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Abstract

Biofilm-associated infections with Staphylococcus aureus are difficult to treat even after

administration of antibiotics that according to the standard susceptibility assays are effec-

tive. Currently, the assays used in the clinical laboratories to determine the sensitivity of S.

aureus towards antibiotics are not representing the behaviour of biofilm-associated S.

aureus, since these assays are performed on planktonic bacteria. In research settings,

microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study

we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm

towards antibiotic treatment in real-time. We developed a reproducible method to generate

biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methi-

cillin-sensitive S. aureus (MSSA) and 5 methicillin-resistant S. aureus (MRSA) strains from

different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime,

gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusi-

dic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorime-

try-based biofilm susceptibility assay showed that S. aureus biofilms, regardless MSSA or

MRSA, can survive the exposure to the maximum serum concentration of all tested antibiot-

ics. The only treatment with a single antibiotic showing a significant reduction in biofilm sur-

vival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed.

Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin

was able to prevent S. aureus biofilm from becoming resistant to rifampicin. Isothermal

microcalorimetry allows real-time monitoring of the sensitivity of S. aureus biofilms towards

antibiotics in a fast and reliable way.

Introduction

Staphylococcus aureus is a notorious pathogen in post-surgery complications and severe infec-

tions as endocarditis, bacteremia and bone and joint infections [1, 2]. More than 70% of the
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cases of bone and joint infections are caused by biofilm-related S. aureus [3–7]. Biofilm-associ-

ated S. aureus infections are difficult to treat since the bacteria within the biofilm can be highly

resistant to antibiotics and host immune responses [8–12].

Biofilms have been defined as aggregates of microorganisms in which bacterial cells are fre-

quently embedded in a self-produced matrix of extracellular polymeric substances (EPS) that

are adherent to each other and/or a surface [13–20]. The presence of an extracellular matrix

that protects bacteria within the biofilm is one of the biofilm signatures that differentiates

them from their planktonic form. The EPS matrix functions as a shield or repellent [21] to pro-

tect the bacteria from the immune system of the host like for instance antimicrobial peptides

(AMP) and phagocytosis. The EPS matrix as a shield makes antibiotic therapy more difficult,

leading to prolonged infections and more severe complications including bacteremia and

death [22–25]. Despite the fact that bacteria from biofilms are different from their planktonic

counterparts, the current antimicrobial susceptibility testing (AST) for S. aureus isolated from

biofilm-related infections still uses planktonic bacteria. Unfortunately, this practice leads to

overestimation of antibiotic effectivity as biofilm-associated bacteria show an increase toler-

ance towards antibiotics [26, 27]. Bacterial tolerance to antibiotics is intrinsic and mostly with-

out any need for genetic alteration [26, 28]. The development of persister cells [29–31] and

extracellular matrix formation [14–20] are among to the main causes of biofilm tolerance

towards many antibiotic treatments.

The current assays to monitor antibiotic susceptibility of biofilms, such as standard plate

counts, microtiter plate assay, and post-experimental staining, are labor intensive and have

low reproducibility [32–36]. Furthermore, there are still questions marks regarding the appli-

cability of these readout systems in a clinical setting [32, 34, 37–39] and most of all, these assays

add an extra delay for obtaining results. Therefore, new strategies for monitoring biofilm toler-

ance in a quick and reproducible way are needed. Previously isothermal microcalorimetry has

been studied for application in antimicrobial studies in a research setting [40–42] with encour-

aging observations. This technology allows to constantly determine the metabolism status of

bacteria, with a threshold of approximately 1x104 cells, by monitoring the heat-flow [40, 43]

and detect any change in bacterial metabolic rate due to administration of drugs such as antibi-

otics [40]. Since it monitors bacterial metabolism instead of for instance colony forming unit

(CFU), isothermal microcalorimetry can be applied to biofilm-associated bacteria, without

having to disturb the biofilm itself.

In this study we describe the development of a reproducible method to generate S. aureus
biofilms in an isothermal microcalorimeter setup and test the effectivity of several clinically

relevant antibiotics [44–47] directly to these biofilms. Since previous studies show that bacteria

in biofilm are extremely tolerant to antibiotics [32, 37, 48, 49], the effect of the maximum

serum concentration of 13 commonly used antibiotics was studied in our calorimetry-based

biofilm susceptibility test (CBST). In addition, these antibiotics were also assayed with current

available antimicrobial susceptibility testing; VITEK1 2 system and broth microdilution

method. We managed to develop a fast and reproducible real-time method to monitor S.

aureus biofilm sensitivity towards antibiotics for clinical application.

Materials and methods

Bacterial strains and growth condition

The S. aureus strains used in this study belong to the important genetic lineages found in

humans [50] and are listed in Table 1. All strains were plated on TrypticaseTM Soy Agar (TSA)

with 5% sheep blood overnight at 37˚C (Becton Dickinson, Breda, The Netherlands). Presence
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of mecA gene, making the bacteria resistant to β-lactam antibiotics, was tested according to

PCR protocol as described previously [51]

Antimicrobial susceptibility testing (AST)

Seven bactericidal and six bacteriostatic antibiotic drugs were selected for the experiments

(Table 2). Susceptibility of all strains towards listed antibiotics were tested in VITEK1 2 sys-

tem (bioMérieux Benelux B.V, Zaltbommel, The Netherlands) according to manufacturer

protocols.

To determine the minimal inhibitory concentration (MIC) of flucloxacillin, cefuroxime,

cefotaxime, gentamicin, rifampicin, clindamycin, erythromycin, vancomycin, linezolid, levo-

floxacin, fusidic acid, co-trimoxazole, and doxycycline, broth microdilution (BMD) assay was

performed on all strains according to the European Committee on Antimicrobial Susceptibil-

ity Testing (EUCAST). A hundred milliliter of 1:100 dilution of each strain (a 0.5 McFarland

in NaCl 0.9%) in Mueller-Hinton II broth (MH II) (Oxoid, Hampshire, UK) was added to

100 μl MH II into a sterile round-bottom 96-well polystyrene tissue culture plate (Costar no.

3596; Corning Inc., Corning, N.Y.) containing serial dilutions of antibiotics. After 24 hours of

incubation, the OD600nm was read in a microplate reader (Epoch 2 Microplate reader, BioTek

Instruments, Inc., Winooski, VT, USA). Interpretation of the results (Table 4) was done

Table 1. Strains of S. aureus used.

Strain Genetic Background Description Ref(s)

Mup15 CC15 MSSA, clinical isolate [52]

Mup3199 CC25 MSSA, nasal isolate [53]

Mup2723 CC30 MSSA, clinical isolate [53]

Mup2396 CC45 MSSA, clinical isolate [53]

Mup2704 ST72 MSSA, clinical isolate [53]

MW2 CC1, USA400 MRSA, clinical isolate [54]

Mu50 CC5 MRSA, clinical VISA isolate [55]

SAC042W CC8, USA300 MRSA, clinical isolate [56]

M116 CC8, ST239 MRSA, clinical isolate [12]

RWW146 CC398 MRSA [57, 58]

https://doi.org/10.1371/journal.pone.0260272.t001

Table 2. List of antibiotics.

Antibiotic Class Antibacterial potency Maximum serum Concentration (μg/mL) Ref(s)

Flucloxacillin (FLX) Isoxazolyl penicillin Bactericidal 16 [59]

Cefuroxime (CXM) 2nd gen. cephalosporins Bactericidal 8 [60]

Cefotaxime (CTX) 3rd gen. cephalosporins Bactericidal 16 [61]

Gentamicin (GEN) Aminoglycosides Bactericidal 16 [62]

Rifampicin (RIF) Other Bactericidal 8 [63]

Vancomycin (VAN) Glycopeptides Bactericidal 16 [64]

Levofloxacin (LVX) Quinolones Bactericidal 8 [65]

Clindamycin (CLI) Other Bacteriostatic 8 [66]

Erythromycin (ERY) Macrolides Bacteriostatic 8 [67]

Linezolid (LZD) Other Bacteriostatic 16 [68]

Fusidic acid (FD) Other Bacteriostatic 32 [69]

Co-trimoxazole (SXT) Antifolate agents Bacteriostatic 32 [70]

Doxycycline (DOX) Tetracyclines Bacteriostatic 4 [71]

https://doi.org/10.1371/journal.pone.0260272.t002
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according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) break-

point tables for interpretation of MICs Version 11.0.

Calorimetry-based biofilm susceptibility (CBS) assay

To determine biofilm fitness during co-incubation with antibiotics, we grew biofilms in an iso-

thermal microcalorimetry set up according to previous protocol [11] with some modifications.

Overnight culture of S. aureus strain on blood agar was suspended in 5 ml NaCl 0.9% until

OD600nm of 0.50 was reached, then 10 μl of it was mixed with 9990 μl of IMDM growth media

to create a 1:1000 dilution. Ten microliters of this suspension were added into sterile flat-bot-

tom calWellTM insert or ampoule (CalScreenerTM, SymCel, Spånga, Sweden) containing

190 μl IMDM. Plates were subsequently incubated for 1 hour under 150 rpm orbital shaking at

37˚C to allow the bacteria to adhere. The adhered bacteria were then washed once and

refreshed with 200 μL of fresh IMDM. These ampoules were inserted into sealed platinum

tube before being placed inside of a multi-channel isothermal micro-calorimeter (calScree-

nerTM, SymCel, Spånga, Sweden) for real-time measurement of heat-flow that is being emitted

by the now created biofilm-associated S. aureus during 24 hours incubation at 37˚C. After 24

hours of incubation, the biofilms were washed and refreshed once again with 200 μL new

IMDM with or without desired antibiotics concentrations (Table 2) and then inserted back

into the microcalorimeter to measure the heat-flow being produced by bacteria within the bio-

films for another 24 hours. This multi-channel isothermal microcalorimeter is able to measure

32 samples simultaneously and the results are given as heat-flow versus time. To determine the

sensitivity of the biofilm-associated cells towards antibiotics, the percentage of heat-flow of the

treated biofilm relative to the untreated (control) were calculated, which is termed: biofilm

fitness.

Statistical analysis

Statistical analysis was performed by using the Prism 5.0 package (Graph Pad Software, San

Diego, CA, USA) and Microsoft Excel 2010.We used unpaired t-test or one-way ANOVA for

data analysis, where a two-sided P� 0.05 was considered as statistically significant. All experi-

ments were independently repeated for three times and the median with range was

determined.

Table 3. The results of VITEK21 system for all strains toward tested antibiotics.

Strain VITEK21

OXA FOX Screen GEN RIF VAN CIP CLI ERY LZD FD SXT TET

MSSA CC15 0,5 - �0.5 �0,03 1 �0.5 0,25 1 2 �0.5 �10 �1

CC25 1 - �0.5 �0,03 1 �0.5 0,25 1 2 �0.5 �10 �16

CC30 �0.25 - �0.5 �0,03 �0.5 �0.5 0,25 0,5 2 �0.5 �10 �1

CC45 0,5 - �0.5 �0,03 1 �0.5 0,25 0,5 2 2 �10 �1

ST72 0,5 - �0.5 �0,03 1 �0.5 0,25 1 2 �0.5 �10 �1

MRSA CC1 (MW2) �4 + �0.5 �0,03 1 �0.5 0,25 1 2 �0.5 �10 �1

CC5 (Mu50) �4 + �16 �4 4 �8 �4 �8 2 �0.5 �10 �16

CC8 �4 + �0.5 �0,03 1 �8 0,25 1 2 �0.5 �10 �1

ST239 �4 + �16 �0,03 �0.5 �8 0,25 �8 2 �0.5 �320 �16

CC398 �4 + �16 �0,03 �0.5 �0.5 �4 �8 2 �0.5 80 �16

�green = susceptible, red = resistant

https://doi.org/10.1371/journal.pone.0260272.t003
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Results

Antimicrobial susceptibility testing of planktonic bacteria

Using VITEK1 2 system and PCR for the presence of the mecA gene, we confirmed that 5 strains

are MSSA and the other 5 are MRSA. AST results from VITEK1 2 system showed that S. aureus
CC5 Mu50 was resistant to almost all of the 13 tested antibiotics, except for linezolid, fusidic acid,

and co-trimoxazole (Table 3), therefore it was used as non-susceptible reference strain.

Antibiotic susceptibility testing was also performed using a broth microdilution (BMD)

susceptibility assay. The obtained data were in concordance with the VITEK1 results. The

MICs of all strains toward the 13 tested antibiotics can be found in the Table 4.

Data interpretation of CBS assay

For setting up the assay we started out by treating biofilms of S. aureus with the most active

antibiotic against biofilms available: rifampicin. We are aware that rifampicin single therapy

should not be used against biofilm-associated bacteria, as this often results in development of

resistance [72–77]. So, 24 hour-old biofilms of S. aureus CC15 were treated with 8 μg/mL,

Mu50 (CC5) was included as a rifampicin resistant control. All experiments were performed

in triplicate and median values were calculated. Based on VITEK1 2 and BMD analyses, we

anticipated Mu50 (CC5) to be resistant to rifampicin which clearly can be seen in Fig 1A

where the rifampicin-treated biofilms showed almost similar heat-flow signals as the untreated

control. The rifampicin sensitive strain CC15 (according to VITEK1 2 and BMD analyses),

showed initially a steep incline-, followed by a 10 hours period of slow inclining -, finishing

with a period of increasing heat-flow (Fig 1A). To determine the sensitivity of the biofilm-asso-

ciated cells of these strains towards rifampicin in a more accessible way, we calculated the per-

centage of heat-flow of the treated biofilm relative to the untreated (control), which hereafter

is termed: biofilm fitness (Fig 1B).

The biofilm fitness of Mu50 (CC5) is almost similar to the untreated control, approximately

100%, and remains the same during the whole co-incubation time, indicating that biofilms of

Mu50 are resistant to the given concentrations of rifampicin (Fig 1B). The biofilm fitness of

CC15 was approximately 75% reduced after exposure to rifampicin (8 μg/mL) and remains

low for 10 hours where after it increases rapidly again. After 20 hours of co-incubation, the

Table 4. The results of broth microdilution susceptibility testing of all strains.

Strain Minimal Inhibitory Concentration (MIC) μg/mL

Bactericidal Bacteriostatic

FLX CXM CTX GEN RIF VAN LVX CLI ERY LZD FD SXT DOX

MSSA CC15 0,25 2 4 0,5 0,0156 1 0,25 0,0625 1 4 0,5 1 0,25

CC25 0,5 4 4 0,5 0,0078 1 0,125 0,125 1 4 0,25 1 4

CC30 0,25 2 2 0,5 0,0078 1 0,25 0,125 0,5 4 0,25 1 0,25

CC45 0,25 2 4 1 0,0312 1 0,25 0,125 1 4 4 1 0,5

ST72 0,25 2 4 0,5 0,0078 1 0,25 0,0625 1 4 0,25 1 0,5

MRSA CC1 (MW2) 8 256 256 0,5 0,0078 1 0,25 0,0625 1 2 0,125 1 0,5

CC5 (Mu50) 640 >1024 >1024 256 >5000 4 16 >1000 >1024 2 0,25 1 8

CC8 8 1024 128 0,5 0,0078 1 8 0,0625 1 4 0,25 1 0,25

ST239 480 >1024 >1024 1024 0,0078 1 8 0,0625 >1024 4 0,25 625 8

CC398 40 >1024 256 128 0,25 2 0,5 1000 >1024 2 0,5 2500 4

�green = susceptible and red = resistant

https://doi.org/10.1371/journal.pone.0260272.t004
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biofilm-associated CC15 bacteria were taken out of the calorimeter and subsequently tested

with the VITEK1 2 system, and as expected this initially rifampicin-sensitive strain had

become resistant towards the antibiotic.

Monitoring the effect of single antibiotic exposure

Rifampicin. To further investigate the effect of rifampicin on biofilm-associated S. aureus,
we assayed 4 additional MSSA and 4 MRSA strains representing the different genetic back-

ground found in humans. From VITEK1 2 system (Table 3) and BMD data (Table 4), all

strains, with the exception for the earlier mentioned Mu50 (CC5), were sensitive and showed

an early reduction in biofilm fitness after administration 8 μg/mL of rifampicin (Fig 2). Within

24 hours of co-incubation, 5 out of 10 strains; CC15, CC30, CC45, ST72, and ST239 show an

increase in their biofilm fitness, which might be an indication for the development of tolerance

towards rifampicin (Fig 2). Furthermore, 2 strains; CC15 (already shown in Fig 1) and ST72

developed during the later stages a strong increase of biofilm fitness after 10 hours of co-incu-

bation with rifampicin (Fig 2), which was confirmed also for ST72 by follow-up VITEK1 2

analyses as being resistance towards the antibiotic.

Flucloxacillin. Twenty-four hour-old biofilms exposed to 16 μg/mL flucloxacillin showed

that all MRSA strains were able to handle this maximum allowed serum concentration of the

antibiotic (Fig 3), though there were some slight differences. For instance, ST239 seemed not

to be affected by the exposure to flucloxacillin at all, yet Mu50 (CC5) despite having the highest

MIC (Table 4) had the lowest biofilm fitness among all tested MRSAs (Fig 3).

The biofilms of the MSSA strains showed almost similar kinetic of their curve patterns as

the MRSAs (Fig 3). Despite a quick decrease in biofilm fitness of CC25, CC30 and CC45 dur-

ing exposure to flucloxacillin, the biofilm fitness of CC25 and CC45 bounced back after 6

hours, while CC30 show an increase of biofilm fitness after 12 hours of exposure to flucloxacil-

lin (Fig 3). In the first 6 hours, the biofilm fitness of 3 out 5 of MSSA strains; CC15, CC45 and

ST72 were found to be higher than Mu50 (CC5) (Fig 3). These data indicate that, despite the

variable response of each strain to flucloxacillin in the beginning of exposure, during the 24

Fig 1. Normalization of data generated by isothermal microcalorimeter. Heat-flow of Mu50 (CC5) and CC15 during co-incubation with and without 8 μg/

mL rifampicin (A). Biofilm fitness of Mu50 (CC5) and CC15 during co-incubation with and without 8 μg/mL rifampicin is given as percentage of the heat-flow

of the rifampicin-treated biofilms relative to untreated biofilms (B). Dashed black lines indicate untreated (control) (B). Error bars represent median with range

(n = 3).

https://doi.org/10.1371/journal.pone.0260272.g001
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hours of incubation time, biofilms of all strains, independent if they are MRSA or not, can

withstand flucloxacillin more or less equally.

Cephalosporin antibiotics. Administration of the other beta lactam antibiotics cefurox-

ime and cefotaxime show that biofilm fitness of the MSSA strains, except for ST72 strain, were

more or equally sensitive toward cefuroxime (Fig 4A) and cefotaxime (Fig 4B) in comparison

to Mu50 (CC5), though all bacteria were able to survive the exposure. On the contrary, in com-

parison to Mu50 (CC5) the other MRSA strains could withstand both antibiotics better.

(Fig 4).

Vancomycin. When we assayed the MSSA and MRSA strains for sensitivity towards van-

comycin 16 μg/mL, we observed a decrease in biofilm fitness for all strains within the first 2

hours of coincubation time. Three MSSAs (CC15, CC25, and CC45) and four MRSAs (CC5,

CC8, ST239, and CC398) showed a steady recovery of biofilm fitness during exposure to van-

comycin which was not observed for the other strains (Fig 5). Although Mu50 (CC5), based on

broth microdilution and VITEK1 2 system, is considered to be a vancomycin intermediate-

resistant S. aureus (VISA), biofilms of this strain were during the first 6 hours of exposure to

Fig 2. Sensitivity of biofilm-associated S. aureus strain to rifampicin (RIF). The 24 hours kinetic of biofilm fitness generated by MSSA and MRSA strains

during co-incubation with 8 μg/mL rifampicin relative to untreated biofilm fitness. Mu50 (CC5) is used as non-susceptible control (red). Dashed horizontal

lines indicate control (untreated biofilm). Error bars represent median with range (n = 3).

https://doi.org/10.1371/journal.pone.0260272.g002
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vancomycin, among the most affected (Fig 5). Furthermore, similar to flucloxacillin and the

cephalosporin exposure, no significant differences in sensitivity to vancomycin were found

between biofilms of MSSA and MRSA strains.

Other antibiotics. Since both beta-lactams and vancomycin were unable to reduce bio-

film fitness of the strains studied after more than 24 hours of exposure, we studied the effect of

the bactericidal antibiotic gentamicin and levofloxacin, and also bacteriostatic antibiotics clin-

damycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline on S. aureus
biofilms, and included previously mentioned data as well. Comparing the most sensitive

MSSA (CC15) with the most resistant MRSA (Mu50 (CC5)), several things drew our attention.

When we look at the data of Mu50 (CC5), the biofilm fitness during co-incubation with both

the bacteriostatic and bactericidal antibiotics remains more or less the same (Fig 6B). As Mu50

(CC5) was found to be resistant to most antibiotics when grown in suspension (planktonic)

(Tables 3 and 4), our in vitro microcalorimeter measurement on single antibiotic administra-

tion indicate that AST data from VITEK1 2 system or broth microdilution assay for this resis-

tant strain can be extrapolated to biofilms as well. For MSSA CC15 (Fig 6A), the reduction of

Fig 3. Biofilm-associated S. aureus sensitivity to flucloxacillin (FLX). The 24 hours kinetic of biofilm fitness of MSSA (CC15, CC25, CC30, CC45, and ST72)

and MRSA (CC1, CC5, CC8, ST239, and CC398) strains towards 16 μg/mL flucloxacillin relative to untreated biofilm fitness. Mu50 (CC5) is used as non-

susceptible control (red). Dashed horizontal lines indicate control (untreated biofilm). Error bars represent median with range (n = 3).

https://doi.org/10.1371/journal.pone.0260272.g003
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biofilm fitness as a consequence of exposure to the various bactericide and bacteriostatic anti-

biotics was less than for rifampicin, despite the early reduction of its biofilm fitness in the first

couple of hours of the exposure time. Interestingly, for the bactericidal antibiotics, in most

cases the biofilm fitness remains the same throughout the exposure time, indicating that

despite being sensitive to these antibiotics in planktonic state, biofilm of MSSA CC15 strain

can withstand bactericidal antibiotics just like the biofilms of the MRSA strain CC5 (Fig 6).

When we look at the bacteriostatic antibiotics, the biofilm fitness of MSSA CC15 after an ini-

tial reduction, in time increases in most of the cases linearly (Fig 6A). This phenomenon indi-

cates a time dependent recovery of biofilm fitness when exposed to bacteriostatic antibiotics

(Fig 6A).

Looking at the rest of the strains (S1 and S2 Figs), all MSSA strains show a similar pattern

for the bacteriostatic antibiotics as CC15, with an initial reduction of the biofilm fitness fol-

lowed by a more or less linearly increase of biofilm fitness during the rest of co-incubation

time (S1 Fig). Dependent on the strains, MSSA strains show almost no difference (CC15 and

ST72) or a moderate increase (CC25, CC30, and CC45) of biofilm fitness during co-incubation

with a bactericidal antibiotic (S1 Fig). The biofilm fitness of both MRSA and MSSA strains

exposed to bacteriostatic or bactericidal antibiotic show similar kinetics (S1 and S2 Figs) unless

they were found to be resistant in the VITEK1 or in the broth microdilution assays. In the

later cases biofilm fitness is almost not affected by antibiotic exposure.

Monitoring the effect of combined antibiotics exposure

Since a single regimen of rifampicin could initially reduce biofilm fitness better than any other

tested antibiotics, we looked for antibiotic combinations that could prevent the development

of rifampicin resistant biofilms. As before, microcalorimetry was used to monitor the response

of MSSA CC15 and ST72 biofilms during co-incubation with flucloxacillin, vancomycin, levo-

floxacin, and clindamycin in combination with rifampicin.

Combining 8 μg/mL of rifampicin with either 16 μg/mL flucloxacillin, 16 μg/mL vancomy-

cin or 8 μg/mL levofloxacin shows that the biofilm fitness remained low in both CC15 (Fig

Fig 4. Staphylococcus aureus biofilm sensitivity to cephalosporins. The 24 hours kinetic of biofilm fitness of MSSA (CC15, CC25, CC30, CC45, and ST72)

and MRSA (CC1, CC5, CC8, ST239, and CC398) strains towards 8 μg/mL cefuroxime (CXM) (A) and 16 μg/mL cefotaxime (CTX) (B) relative to untreated

biofilm fitness. In both figures Mu50 (CC5) was used as non-susceptible control. Dashed horizontal lines indicate control (untreated biofilm). Error bars

represent median with range (n = 3).

https://doi.org/10.1371/journal.pone.0260272.g004
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7A–7C) and ST72 (S3A–S3C Fig). VITEK1 results analyses of the bacteria that were double

treated, or treated only with rifampicin, flucloxacillin, vancomycin, or levofloxacin indicated

that only the rifampicin single treated biofilms developed resistance. Interestingly, a different

phenomenon was seen when rifampicin was combined with clindamycin. The combination of

these antibiotics showed an antagonistic effect. Addition of 8 μg/mL clindamycin seemed to

inhibit the effectiveness of rifampicin and prevented reduction of biofilm fitness of both CC15

(Fig 7D) and ST72 strain (S3D Fig). None of the single antibiotic regimens, including rifampi-

cin alone, could kill the biofilm-associated bacteria but combination of rifampicin with other

antibiotics such as vancomycin was able to reduce bacterial fitness and viability.

Discussion

Using isothermal microcalorimetry, we developed a highly reproducible and sensitive assay to

study the sensitivity of biofilm associated S. aureus cells in real time. When we look at biofilm

sensitivity towards beta-lactams like flucloxacillin, cefuroxime and cefotaxime, we observed

Fig 5. Biofilm-associated S. aureus sensitivity to vancomycin (VAN). The 24 hours kinetic of biofilm fitness of MSSA (CC15, CC25, CC30, CC45, and ST72)

and MRSA (CC1, CC5, CC8, ST239, and CC398) strain towards 16 μg/mL vancomycin relative to untreated biofilm fitness. VISA strain Mu50 (CC5) was

plotted in red. Dashed horizontal lines indicate control (untreated biofilm). Error bars represent median with range (n = 3).

https://doi.org/10.1371/journal.pone.0260272.g005
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that both biofilms of MSSA and MRSA can withstand the maximal serum concentration of

these antibiotics rather well. In our experimental setup, treatment of biofilm-associated S.

aureus with the maximal serum value of vancomycin did not show any added value, most

strains even outperformed the VISA Strain Mu50. As expected, exposure of MRSA biofilms to

beta lactams, leads to very limited or no effect on biofilm fitness. On the contrary, MSSA bio-

films exposed to gentamicin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid,

co-trimoxazole, or doxycycline generally led to an initial reduction then followed by a linear

recovery of the biofilm fitness, which was seen more prominent in the bacteriostatic antibiot-

ics. MRSA strains that were sensitive (based on VITEK1 or broth microdilution data) to one

of these antibiotics showed similar patterns as the MSSA strains.

Rifampicin was the most effective antibiotic during the first 12 hours of antibiotic exposure,

yet as was expected [78], resistance was found in some strains. This finding supports the fact

that rifampicin should not be used as monotherapy in the clinic [44, 75–77, 79]. Furthermore,

although in general a significant reduction in biofilm fitness was found for most strains, in

none of the cases rifampicin was able to kill all biofilm-associated bacteria. Combining rifam-

picin with flucloxacillin, vancomycin, or levofloxacin prevented the development of resistance

during the time-course of these experiments. Future analyses are needed to determine whether

long term treatment with these antibiotic combinations, also can prevent the development of

rifampicin resistance. Of further interest is the observation that rifampicin in combination

with vancomycin, can kill biofilm-associated S. aureus. In support to this finding, previously

Niska, et al [80] showed in a S. aureus murine bone infection model that the combination of

vancomycin with rifampicin was able to decrease the bacterial load in bone though the mecha-

nism of this synergistic effect remains unclear [75, 80]. On the contrary combining rifampicin

with clindamycin, neutralized the sensitivity of biofilm associated bacteria toward rifampicin.

As to be expected, when a strain was found to be resistant to an antibiotic using VITEK1

or the broth microdilution assay, these data could be extrapolated to biofilms. On the contrary,

data from these antimicrobial susceptibility tests did not have any predictive value for biofilm-

associated bacteria when the strains were found to be sensitive. These techniques test antibiot-

ics on planktonic bacteria instead of biofilm associated ones, but with our calorimetry-based

assay we were able to assay antibiotics directly to biofilm with high reproducibility. We

Fig 6. Staphylococcus aureus biofilm sensitivity to other antibiotics. The 24 hours kinetic of biofilm fitness of MSSA CC15 (A) and MRSA Mu50 (CC5) (B)

strains co-incubated with maximum serum concentration of several bactericide (red) and bacteriostatic (blue) antibiotics relative to untreated biofilm fitness.

Dashed horizontal lines indicate control (untreated biofilm). Error bars represent median with range (n = 3).

https://doi.org/10.1371/journal.pone.0260272.g006
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realized that once persister cells develop, we presumably will not be able to detect them with

isothermal microcalorimetry due to their low metabolism rates. Therefore, we always plated

the bacteria when antibiotic treatment reduced the biofilm fitness to less than 10%.

In summary, here we showed that isothermal microcalorimetry can be used to monitor bio-

film-associated bacteria sensitivity towards antibiotics in real time. With this calorimetry-

based biofilm susceptibility assay, we demonstrated that bacteria within a biofilm can handle

the maximum dose of antibiotics that can (safely) be reached in human serum. Furthermore,

we were able to monitor the development of tolerance or resistance towards the applied antibi-

otics in real time. In a follow-up study, we anticipate to generate a mathematic model to quan-

tify the development of tolerance and or resistance of biofilm associated cells to the

administered antibiotics.

Fig 7. Biofilm-associated S. aureus sensitivity to combination antibiotics. The 24 hours kinetic of biofilm fitness of MSSA CC15 strain towards maximum

serum concentration of flucloxacillin (FLX) (A), vancomycin (VAN) (B), levofloxacin (LVX) (C), and clindamycin (CLI) (D) in combination with 8 μg/mL

rifampicin (RIF) was administered to 24 hour-old biofilms grown relative to untreated biofilm fitness. Dashed horizontal lines indicate control (untreated

biofilm). Error bars represent median with range (n = 3).

https://doi.org/10.1371/journal.pone.0260272.g007
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Supporting information

S1 Fig. Staphylococcus aureus biofilms of MSSA strains sensitivity to various antibiotics.

The 24 hours kinetic of biofilm fitness of MSSA CC25 (A), CC30 (B), CC45 (C), and ST72 (D)

strains co-incubated with maximum serum concentration of several bactericide (red) and bac-

teriostatic (blue) relative to untreated biofilm fitness. Dashed horizontal lines indicate control

(untreated biofilm). Error bars represent median with range (n = 3).

(TIF)

S2 Fig. Staphylococcus aureus biofilm of MRSA strains sensitivity to various antibiotics.

The 24 hours kinetic of biofilm fitness of MRSA CC1 (A), CC8 (B), ST239 (C), and CC398 (D)

co-incubated with maximum serum concentration of several bactericide (red) and bacterio-

static (blue) antibiotics relative to untreated biofilm fitness. Dashed horizontal lines indicate

control (untreated biofilm). Error bars represent median with range (n = 3).

(TIF)

S3 Fig. Biofilm-associated S. aureus sensitivity to combination antibiotics. The 24 hours

kinetic of biofilm fitness of MSSA ST72 strain co-incubated with maximum serum concentra-

tion of flucloxacillin (FLX) (A), vancomycin (VAN) (B), levofloxacin (LVX) (C), and clinda-

mycin (CLI) (D) in combination with 8 μg/mL rifampicin (RIF) relative to untreated biofilm

fitness. Dashed horizontal lines indicate control (untreated biofilm). Error bars represent

median with range (n = 3).

(TIF)
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