before they affect the quality of service perceived by the final user—that is, the service
provider’s subscriber. However, during software development, it is common for these partner
companies to deal with the problem of data deficiency to perform the necessary tests, especially
in countries where data protection laws are more rigorous. Due to this limitation, the simula-
tion and subsequent use of fictitious datasets can provide a viable solution to the problem.
Anyway, to guarantee the effectiveness of this approach, simulated data must be similar (ide-
ally indistinguishable) to the real ones.

To achieve this goal, in this work we rely on generative adversarial networks (GANs) [17],
which are state-of-the-art generative models, for the generation of synthetic data. These algo-
rithms are based on the game theory and consider a framework with two neural networks that
compete against each other. Althought this competitive network architecture has demon-
strated impressive results when compared against previous generative models [18], there is an
important limitation to consider: GANS are difficult to train [19] and, for this reason, research-
ers are investigating new techniques [20] to improve the original GAN architecture [21].

In this paper, we aim to assess the suitability of GANs for addressing a challenging task in
the telecommunications domain. More specifically, the objective is to create synthetic features
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that can be used to measure the quality of Wi-Fi networks. To achieve this goal, we considered
various GAN-based models, and, for each model, we analyzed (qualitatively and quantita-
tively) the resulting synthetic data to understand whether they can be distinguished from the
real Wi-Fi network’s data. The best generative model obtained in this study is currently
employed by a company that is partnered with one of the principal telecommunication provid-
ers in the Latin America area. In particular, the company uses the generative model for creat-
ing synthetic data to simulate and analyze varous scenarios that allow for continuous
evaluation of the quality of the network’s signal. To the best of our knowledge, this is the first
attempt to create a synthetic Wi-Fi network’s quality data through a GAN model. Moreover,
altough GAN s belong to the area of deep learning models, their application in the context of
wireless networks is still in its infancy. A 2019 survey paper [3] on deep learning for wireless
networks cited more than 100 papers using various DL-based models but generative models
were not mentioned.

All in all, the main contributions of the paper, where GANSs are used for the first time to
generate synthetic Wi-Fi networks’ quality data, include the following:

« We propose the use of a GAN-based model to create quality data for a synthetic Wi-Fi
network.

o We show, qualitatively and quantitatively, that an appropriate training process allows service
providers to create a synthetic dataset that is almost indistinguishable from the real ones.

o We show that a machine learning classifier (i.e., random forests) poorly discriminates
between real and synthetic data, thus corroborating the robustness of the GAN-based model.

The document is organized as follows. Section 2 provides an introduction to the Wi-Fi
technology, explaining its main features, properties, and factors that can affect the quality of
the signal. It also reviews basic concepts on the basic architecture of a GAN. Section 3 discusses
related works where generative models have been used in the context of wireless networks.
Section 4 details the two architectures considered in this paper and describes the dataset con-
sidered in the experimental phase. Section 5 discusses the results achieved by the considered
models by highlighting their main differences and explaining how the best model was selected.
Finally, Section 6 concludes the paper and summarizes the main achievements of this research.

2 Background

This section discusses basic concepts on Wi-Fi networks and GAN s that should allow the
reader to understand the subsequent parts of the paper.

2.1 Wi-Fi concepts

Developed to replace Ethernet cables, these days Wi-Fi is a very popular technology that is
applied almost everywhere and provides fast and efficient interconnectivity between devices.
Wi-Fi networks can use two frequency bands: 2.4 GHz or 5 GHz. Each of these frequency
bands has several channels, which are considered as smaller bands on which wireless devices
can operate on [1]. Two important components in a Wi-Fi network are the modem and the
router. The modem is the equipment required to access the internet once it connects devices
with an internet service provider, or ISP. The router is the interface between the modem and
the wirelessly connected devices. Nowadays, it is common to find devices that combine both
functions. A generic term that referring to all kinds of communication equipment physically
located at the subscriber’s home and connected with a carrier’s telecommunication circuit is
CPE (i.e., customer premises equipment or customer provided equipment) [22]. Nowadays,
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many CPEs are dual-band and give the user the possibility of choosing between the two fre-
quency bands: 2.4 GHz or 5 GHz. The main difference between these two frequency bands is
the range and bandwidth that they provide. A band of 2.4 GHz has a bigger Wi-Fi coverage,
whereas a 5 GHz band has a faster speed.

A very important characteristic of a Wi-Fi network is signal strength. It can be understood
as the wireless signal power level received by the user and is dependent on the router transmit
power, the frequency used, the distance traveled by the signal, and so on. This value is a key
factor in the activities for which the network can be used. A stronger signal strength results in
more reliable connections and higher speeds. Several factors can impact the strength of a Wi-
Fi network’s signal, causing it to vary between devices connected in the same CPE (e.g., router
location, distance of the device from the router, walls and floors, interference from other
devices).

To ensure good performance in a wireless environment, wireless devices must distinguish
between the received signals that are legitimate information and listen for background signals
that should be ignored. In this context, another measurement regarding the quality of the Wi-
Fi network is the signal-to-noise Ratio (SNR), which is the difference between the received sig-
nal and the background noise level [23].

2.2 Generative adversarial networks

A GAN is a DL-based [24] generative model that was introduced by Ian Goodfellow and other
researchers at the University of Montreal in 2014 [17]. The term “adversarial” in used the algo-
rithm name because its architecture consists of a system with two neural networks [25] that
compete against each other and, through this competitive process, can generate synthetic
instances from scratch [17].

The first neural network is called the generator, and its function is to generate synthetic
data instances. The second neural network is called the discriminator, which attempts to dis-
tinguish between samples from the training data and samples drawn from the generator. In
other words, the generator is trained to output instances as close as possible to the real ones
and, therefore, fool the discriminator. On the other hand, the discriminator is trained to
become better in determining which data are real and which are synthetic [17]. GANs are
based on game theory, so the basic idea is to set up a game between two players or adversar-
ies [26].

As the first step of this process, the generator generates a random batch of samples. Subse-
quently, these samples are provided to the discriminator jointly with another batch of real
samples, and the discriminator is trained to identify the differences between them. Once these
differences are identified, the discriminator will provide feedback to the generator. The gener-
ator relies on this feedback for improving the generative process, thus creating more realistic
instances [17]. Both neural networks are trained in alternating steps. At each step, the discrimi-
nator will get better at distinguishing between real and fake instances and the generator will
improve in generating realist samples that can trick the discriminator. In this sense, the two
models are considered adversaries, once they are competing against each other [26].

Fig 1 presents an illustration of this general flow of a GAN.

The final objective is to reach a situation in which the generator can generate perfect rep-
licas of the samples in the input domain and the discriminator cannot distinguish between
real and synthetic data. When the two models are sufficiently trained and cannot improve
anymore, it is common to say that the network achieved the Nash equilibrium. Unfortu-
nately, finding the Nash equilibrium is a complex task, that is more difficult than optimizing
a unique objective function [17]. In particular, as the algorithm considers two networks
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Fig 1. Representation of the general flow of a standard GAN architecture.
https://doi.org/10.1371/journal.pone.0260308.9001

simultaneously, as competitors, improvements in one model come at the expense of the
other. Another problem happens when the discriminator becomes too successful in distin-
guishing between real and fake instances so that the generator gradient vanishes and learns
extremely slowly or next to nothing. This problem is known as a vanishing gradient or a loss
saturation [19, 27]. Furthermore, real data distributions are highly complex and multimodal.
In other words, the data distribution has a lot of peaks that represent a concentration of sim-
ilar data samples. One drawback in GANs occurs when the output produced by the genera-
tor is concentrated in a limited set of these peaks. This problem is called mode collapse and
limits the diversity in the generated samples [28]. To overcome these limitations, more
advanced GAN architectures were defined, including the Wasserstein GAN architecture
described in section 4.

3 Related work

This section examines the recent major contributions where GAN-based models have been
used in practical applications. In particular, the section focuses on the context of Wi-Fi
networks.

Although recent years have witnessed the application of several deep learning models in
this area, we focus our attention on GAN-based models, and we refer the reader to the existing
literature [3, 29] for a survey of deep learning models in mobile and Wi-Fi networks. Despite
the rising interest in generative models, GANs have been proposed only recently in the field of
wireless networks. The main reason is that GAN-based architectures are mainly used in com-
puter vision, and the effort of the scientific community is focusing on improving the quality of
the generated images [30]. One of the applications of GANSs in wireless communication is for
modeling wireless channel response. Channel modeling is a fundamental task for the accurate
design and performance evaluation of a network. Although existing works in designing or
learning new modulation schemes have focused on using simplified analytic channel [31, 32],
O’Shea et al. [33] relied on GANSs to approximate wireless channel responses to more accu-
rately reflect the probability distribution functions (PDFs) of stochastic channel behaviors. To
achieve their objective, they considered variational GANSs [34] that relying on appropriate loss
functions can efficiently capture these stochastic behaviors. Experimental results demonstrated
the suitability of the proposed approach for channel modeling. Moreover, the authors analyzed
the performance of a simple GAN (without the variational layer) and highlighted the impor-
tance of using the variational sampling layer for achieving better performance. In the same
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vein, Ye et al. [35] proposed an end-to-end wireless communication system using deep neural
networks. In their system, they proposed using a conditional GAN to model channel effects in
a data-driven way, where the received signal corresponding to the pilot symbols is added as a
part of the conditioning information of the GAN. Experimental results showed the effective-
ness of the system with various channels, and the authors highlighted the possibility of build-
ing data-driven deep neural networks for end-to-end communication systems. Compared to
one research [33], the work of Ye et al. [35] can be applied to more realistic fading channels,
thus corroborating the suitability of GAN-based architectures for channel modeling. Balevi
and Andrews [36] focused their study on the wideband channel estimation, and they presented
the use of GANs for this purpose. In more detail, they designed a GAN to learn to produce
channel samples according to its distribution and then use this knowledge as a priori informa-
tion to estimate the actual current channel by optimizing the network’s input vector in light of
the current received signal. Thus, this approach is different from using GANSs for channel
modeling [33, 35, 37]. A similar approach is used in other works of the same authors [38, 39],
in which GANG are used for high-dimensional channels estimation when considering various
wireless networks’” parameters. More recently, GANs were combined with deep reinforcement
learning (deep-RL) to create a framework for providing model-free resource allocation for
ultra-reliable, low-latency communication in the downlink of a wireless network [40]. The
idea is to pre-train the deep-RL framework with both real and synthetic data, thus creating a
deep-RL system that experiences a broad range of network conditions. Experimental results
have shown that the use of GANs contributed to the high reliability of the system. Thus, syn-
thetic data produced by GANSs can be effectively exploited for improving the overall communi-
cation system. Beyond the aforementioned works, where GANs were used at the physical layer
for channels modeling, recent contributions are proposing the use of GANs for specific Wi-Fi
related applications, mainly related to security. In one research [41], the authors presented a
GAN-based spoofing attack to generate synthetic wireless signals that cannot be statistically
distinguished from intended transmissions. The idea is the following: the adversary transmit-
ter trains a deep neural network to generate the best spoofing signals and fool the best defense
trained as another deep neural network at the adversary receiver. Experimental results showed
that the GAN-based spoofing attack increases the attack success probability from 76.2% to
100% depending on the number of antennas used. The results demonstrated the ability of
GAN:s in generating synthetic (and realistic) data and highlighted the need for developing
defense mechanisms to detect and mitigate these GAN-based spoofing attacks. In the same
vein, Lin et al. [42] proposed a GAN-based framework to generate the adversarial malicious
traffic records aiming to attack intrusion detection systems (IDSs) by deceiving and evading
the detection. Experimental results demonstrated the effectiveness of the method and showed
that the vast majority of the attacks are not discovered by the IDSs. On the other hand, Hang
and Lei [43] proposed a GAN-based system for improving the performance of IDSs. The
authors observed that IDSs work as a binary classifier, where the two classes correspond to
normal samples and anomalies. The main issue is that there is a significant class imbalance,
and that the number of abnormal samples (i.e., anomalies) is significantly lower than that of
the normal ones. This class imbalance problem constrains the performance of IDSs and results
in low robustness to unknown anomalies. Thus, the author presented a GAN-based system to
address the class imbalance problem by creating synthetic samples corresponding to anoma-
lies. Experimental results demonstrated the suitability of the proposed method. In particular,
by generating synthetic data to obtain a balanced dataset of normal and abnormal samples, the
performance of the IDS improved compared to the use of well-known oversampling tech-
niques. In this paper, we present a different application of GANs. Our objective is to generate
synthetic features related to Wi-Fi networks to improve the quality of service perceived by the
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user. By generating synthetic data, we expect that we can cover a broad range of situations rep-
resenting possible connection problems and service interruptions. The generation of this syn-

thetic data would allow software companies partners of service providers to better analyze and
understand the situations that lead to poor service.

From a more general point of view, generative models have found considerable success in
many fields of computer vision, such as semantic image synthesis [44], image-to-image trans-
lation [45] and super resolution [46]. Remarkable results in this field have been achieved
thanks to the introduction of progressive GANSs: the authors of [47] developed a GAN archi-
tecture that progressively grows during the training. The network begins to generate images in
low resolutions and, step by step, it duplicates its size until it reaches high-quality resolutions.
The greatest advantage of this technique is that it makes it possible to reduce the time required
in training the GAN to generate high-resolution images. Moreover, this architecture helps the
network to learn gradually as the problem is introduced in a simplified version (the low resolu-
tion image), which gradually becomes more complex. Recently, in the field of image genera-
tion, StyleGAN [48] and its improved version, StyleGAN2 [49], have enjoyed considerable
success. Starting from their previous work about progressive GANs, the authors of StyleGAN
noticed how the various layers in the growing architecture are capable of controlling different
visual features of the generated image. This insight prompted the authors to introduce two
new components: the Mapping Network and the Style Module (AdaIN [50]). The former is a
network that encodes a sample from the latent space into a vector w whose different elements
control different visual features and can feed the various layers of the GAN. The latter is a
module that helps to transfer the visual features from the w vector into the generator. Its opera-
tion can be broadly divided into two parts: one for normalizing the image generated from the
previous layers and one for entering information relating to the image style. In particular, the
second one is achieved by transforming w into scale and bias values trough another fully-con-
nected layer. One of the most recent improvements of StyleGAN is the introduction of adapta-
tive discriminator augmentation (ADA) [51]. The goal of that paper is to demonstrate how a
wide range of fine-tuned augmentations can improve the training preventing the discrimina-
tor to overfit. This mechanism was introduced in order to cope with problems where the
amount of data is limited. It is important to note that all of these techniques, while extremely
successful, are not applicable to the study presented in this article due to the nature of the data
involved. These are not in the form of a time series or a signal, but are vectors of statistics with-
out any spatial relationships between them. Therefore, any convolutional approach loses sense
in this scenario.

Although computer vision is the application field with the greatest use of GANs, these have
also been successfully used in the generation of synthetic data. One example is the generation
of synthetic tabular data with tableGAN [52]. The idea behind this paper is to generate surro-
gate data that can be usable for training classifiers when real data are scarce or unavailable for
privacy reasons. Privacy preservation is central to this work; therefore the authors have focused
on developing a loss function that takes into account the anonymization of the generated data:
when the loss is higher, the generated data are more anonymous. A similar approach has been
proposed with TGAN [53], which evaluated the generative process on actual medical records.
In particular, this work introduced the usage of long-short term Memory (LSTM) cells into
the generator architecture. This choice was made in order to exploit the spatial relationships
between the features of the problem. The assessment of this proposal has been done on three
real-world medical datasets. Choi et al. [54] proposed another usage of GANs, medGAN, for
generating synthetic medical data. The application is tailored to the generation of electronic
health records (EHRs) and is particularly focused on the removal of sensible information that
can emerge from the record used as training examples.
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4 Experimental settings

This section presents the GAN architectures considered in the experimental phase and
describes the data used in this work.

4.1 GAN architectures

This section presents the GAN architectures considered in this study. The first one is the
vanilla GAN, the original GAN architecture proposed in the literature [17]. The second archi-
tecture is called WGAN [55] and considers a different loss function that compares how close
the distribution of the generated dataset is from the distribution of the real data. GAN's try to
replicate a probability distribution. Thus, they should use a loss function that reflects the dis-
tance between the distribution of the real data and the distribution of the generated fake
instances.

4.1.1 Vanilla GAN. In the vanilla GAN, once the model has two neural networks, two loss
functions are considered: one for the generator and one for the discriminator. However, the
two loss functions derive from a single measure of distance between the two probability distri-
butions being compared: the one outputted by the generator model and the one from the real
data [17]. The loss function used in the literature [17] was the minmax loss, which is based on
the cross-entropy. As the name suggests, it works like a min-max game where the generator
tries to minimize it (generating synthetic samples that are very similar to the real ones), whereas
the discriminator aims at maximizing it (by distinguishing between fake and real instances).

The formula of this loss function is given in Eq 1:

mgn max V(D,G) =E,_, Pt [logD(x)]

&
+E._ ,_llog(1 — D(G(2)))]

where E, is the expected value over all real data instances; D(x) is the discriminator’s estimate
of the probability that a real data instance x is real; E, is the expected value over all of the gener-
ated instances G(z); G(z) is the generator’s output when given a noise vector z; and D(G(z)) is
the discriminator’s estimate of the probability that a generated instance G(z) is real.

As the formula shows, two terms are used to measure the ability of the discriminator in cor-
rectly recognizing the samples. The first one, E : [logD(x)] measures its capacity in recog-

X~ Piaga(x
nizing the real instances, while the second one, E, _ , _[log(1 — D(G(z)))], measures its
capacity in recognizing the generated ones.

Another important point is that the generator model only affects the term related to the
generated data. Thus, during the training of the generator, the term that considers the real data
is dropped. The updates in the discriminator parameters are based on the values of the loss
function considering both real and generated samples, whereas the updates in the generator
parameters are based on the values of the loss function considering only the generated data.

4.1.2 Wasserstein GAN. In 2017, Arjovsky and coauthors [19, 55] demonstrated that the
loss function proposed in the original GANs paper can fail in some cases, thus resulting in
poor performance of the network. To overcome this limitation, they proposed the use of the
Wasserstein-1 distance metric, also known as the Earth Mover or EM distance. Although the
entropy-based loss can be considered as a measure of how accurately the discriminator classi-
fies real and generated data, the Wasserstein metric looks at the distribution of each variable in
the real and generated samples and outputs a number that determines how far apart the distri-
butions are from each other [55]. The Wasserstein metric not only evaluates if an instance is
real or not but provides “criticism” on how far the generated data are from the real dataset. For
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this reason, the “discriminator network” in a WGAN architecture is frequently referred to as
the “critic network” [55]. For each instance, the critic network outputs a score that quantifies
how far the generated data are from the real distribution. The loss function of a WGAN can be
expressed in a simple form, based on Eq 2. For more details on the Wasserstein metric, the
reader is referred to the Appendix A of [55].

WGAN,,, = f(x) — f(G(2)) (2)

loss

where f(x) is the critic’s output for a real instance; G(z) is the generator’s output for a noise z;
and f(G(z)) is the critic’s output for a generated instance.

As it is possible to notice, the loss can be implemented by calculating the average predicted
score (i.e., the critic’s output for the considered minibatch) across real and fake data and then
multiplying these averages by 1 and -1, respectively. This has the desired effect of driving the
scores for real and generated data apart. The critic network tries to maximize this function.
That is, it tries to maximize the difference between the critic’s output for real and synthetic
instances [55]. The generator, as in the minmax function, only affects the term related to the
generated data, f(G(z)) The use of the EM distance has shown improvements in the stability of
learning and in getting rid of some convergence problems that are more common when con-
sidering the original GAN architecture. Empirically, it was also observed that the WGAN
value function appears to correlate with generated data quality, which provides meaningful
learning curves that are very useful for hyperparameter explorations [55].

4.2 Data

This section describes the set of real data used for generating synthetic data concerning Wi-Fi
networks. Concerning the experimental phase, all of the GANs models were developed and
trained using Keras. The training process was carried out on a computer with a CPU Intel
Core i7 with 16GB of RAM.

The dataset used in this paper belongs to a Latin American telecommunications company
and contains the data collected during April 2020 See S1 Dataset. Given the restrictions con-
cerning data protection, it is not possible to describe all of the features in detail. Thus, this sec-
tion will present an overview of the whole dataset and some additional information about the
most important features. The dataset is composed of key performance indicators (KPIs),
regarding 1,595 devices connected to 225 distinct CPEs. All of these indicators are calculated
considering the monitored point vision, which considers the connected device, the CPE, and
the CPE’s access point jointly. Therefore, if a specific device was connected to two different
CPEs during the considered period, it was considered as two distinct monitored points. In
addition to the calculated KPIs, the dataset also includes features with information concerning
some attributes of these monitored points, such as router model and manufacturer, radio oper-
ating frequency, and so on.

Regarding the KPIs themselves, some examples that can be indicated are statistics regarding
the signal strength and SNR (minimum, maximum, average, and variance during the consid-
ered period), the number of times the device changed the channel and the number of authenti-
cated failures. Furthermore, all of the dataset’s KPIs were computed considering sliding
windows of 5 units, each one with a collection interval of 60 minutes. As an example, if the
KPI “average signal strength” for a specific device d in the time t is -65 dBm, that means the
average of all of the last 5 measurements for that device, performed with intervals of 60 min-
utes, was -65 dBm (Fig 2). The same logic is used to measure all of the remaining KPIs.

After the preliminary analysis, the final dataset ended up with seven features that character-
ized the Wi-Fi signal. Four of them are the statistics regarding the signal strength in every time
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Fig 2. Example of KPIs computation.
https://doi.org/10.1371/journal.pone.0260308.g002

unit: minimum, average, maximum, and variance; one feature indicating the number of times
the device was connected; and, finally, two additional features about the CPE: radiofrequency
and manufacturer.

The boxplots in Fig 3 summarize the distribution of these features for the considered fre-
quency bands and manufacturers.

5 Results

This section discusses the main results for both of the architectures considered. It presents and
analyzes the simulated datasets outputted for each model, and compares them with the real
data. The discussion of the results is divided into three section. In the first one, the results
obtained with the vanilla GAN are presented. The second section examines the results
obtained with the WGAN architecture. Finally, the best models produced by each architecture
are compared against each other by relying on the use of random forests. After this analysis, a
final model was selected. This model is currently used within the telecommunication company
to generate synthetic data based on the real ones. These synthetic observations are used by the
partner company (that cannot access and use real data) as the input for the software that con-
trols the KPIs associated with the quality of the Wi-Fi networks. In this way, if the KPIs are not
reaching some predefined quality thresholds, the telecommunications company may quickly
take all of the necessary actions to restore itself as a high-quality service.

5.1 Vanilla GAN

For the vanilla GAN, the training process started considering a simple model topology with
just one hidden layer for both of the neural networks. A z-score normalization was applied to
the considered features in order to remove any bias that is the result of considering the unnor-
malized data. The hyperparameter’s values considered in the first model are listed below: Gen-
erator Model:

« Distribution of the noise vector z: Normal (0,1)

« Dimension of the noise vector z: 100

o Number of layers: 3—the input layer, one hidden layer, and the output layer

o Number of neurons in each layer: input layer—100; hidden layer—200; output layer—5

o Activation functions: input and hidden layers—LeakyReLU; output layer—Hyperbolic
tangent

Discriminator Model:
« Number of layers: 3—the input layer, one hidden layer, and the output layer

o Number of neurons in each layer: input layer—200; hidden layer—100; output layer—1
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Fig 3. Distribution of the features of the considered dataset for each frequency band and manufacturer.

https://doi.org/10.1371/journal.pone.0260308.9003

o Activation functions: input and hidden layers—LeakyReLU; output layer—Sigmoid
Composite model and train process:

« Optimizer: Adam with a learning rate of 0.0002 and a momentum of 0.5

« Batch size: 120

« Number of epochs (stopping condition): 3000

o Number of updates of the discriminator per generator update: 1

It is worth noticing that the number of neurons in the output layers is fixed for both net-
works. For the generator model, this number must be equal to the number of features in the
dataset once the generator outputs a synthetic instance. Concerning the discriminator model,
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there is one neuron that outputs a value between 0 and 1. This value can be interpreted as a
probability and is used for classifying the input as real or synthetic. The Adam optimizer [56]
(with a learning rate of 0.0002 and a beta_1 momentum value of 0.5) and the LeakyReLU [57]
activation function were chosen because they are commonly used in the area of deep learning
[58]. This simple architecture has 21,401 parameters for the discriminator and 31,305 for the
generator, as one can see in the model summary in Table 1.

When analyzing the accuracy of this simpler model, the final value on epoch 3000 was
73.2%, a satisfactory result for this simple model. However, it is not necessarily expected that a
good value for the discriminator accuracy will result in a good output of samples. In fact, for
this first trial, the generated dataset was considerably different from the real one used in the
training process. In the first subplot of Fig 4, it is possible to see a line plot for the accuracy
along all of the epochs. It is also noteworthy that the accuracy presents high oscillations until
epoch 900, approximately. After epoch 1000, the value stabilizes near 0.75. In the bottom sub-
plot, it is possible to see the error for both the generator and the discriminator networks along
the epochs. Here, even though the oscillation also decreases after epoch 900, approximately, it
is not possible to see stable behavior.

To evaluate the quality of the generated dataset more practically, we performed a compari-
son between the distribution of each generated feature and the original distribution of the fea-
tures. To make it easier to analyze the results along the training process, Fig 5 reports the
boxplots of the different features in some selected epochs of the training process.

As it is possible to notice, at the end of the training process, the median value is close to the
target median value (i.e., the one of the real distribution) for almost all of the features. How-
ever, for all of the features, the values’ dispersion is significantly greater for the generated data.
A possible reason for that is the existence of extreme values in the distribution of the real fea-
tures. The presence of these extreme values, as well as the asymmetric distribution that was not
captured by the algorithm, is displayed in Fig 6. In particular, Fig 6 compares the distributions
of the real and synthetic datasets through histograms drawn for some specific epochs.

Table 1. Model summary for the vanilla GAN initial model.
Model: sequential _1

Layer (type) Output Shape Param #
flatten_1 (Flatten) (None, 5) 0
dense_1 (Dense) (None, 200) 1200
leaky_re_lu_1 (LeakyReLU) (None, 200) 0
dense_2 (Dense) (None, 100) 20100
leaky_re_lu_2 (LeakyReLU) (None, 100) 0
dense_3 (Dense) (None, 1) 101
Total params: 21,401 Trainable params: 21,401 Non-trainable params: 0
Model: sequential 2

Layer (type) Output Shape Param #
dense_4 (Dense) (None, 100) 10100
leaky_re_lu_3 (LeakyReLU) (None, 100) 0
dense_5 (Dense) (None, 200) 20200
leaky_re_lu_4 (LeakyReLU) (None, 200) 0
dense_6 (Dense) (None, 5) 1005
reshape_1 (Reshape) (None, 5,1, 1) 0
Total params: 31,305 Trainable params: 31,305 Non-trainable params: 0

https://doi.org/10.1371/journal.pone.0260308.t001
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Fig 4. Vanilla GAN initial model: Accuracy and loss.
https://doi.org/10.1371/journal.pone.0260308.9004

To quantitatively measure whether the distribution of the synthetic data is a good approxi-
mation of the real distribution, we relied on the Kullback-Leibler (KL) divergence [59]. Intui-
tively, the KL divergence provides a measure of the amount of information we lose when we
choose an approximation instead of the real distribution. By calculating the KL divergence for
the distributions displayed in Fig 6 (at epoch 3000), we obtained the following values: KL
(REAL || GAN(InitialModel)): { Average SS’: 0.887, ‘Minimum SS*: 0.717, ‘Maximum SS’:
0.582, ‘Variance SS’: 2.523, ‘N. Measurements™: 0.568}. Taking into account that the ideal KL
divergence value is 0 (i.e., no information loss in replacing the real distribution with the syn-
thetic one), the obtained values corroborated the qualitative analysis, thus suggesting that the
considered GAN-based model cannot capture the complexity of the real data distribution.

Another aspect to be considered when analyzing the generated data is the correlation
between the features. To perform this analysis, scatter plots were drawn to compare the evolu-
tion of the variables’ correlation along the epochs. The scatter plots in Fig 7 show some of
these associations, for the cases where an obvious type of relationship was expected, such as
Minimum SS x Maximum SS, or where a more interesting association was identified. The axis

Average Signal Strength Minimum Signal Strength Maximum Signal Strength
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Fig 5. Vanilla GAN initial model: Boxplots of real and generated data.
https://doi.org/10.1371/journal.pone.0260308.g005
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values are the same for all of the plots along the epochs, always following the limits of the real
data.

In the scatter plots it is possible to see that the generated datasets did not show any tendency
or any kind of association between the variables. Instead, they kept showing a completely ran-
dom distribution during the whole training process.

After this analysis, we decided to train the networks considering different values for the
hyperparameters and analyze the new results. In the hyperparameter tuning phase, several
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Fig 7. Vanilla GAN initial model: Scatter plots.
https://doi.org/10.1371/journal.pone.0260308.9007
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options were tested including the following: increase the number of hidden layers, for the dis-
criminator and for the generator; increase the number of neurons in each layer; use various
activation functions; use other optimizers, considering different arguments (e.g., rate and/or
momentum); use batch normalization, considering various values for the momentum argu-
ment; train the discriminator more times than the generator; consider different distributions
and dimensions for the noise vector z; consider different batch sizes during the training pro-
cess; consider min-max normalization; and train the discriminator model on real and syn-
thetic data separately.

As expected, during the tuning process, some of the hyperparameters required more atten-
tion than others and, consequently, created the necessity of training the networks more times,
considering different values. Different optimizers or different optimizers’ arguments, for
example, showed a significant variation in network performance and outputted data and, for
this reason, had to be tested many times. On the other hand, training the discriminator model
with real and synthetic data separately presented better results compared to the other trial,
independently of the other hyperparameters’ values. For some combinations of hyperpara-
meters, the model presented the classic drawbacks of GANs, such as mode collapse or conver-
gence failure. Fig 8, for example, shows the line plots of accuracy and loss for a model with
model collapse. In Fig 9 it is possible to see that—for the feature “N° of measurements™—
almost all the of generated instances on epoch 3000 are concentrated between 0 and 50.

The final model that outputted a dataset similar to the real one was the model with the fol-
lowing structure and hyperparameter values:

Generator Model:

« Distribution of the noise vector z: Uniform(-1, 1)
« Dimension of the noise vector z: 500

o Number of layers: 4—the input layer, two hidden layers, and the output layer

Vanilla GAN - Loss

8 ; —— Discriminator
1 o r Generator
mﬁ‘ | ,N" | ,/ fvt.nw"
2, ‘ WV L /\ M
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2 ‘ ‘
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Fig 8. Vanilla GAN: Accuracy and loss for a model with mode collapse.
https://doi.org/10.1371/journal.pone.0260308.9008
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Fig 9. Vanilla GAN: Example of histograms for a model with mode collapse.
https://doi.org/10.1371/journal.pone.0260308.g009
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o Number of neurons in each layer: input layer: 300; hidden layer 1: 600; hidden layer 2: 1200;
output layer: 5

« Activation functions: input and hidden layers: LeakyReLU (alpha = 0.15);
« Output layer: Hyperbolic tangent
o Use of batch normalization: Yes, with a momentum = 0.8.
Discriminator Model:
o Number of layers: 4—the input layer, two hidden layers, and the output layer

o Number of neurons in each layer: input layer: 1200; hidden layer 1: 600; hidden layer 2: 300;
output layer: 1

« Activation functions: input and hidden layers: LeakyReLU(alpha = 0.15);
« output layer: sigmoid
o Use of batch normalization: not used
Composite model and train process:
o Optimizer: Adam(0.0002, 0.3)
o Batch size: 220
« Number of epochs (stopping condition): 3000
o Number of updates of the discriminator per generator update: 1

The final model has 908,401 parameters for the first network and 1,066,505 for the second
network, as one can see in the model summary in Table 2.

Regarding feature scaling, better results were achieved using the min-max normalization.
Fig 10 reports the accuracy along the epochs for this final model. As it is possible to notice, this
accuracy decreases until epoch 500, approximately, and then gets stable near 0.65. The final
accuracy, on epoch 3000, was 64.8%. This stability can also be observed for the loss lines.

By analyzing the synthetic through the boxplots (Fig 11), it is possible to notice that, after
epoch 1000, the values for the generated data are close to the values of the real data. The worst
results are observed for the feature Minimum Signal Strength, which presents a smaller inter-
quartile range. A common behavior observed in almost all the features is that the generated
data do not have so many extreme values as the real data. In other words, the boxplots present
fewer outliers.

When analyzing the data distribution through the histograms in Fig 12, good results are
observed, especially after epoch 1000. In particular, for the considered features, the distribu-
tion of the synthetic data clearly overlaps the distribution of the real data. In other terms, the
vanilla GAN can create synthetic data that mimic the distribution of the original data. Similar
to what we did for the initial GAN-based model, to quantitatively measure whether the distri-
bution of the synthetic data is a good approximation of the real distribution, we calculated the
KL divergence for the distributions (obtained at epoch 3000) displayed in Fig 12. The KL val-
ues obtained are the following: KL(REAL || GAN(FinalModel)): {’ Average SS’: 0.041, ‘Mini-
mum SS’: 0.041, ‘Maximum SS’: 0.08 ‘Variance SS’: 0.081, ‘N. Measurements’: 0.084}. As one
can see, these KL values are significantly smaller than the ones achieved with the initial GAN-
based model, thus strengthening the previous qualitative analysis. In particular, there is clear
evidence of the suitability of the GAN model in providing an excellent approximation of the
real distribution of Wi-Fi features.
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Table 2. Model summary for the vanilla GAN model.

Model: sequential 1

Layer (type) Output Shape Param #
flatten_1 (Flatten) (None, 5) 0
dense_1 (Dense) (None, 1200) 7200
leaky_re_lu_1 (LeakyReLU) (None, 1200) 0
dense_2 (Dense) (None, 600) 720600
leaky_re_lu_2 (LeakyReLU) (None, 600) 0
dense_3 (Dense) (None, 300) 180300
leaky_re_lu_3 (LeakyReLU) (None, 300) 0
dense_4 (Dense) (None, 1) 301

Total params: 908,401

Trainable params: 908,401

Non-trainable params: 0

Model: sequential_2

Layer (type) Output Shape Param #
dense_5 (Dense) (None, 300) 150300
leaky_re_lu_4 (LeakyReLU) (None, 300) 0
batch_normalization_1 (None, 300) 1200
dense_6 (Dense) (None, 600) 180600
leaky_re_lu_5 (LeakyReLU) (None, 600) 0
batch_normalization_2 (None, 600) 2400
dense_7 (Dense) (None, 1200) 721200
leaky_re_lu_6 (LeakyReLU) (None, 1200) 0
batch_normalization_3 (None, 1200) 4800
dense_8 (Dense) (None, 5) 6005
reshape_1 (Reshape) (None, 5,1, 1) 0

Total params: 1,066,505

Trainable params: 1,062,305

Non-trainable params: 4,200

https://doi.org/10.1371/journal.pone.0260308.t002
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In Fig 13, the scatter plots show the association between the generated features. As it is pos-
sible to see, the model can generally reproduce the same association between the synthetic fea-
tures observed in the real ones. However, for a small number of cases, the generated instances
did not follow the expected rules. For example, there are instances where the value of Min SS is
greater than the value of Max SS. However, this phenomenon happens for a small number of
observations.

Another issue that deserves attention is that the model was not able to mimic the little vol-
ume of values concentrated on zero for the variable Maximum S8, as it is possible to see in the
histograms and in the scatterplots. However, these extreme values are not expected in the real
world and their presence should be investigated in more detail. While the performance of the
model is considered satisfactory from the perspective of the company, more complex topolo-
gies may improve these results. However, the choice of the final model must consider a trade-
off between performance and computational effort (i.e., the time needed to train the model).
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Fig 12. Vanilla GAN final model: Histograms of real and generated data.
https://doi.org/10.1371/journal.pone.0260308.g012
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This is particularly important considering that the model used in the production system of the
company must be trained on a vast amount of data. Additionally, fine-tuning of the model
may be needed from time to time if changes in the Wi-Fi regulation are introduced.

5.2 WGAN

As explained in the previous sections, the WGAN changes only the loss function of the net-
works in a GAN architecture. The cross-entropy loss is replaced with the EM distance, a score
representing the “realness” or “fakeness” of an instance. It is not a number between 0 and 1
that can be interpreted as a probability, as in GANSs. As it is the only difference between the
architectures, the same logic of analysis was followed to evaluate the WGAN results. Thus, the
training process started considering a simple network. After realizing that it did not present
good results, which was expected considering the previous analysis of the vanilla GAN, we
modified the WGAN by considering a structure similar to the one used for the final model of
the vanilla GAN architecture. During the tuning of the hyperparameters, special attention was
given to some specific recommendations pointed out in the original paper. The authors rec-
ommended, for example, the use of the RMSprop optimizer with a small learning rate. They
also recommend updating the critic network more times than the generator. Hyperparameter
tuning requires patience in all neural networks and the same was true for WGANSs. Even
though one of the biggest advantages of the WGAN is that it can provide a loss function that
correlates with the quality of the generated data and facilitates hyperparameter optimization, it
was necessary to spend a significant amount of time on this step. In some scenarios, mode col-
lapse and convergence failure happened. After the hyperparameter tuning process, the final
model was the following: Generator Model:

« Distribution of noise vector z: Uniform(-1, 1)
» Dimension of noise vector z: 100

« Number of layers: 4—the input layer, two hidden layers, and the output layer
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o Number of neurons in each layer: input layer: 250; hidden layer 1: 500; hidden layer 2: 1000;
output layer: 5

« Activation functions: input and hidden layers: LeakyReLU(alpha = 0.2); output layer: hyper-
bolic tangent

« Use of batch normalization: Yes, with a momentum = 0.8.
Critic Model:
o Number of layers: 4—the input layer, two hidden layers, and the output layer

o Number of neurons in each layer: input layer: 1000; hidden layer 1: 500; hidden layer 2: 250;
output layer: 1

o Activation functions: input and hidden layers: LeakyReLU(alpha = 0.2); output layer: linear
« Use of batch normalization: not used
o Weight clipping: 0.05
Composite model and train process:
o Optimizer: RMSprop(Ir = 0.00007)
« Batch size: 220
« Number of epochs (stopping condition): 3000
o Number of critic updates per generator update: 2

Also in this case, better results were observed using the min-max normalization feature
scaling. Even though the chosen model updates the critic network two times more than it does
the generator, the model with the same number of updates also presented satisfactory results.
This is a hyperparameter that can be adjusted to reduce the training time if necessary. As it is
possible to see from the summary in Table 3, the resulting model structure has 632,001 param-
eters for the first network, the critic, and 663,755 for the second, the generator.

Fig 14 presents the loss for the critic network on real and synthetic samples. Both of the
curves become stable from epoch 1500 (approximately) until the end of the training process.
As the critic loss for generated data (Critic Synthetic) decreases, more realistic synthetic
instances are expected.

Using the boxplots in Fig 15 to analyze the synthetic data, it is possible to see that, after
epoch 2000 and for all of the considered features, the generated data present a behavior very
similar to the real data. Although this behavior appeared earlier (at epoch 1000) in the vanilla
GAN model, the WGAN seems to be more suitable in the simulation of extreme values.

The the histograms in Fig 16 further corroborate the analysis. From these plots, it is also
possible to see that the synthetic data distributions overlap the real distributions, and the
WGAN can provide a better distribution (with respect to the vanilla GAN) of the most
asymmetric features. Concerning the quantitative analysis, we calculated the KL for the dis-
tributions (obtained at epoch 3000) displayed in Fig 16. The KL values obtained are the fol-
lowing: KL(REAL || GAN(FinalModel)): {’ Average SS’: 0.043, ‘Minimum SS’: 0.042,
‘Maximum SS’: 0.93, “Variance SS’: 0.077, ‘N. Measurements’: 0.095}. Also, in this case, clear
evidenceexists of the suitability of the WGAN model for providing an excellent approxima-
tion of the real distribution of Wi-Fi features. Moreover, the KL divergence values achieved
with the GAN and WGAN models are comparable. Thus, the two GAN’s perform similarly
on the task at hand.
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Table 3. Model summary for the WGAN model.

Model: sequential 1

Layer (type) Output Shape Param #
flatten_9 (Flatten) (None, 5) 0
dense_65 (Dense) (None, 1000) 6000
leaky_re_lu_49 (LeakyReLU) (None, 1000) 0
dense_66 (Dense) (None, 500) 500500
leaky_re_lu_50 (LeakyReLU) (None, 500) 0
dense_67 (Dense) (None, 250) 125250
leaky_re_lu_51 (LeakyReLU) (None, 250) 0
dense_68 (Dense) (None, 1) 251

Total params: 632,001

Trainable params: 632,001

Non-trainable params: 0

Model: sequential_2

Layer (type) Output Shape Param #
dense_69 (Dense) (None, 250) 25250
leaky_re_lu_52 (LeakyReLU) (None, 250) 0
batch_normalization_25 (None, 250) 1000
dense_70 (Dense) (None, 500) 125500
leaky_re_lu_53 (LeakyReLU) (None, 500) 0
batch_normalization_26 (None, 500) 2000
dense_71 (Dense) (None, 1000) 501000
leaky_re_lu_54 (LeakyReLU) (None, 1000) 0
batch_normalization_27 (None, 1000) 4000
dense_72 (Dense) (None, 5) 5005
reshape_9 (Reshape) (None, 5,1, 1) 0

Total params: 663,755

Trainable params: 660,255

Non-trainable params: 3,500

https://doi.org/10.1371/journal.pone.0260308.t003

Finally, the scatterplots in Fig 17, show the model’ suitability for reproducing the same asso-
ciations, observed in the real data, between the synthetic features. Still, was the case for the
vanilla GAN model, in a small number of cases, the value of Min SS is higher than the value of

Avg SS or Max SS.

As in the vanilla GAN architecture, the WGAN model cannot mimic the observations with
a value of zero for the variable Maximum SS (as it is possible to see on the scatter plots in lines
1 and 4 of Fig 17). However, as previously discussed, these extreme values should be investi-
gated in more detail because they are not expected from working devices.
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Fig 14. WGAN: Critic and generator loss.
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https://doi.org/10.1371/journal.pone.0260308.g014
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5.3 Analysis of the GANSs’ topology

Section 5.1 and Section 5.2 present the results that the considered GAN-based models achieved
after the optimization of different hyperparameters. Interestingly, in both cases, an architec-
ture characterized by two hidden layers was deemed sufficient to achieve robust results. To
empirically demonstrate how the number of hidden layers and the number of neurons affect
the performance of the GAN-based models for the problem at hand, we performed a set of
experiments. In particular, for both the vanilla GAN and the WGAN models, we executed the
following tests: 1) increase the number of hidden layers; 2) increase the number of neurons,
and 3) simultaneously increase the number of hidden layers and neurons. This analysis is
aimed at corroborating the choice made in the previous sections. In particular, we show that
increasing the value of the aforementioned hyperparameters does not produce any perfor-
mance advantage with respect to the models discussed in Section 5.1 and Section 5.2.
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Fig 16. WGAN: Histograms of real and generated data.
https://doi.org/10.1371/journal.pone.0260308.g016
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We first present the results of this analysis for the vanilla GAN. Table 4 summarizes the
topology of the vanilla GAN architectures considered in this test.

To assess the results that each configuration achieved and compare them against the perfor-
mance that the model of Section 5.1 achieved, we rely on the analysis of the distribution and
the KL divergence. In this way, we have both a qualitative and a quantitative evaluation. Con-
cerning the first topology, S1 Fig displays the histograms of real and generated data. As one
can see, the histograms look similar to the ones displayed in Fig 12. Thus, adding one layer to
the topology discussed in Section 5.1 does not provide any significant advantage. To corrobo-
rate this visual comparison, we calculate the KL divergence value for the different features, as
we did in the previous sections. The KL values obtained are the following: KL(REAL || GAN
(ID1)): { Average SS>: 0.068, ‘Minimum SS’: 0.294, ‘Maximum SS: 0.195 ‘Variance SS*: 0.163,
‘N. Measurements’: 0.044}. By comparing these values with the one obtained with the selected
vanilla GAN model, we can state that the performance of the model does not improve: despite
the feature ‘N. Measurements’, the KL divergence values obtained for the distributions in S1
Fig are worse than the ones calculated for the distribution reported in Fig 12. This analysis can
be extended to the vanilla GAN topology obtained by adding more neurons (topology Id 2 of

Table 4. Topology of the vanilla GANs considered in the analysis of the hyperparameters (number of layers and
number of neurons). For each topology, the table specifies the main change with respect to the GAN considered in
Section 5.1, as well as the number of neurons in each layer. G stands for generator, and D for discriminator. The hidden
layers are indicated as H1, H2, and H3. The input layer is denoted as In and the output layer as Out.

ID Change Vanilla GAN—Topology
1 More layers G: In: 200—H]1: 400—H2: 800—H3: 1600—Out: 5
D: In: 1600—H1: 800—H2: 400—H3: 200—Out: 1
2 More neurons G: In: 600—H1: 1200—H2: 2400—Out: 5
D: In: 2400—H]1: 1200—H2: 600—Out: 1
3 More layers and neurons G: In: 350—H1: 700—H2: 1000—H3: 2000—Out: 5
D: In: 2000—H1: 1000—H2: 700—H3: 350—Out: 1

https://doi.org/10.1371/journal.pone.0260308.t004
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Table 4). S2 Fig displays the histograms of real and generated data. Also, in this case, the visual
analysis does not allow one to determine any competitive advantage of the topology with
added neurons compared with that of Section 5.1. This observation is confirmed by the KL
divergence values, which are the following: KL(REAL || GAN(ID2)): {’ Average SS’: 0.099, ‘Min-
imum SS’: 0.229, ‘Maximum SS’: 0.078 “Variance SS’: 0.146, ‘N. Measurements™: 0.275}. All of
the values (despite the ‘Maximum SS’) are worse than the ones achieved with the final vanilla
GAN model presented in Section 5.1. Taking into account the analysis of topologies ID 1 and
ID 2 described in Table 4, we can expect that adding, at the same time, more neurons and
more layers will not result in better performance. As displayed in S3 Fig, for topology ID 3, the
histograms of the real and generated data are similar to those of Fig 12. For this vanilla GAN,
we obtained the following KL divergence values: KL(REAL || GAN(ID3)): {’ Average SS’: 0.215,
‘Minimum SS’: 0.039, ‘Maximum SS’: 0.14 ‘Variance SS’: 0.168, ‘N. Measurements’: 0.296}.
Thus, in this case, the quantitative analysis also suggests that adding more layers and neurons
to the selected vanilla GAN model offers no advantage. All in all, the qualitative analysis sug-
gests that all of the considered vanilla GAN topologies perform similarly in terms of the distri-
butions of real and generated data. Nonetheless, the quantitative analysis performed with the
KL divergence values indicated that the best match between the distributions of the real and
generated data is obtained with the final vanilla GAN model of Section 5.1.

The same analysis was performed for the WGAN-based model. Table 5 summarizes the
topology of the WGAN architectures considered in this test.

Focusing on the first topology of Table 5, S4 Fig shows the histograms of real and generated
data. As one can see, the histograms are comparable to the ones presented in Fig 16. Thus, as
was the cae for the vanilla GAN architecture, adding one layer to the topology discussed in Sec-
tion 5.2 does not provide any significant advantage in terms of the quality of the generated
data. The KL values obtained are the following: KL(REAL || GAN(ID1)): {’ Average SS: 0.067,
‘Minimum SS’: 0.052, ‘Maximum SS’: 0.051 ‘Variance SS: 0.099, ‘N. Measurements’: 0.097}. By
comparing these values with the ones obtained with the WGAN model of Section 5.2, we can
state that the performance of the WGAN model does not improve with the addition of a hid-
den layer. Despite the feature ‘Maximum SS’, the KL divergence values obtained for the distri-
butions in S4 Fig are worse than the ones calculated for the distribution reported in Fig 16.
The second WGAN topology of Table 5 was obtained by adding more neurons to the WGAN
of Section 5.2. S5 Fig reports the histograms of real and generated data. Also in this case, the
qualitative analysis suggests that the performance of the WGAN model does not improve com-
pared with the WGAN of Section 5.2. This result is confirmed by the values of the KL diver-
gence. In particular, the KL divergence values extracted from the histograms of S5 Fig are the
following: KL(REAL || GAN(ID1)): {’ Average SS’: 0.052, ‘Minimum SS’: 0.042, ‘Maximum SS’:

Table 5. Topology of the WGANS s considered in the analysis of the hyperparameters (number of layers and num-
ber of neurons). For each topology, the table specifies the main change with respect to the GAN considered in Section
5.2, as well as the number of neurons in each layer. G stands for generator, and D stands for discriminator. The hidden
layers are indicated as H1, H2, and H3. The input layer is denoted as In and the output layer as Out.

ID Change Vanilla GAN—Topology
1 More layers G: In: 200—H]1: 400—H2: 800—H3: 1600—Out: 5
D: In: 1600—H1: 800—H2: 400—H3: 200—Out: 1
2 More neurons G: In: 350—H]1: 700—H2: 1400—Out: 5
D: In: 1400—H1: 700—H2: 350—Out: 1
3 More layers and neurons G: In: 300—H1: 600—H2: 1000—H3: 1500—Out: 5

D: In: 1500—H1: 1000—H2: 600—H3: 300—Out: 1
https://doi.org/10.1371/journal.pone.0260308.t005
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0.097 “‘Variance SS: 0.084, ‘N. Measurements”: 0.067}. In particular, we can see that, although
the values are comparable to the ones achieved from the analysis of Fig 16, the second topology
of Table 5 produces a better KL value for the feature ‘N. Measurements’. All in all, for the first
topology, both the quantitative and the qualitative analysis show a substantially comparable
performance to that of the WGAN model of Section 5.2. Finally, the third topology (ID 3) was
obtained by increasing both the number of hidden layers and neurons. S6 Fig displays the his-
tograms of real and generated data. Similarly to the previously analyzed WGAN topologies,
the histograms are comparable to the ones presented in Fig 16. The KL values obtained are the
following: KL(REAL || GAN(ID1)): {’ Average SS’: 0.218, ‘Minimum SS’: 0.099, ‘Maximum SS’:
0.105 “Variance SS’: 0.12, ‘N. Measurements™: 0.14}. This topology presents the poorest KL
divergence values among the considered WGAN topologies. Thus, it seems that adding more
layers and neurons (i.e., considering more complex WGAN topologies) does not provide any
competitive advantage for the problem at hand.

To summarize, this analysis strengthens the choice of the topologies of the vanilla GAN and
WGAN models presented in Sections 5.1 and 5.2. In particular, by increasing the model’s com-
plexity (i.e., number of neurons and hidden layers), the performance of both vanilla GAN and
WGAN models does not improve.

5.4 Final model selection

Training GAN is a process that requires experience and can easily fail. In this work, we consid-
ered several topologies (i.e., characterized by different hyperparameters) for the vanilla GAN
and the WGAN, and we ended up with two models. Both the models can produce synthetic
data that match the distribution of the original data. Although the WGAN is more suitable for
modeling extreme data, it is difficult to state that the WGAN is the model that the company
must select as a tool that will be made available to the partner companies responsible for testing
the quality of the Wi-Fi signal. For this reason, in this section, we present the strategy we
adopted for selecting the final model. The idea is to use a well-known classification algorithm
for distinguishing between real and synthetic instances. Here, the chosen classifier is the ran-
dom forest, a machine learning ensemble algorithm that consists of a collection of decision
trees. This is a commonly used machine learning technique for addressing classification tasks,
due to the good quality results it can achieve, as well as its robustness to overfitting. For this
approach, new samples of synthetic data were generated considering both models (i.e., vanilla
GAN and WGAN). For each model, we created a number of synthetic instances equal to the
size of the real dataset. Thus, we ended up with two datasets: one containing the original data
and the data created with the vanilla GAN, and the second containing the original data and the
data created with the WGAN. Subsequently, we divided the two datasets into training (70%)
and test sets (30%) and we trained two random forests, one trying to distinguish the real data
from the synthetic instances generated via the GAN model, and the other trying to distinguish
the real data from the data generated via the WGAN model. To ensure the robustness of the
results, we trained 30 random forests for each of the two considered datasets. Moreover, to
avoid any bias related to the choice of the synthetic dataset, we repeated the process considering
30 synthetic datasets. Thus, we trained a total of 900 random forest for each GAN-based model.
For the random forest trained considering the data from the GAN model, the best models
obtained an accuracy of 73.1%on the test data. The average accuracy (across the 30 synthetic
datasets) was 75.1% with a standard deviation of 1%. For the random forest trained considering
the data from the WGAN, the best model returned an accuracy of 72.1%. The average accuracy
(across the 30 synthetic datasets) was 73.5% with a standard deviation of 0.8%. Even though
these accuracies are higher than the ideal value, 50%, the descriptive analysis showed that the
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Fig 18. General view of the final model.
https://doi.org/10.1371/journal.pone.0260308.9018

generated data present a behavior similar to the behavior of the real data. Thus, it is possible to
conclude that both models present comparable results. The WGAN was chosen as the final
model because it seemed slightly better in the descriptive analysis, at least in the interpretation
of the domain experts. Fig 18 reports a schematic representation of the WGAN final model. It
shows the model’s structure as well as the values of the hyperparameters.

6 Conclusions

Wireless networks represent a fundamental technology for ensuring reliable communications.
With the rising popularity of mobile devices and the increasing amount of data these devices
produced and shared, service providers must update the networks’ infrastructures to maximize
the quality of the service that users receive. The networks’ complexity requires the use of
advanced intelligent techniques to handle and optimize different tasks. Deep learning gained
popularity in the field of wireless communication due to its ability to discover complex pat-
terns by analyzing a vast amount of data, and it usually provided better performance compared
with standard machine learning methods [3]. Despite the excellent results that deep learning
models have achieved in this area, internet service providers are continuously looking for solu-
tions to avoid service interruption and to solve possible connection troubles as soon as possi-
ble. Ensuring high-quality service is fundamental for keeping their customer portfolios. With
this in mind, it is common to establish partnerships with specialized technology companies
that deliver software services to monitor the networks and to identify faults and respective
solutions. A common barrier that these specialized companies face is a lack of data to develop
and test their products. This paper investigated the use of GANs for generating synthetic tele-
communication data related to Wi-Fi signal quality. First, we developed and trained two GAN
architectures, namely the vanilla GAN and the WGAN. Subsequently, for assessing the suit-
ability of GAN's for the task at hand, synthetic data were qualitatively and quantitatively com-
pared with the real Wi-Fi networks’ data. Experimental results indicated that both models can
generate synthetic data that match the real data distribution. In particular, the distribution of
the synthetic data overlaps the distribution of the real data, for all of the considered features.
Moreover, the considered generative models can reproduce the same associations, observed
for the features, between the synthetic features. The WGAN was chosen as the final model, but
both models are suitable for addressing the problem at hand. A second study corroborated the
results of this analysis. In this study, a random forest-based classifier was used to discriminate
between real and synthetic data: the poor classification accuracy indicated that the classifier
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cannot distinguish real data from synthetic data, thus strengthening the GAN architectures’
suitability for the generation of synthetic Wi-Fi network’s KPIs. Software companies can take
advantage of this paper findings to build better automatic systems for monitoring the quality
of Wi-Fi networks by using as much data as they need, thus enhancing their analyses’ reliabil-
ity. On the other hand, as a result of this effort, the final user may experience a better quality of
service and fewer service interruptions. This study paves the way for possible future works. In
particular, when we developed the GAN-based model and reviewed the existing literature, we
realized that the field of generative models evolved quickly in recent years. Despite this effort,
almost all the new GAN architectures were proposed to address specific problems in the image
generation field (like super-resolution) or to overcome the limitations of existing architectures
concerning the generation of good-quality synthetic images. In other words, we believe it is
fundamental to improve GANSs’ ability to generate synthetic features in domains beyond
image analysis. Based on the experience of this study, the need exits for a training process that
can guarantee the convergence of the architecture by dynamically modifying the hyperpara-
meters of the GAN or by considering more advanced loss functions. From a practical perspec-
tive, we aim to extend this study by considering more Wi-Fi-related features and more CPEs.
With the comprehensive coverage of the domain of the original features, we may obtain a
more robust GAN model.

Supporting information

S1 Fig. Vanilla GAN, model ID 1 (description in Table 4): Histograms of real and gener-
ated data.
(TIF)

S2 Fig. Vanilla GAN, model ID 2 (description in Table 4): Histograms of real and gener-
ated data.
(TIF)

$3 Fig. Vanilla GAN, model ID 3 (description in Table 4): Histograms of real and gener-
ated data.
(TIF)

$4 Fig. WGAN, model ID 1 (description in Table 5): Histograms of real and generated
data.
(TIF)

S5 Fig. WGAN, model ID 2 (description in Table 5): Histograms of real and generated
data.
(TIF)

S6 Fig. WGAN, model ID 3 (description in Table 5): Histograms of real and generated
data.
(TIF)

S1 Dataset. Dataset used to train the GAN-based models considered in this study. The
dataset contains KPIs regarding 1595 devices.
(CSV)
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