
RESEARCH ARTICLE

Android malware classification based on

random vector functional link and artificial

Jellyfish Search optimizer

Emad T. ElkabbashID
☯*, Reham R. Mostafa☯*, Sherif I. Barakat☯

Information Systems Department, Faculty of Computers and Information Sciences, Mansoura University,

Mansoura, Egypt

☯ These authors contributed equally to this work.

* emadtawfik@std.mans.edu.eg (ETE); reham_2006@mans.edu.eg (RRM)

Abstract

Smartphone usage is nearly ubiquitous worldwide, and Android provides the leading open-

source operating system, retaining the most significant market share and active user popu-

lation of all open-source operating systems. Hence, malicious actors target the Android

operating system to capitalize on this consumer reliance and vulnerabilities present in the

system. Hackers often use confidential user data to exploit users for advertising, extortion,

and theft. Notably, most Android malware detection tools depend on conventional machine-

learning algorithms; hence, they lose the benefits of metaheuristic optimization. Here, we

introduce a novel detection system based on optimizing the random vector functional link

(RVFL) using the artificial Jellyfish Search (JS) optimizer following dimensional reduction of

Android application features. JS is used to determine the optimal configurations of RVFL to

improve classification performance. RVFL+JS minimizes the runtime of the execution of the

optimized models with the best performance metrics, based on a dataset consisting of

11,598 multi-class applications and 471 static and dynamic features.

1. Introduction

Worldwide, Android is the most common operating system (OS) with 87% of the OS market

share as of 2021, with 1.6 billion users [1]. As mobile smart devices have grown in popularity,

the number of mobile applications (apps) has grown exponentially. According to current

reports, there are currently 3.04 million apps available for download in the Google Play store,

surpassing 1 million apps in July 2013 [2].

Attackers, or those who wish to target users for malicious or nefarious purposes, capitalize

on this broad distribution by exploiting many vulnerabilities present in the Android OS [3],

including those pertaining to web views, dirty unstructured supplementary service data,

Android secure socket layer/transport layer security, Android near-field communication,

social and sharing authentication flaws, and zygote sockets and repackaging.

The use of machine-learning algorithms for Android malware detection can provide robust

and efficient identification of these kinds of intentional obfuscations and harmful behaviors.

However, machine-learning-based classifiers have two main problems. First, they must extract

the feature-vector representations of the application; second, the time required for modeling is

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Elkabbash ET, Mostafa RR, Barakat SI

(2021) Android malware classification based on

random vector functional link and artificial Jellyfish

Search optimizer. PLoS ONE 16(11): e0260232.

https://doi.org/10.1371/journal.pone.0260232

Editor: Seyedali Mirjalili, Torrens University

Australia, AUSTRALIA

Received: July 22, 2021

Accepted: November 4, 2021

Published: November 19, 2021

Copyright: © 2021 Elkabbash et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files. also available at https://github.

com/emadtawfeek/optimizing-RVFL-with-Jellyfish-

search-algorithm.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5568-2596
https://doi.org/10.1371/journal.pone.0260232
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260232&domain=pdf&date_stamp=2021-11-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260232&domain=pdf&date_stamp=2021-11-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260232&domain=pdf&date_stamp=2021-11-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260232&domain=pdf&date_stamp=2021-11-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260232&domain=pdf&date_stamp=2021-11-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260232&domain=pdf&date_stamp=2021-11-19
https://doi.org/10.1371/journal.pone.0260232
http://creativecommons.org/licenses/by/4.0/
https://github.com/emadtawfeek/optimizing-RVFL-with-Jellyfish-search-algorithm
https://github.com/emadtawfeek/optimizing-RVFL-with-Jellyfish-search-algorithm
https://github.com/emadtawfeek/optimizing-RVFL-with-Jellyfish-search-algorithm

costly. To address the first problem, we gathered a heterogeneous feature set consisting of two

analysis types: static and dynamic. To address the second problem, we used a feature selection

process with an optimizer for the classifier.

Static analysis entails examining executables without performing an actual execution. In

contrast, dynamic analysis involves running the executable and observing its results. Each has

their own strengths and limitations; however, they work best when used together. Static analy-

sis is fast, but malware can be disguised and therefore, may go unnoticed if the malware uses

code obfuscation techniques. In contrast, these disguise techniques, along with polymorphic

malware, have little impact on dynamic analysis, because the runtime execution is continu-

ously monitored and analyzed. However, newly developed malware strains rapidly outpace

traditional malware detection and analysis [4].

Feature selection enhances classification performance by removing redundant and irrele-

vant features from the dataset. The goals of feature selection are to reduce storage-space utiliza-

tion and training time while still identifying the root issue at hand [5], because mobile-device

hardware is limited. Many metaheuristic optimization algorithms currently optimize their fea-

ture selection processes, such as particle swarm optimization (PSO) [6], grey-wolf optimiza-

tion (GWO) [7], and genetic algorithms (GAs) [8].

Random vector functional link (RVFL) networks are randomized functional-link neural

networks. The input layer’s fundamental weight values provided to the hidden layer can be

randomly created in the appropriate domain and retained during the learning process to avoid

becoming stuck in a local minimum. RVFL applications are used to optimize many scientific

areas applications, including performance predictions of solar photovoltaic thermal collectors

[9], crude-oil price forecasting [10], and tensile behavior prediction of dissimilar friction stir-

welded aluminum alloy joints [11].

Metaheuristic optimizers that use machine learning approaches work better than classical

models; however, the machine learning approaches can still suffer from problems of overfitting

and parameter optimization. Recent research [12, 13] has introduced hybrid models to improve

the forecast accuracy of these models, while reducing the drawbacks associated with solo models.

We summarize our contributions as follows:

1. We use the artificial jellyfish swarm (JS) optimizer to select the optimal features of Android

malware datasets, as illustrated in Section 4.2.

2. We provide an improved RVFL artificial JS optimizer algorithm (i.e., RVFL+JS), as shown

in Section 4.3, to classify and categorize Android malware.

3. We compare RVFL+JS with RVFL+PSO, RVFL+GWO, RVFL+GA, and the standard

RVFL model.

4. We compare the proposed RVFL+JS with recent Android malware detection studies.

The rest of this paper is organized as follows. In Section 2, recent related work on malware

detection is discussed. Section 3 discusses the RVFL network, the artificial JS optimizer, the

Android framework, and its applications for feature analysis. In Section 4, the proposed approach

is introduced. Section 5 presents the performance metrics, results, experimental results, and a dis-

cussion of our findings. Finally, the conclusion and future works are provided in Section 6.

2. Literature review

Based on the enormous demand for Android devices, many studies have been conducted to

provide a means for detecting Android malware and helping users deal with the spread of mal-

ware in their devices.

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 2 / 22

https://doi.org/10.1371/journal.pone.0260232

Sun et al. [14] provided an extreme learning-machine (ELM) approach to identify malicious

Android applications by utilizing application attributes (e.g., permissions and application pro-

gramming interface [API] calls) and employing an automated testing tool (i.e., WaffleDetec-

tor). Their approach showed good detection accuracy, short detection times, and required

minimal human involvement.

Alternatively, Sulaiman et al. [15] provided a methodology that utilized the whale optimiza-

tion algorithm (WOA) for feature selection of permission-based features in Android applica-

tions to increase their classification accuracy. Their results demonstrated improved accuracy

over the state-of-the-art detection models that used WOA without feature selection.

J. D. Koli [16] presented a machine-learning-based malware detection system whose classi-

fiers were trained using samples of benign and malicious applications with programmed fea-

tures. When an application was run on the system, the system extracted the user permissions,

vulnerable API calls, database details, and information about the dynamic, reflective, native,

and cryptographic codes of the application. The extracted features were then used to train vari-

ous machine-learning classifiers. Multiple experiments were conducted using Randroid, an

Android malware detection method that uses random machine-learning classifiers, to verify

system performance. He found that Randroid can reach 97.7% classification accuracy.

A machine-learning technique based on an evolutionary GA was proposed [17] for mal-

ware detection. Selected features gathered by the GA were applied to a machine-learning

classifier to train it to identify malware before and after feature selection. The results demon-

strated that the GA provided the best feature subset that led to an approximate 50% reduction

in feature dimensions.

Kim et al. [18] suggested a framework that incorporated many static features to represent

various Android applications. Features were enhanced using a feature extraction approach to

identify malware in real-world conditions. Multimodal deep learning was also employed in the

malware detection model.

Türker and Can [19], alternatively, introduced a classification approach to categorize

Android malware by family. Their algorithm used static features to detect malware by utilizing

many different machine-learning classifiers, including support vector machines (SVMs), deci-

sion trees (DTs), logistic regression (LR), k-nearest neighbors (KNNs), random forest (RF),

majority voting, multi-layer perceptrons (MLPs), and AdaBoost. The tested machine-learning

models yielded high accuracy in categorizing malware families, demonstrating the utility of

the extracted features. The SVM classifier had the most significant impact, with an overall

98.86% 10-fold accuracy.

BadHani et al. [20] developed methods of classifying Android apps in a binary manner as

either benign or malicious based on their static features. They employed five single ML classifi-

ers and three feature sets. In their first experiment, classifiers (i.e., DT, ELM, LR, SVM, and a

repeated incremental pruning tool to produce error reduction) delivered improved results on

some performance metrics. Ensemble learning was further refined in their second experiment

to improve performance further.

Waleed Ali [21] presented an Android malware detection approach to improve SVMs with

evolutionary boundary algorithms to boost Android malware detection. PSO and GA tools

(i.e., DroidHESVMGA and DroidHESVMPSO) handled their optimization problems to

enhance the SVM performance and improve the precise detection of Android viruses. The

testing accuracy of Droid-HESVMGA was 96.9%, whereas that of Droid-HESVMPSO was

96.0%.

Mehtab et al. [22] created AdDroid, which analyzes and detects fraudulent behavior in

Android applications by leveraging rules that comprise distinct combinations of items. Each

rule depicts an Android application’s particular behavior and simulates the execution of

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 3 / 22

https://doi.org/10.1371/journal.pone.0260232

various device tasks via Bluetooth. To train a model capable of identifying malicious applica-

tions based on the static analysis of Android applications, AdDroid used an ensemble-based

machine-learning technique in which Adaboost was paired with classifiers. Feature selection

and extraction procedures were utilized to provide the most specific rules. A dataset of 1,420

Android apps containing 910 malicious and 510 benign apps was used to create the model.

Zhu et al. [23] created the SEDMDroid framework to identify Android malware using an

upgraded deep-learning stacked ensemble technique. This dual-layered classifier architecture

used an MLP classifier on the first tier and an SVM fusion classifier on the second. Further-

more, the design incorporated a double disturbance method, in which sample and feature

spaces were disturbed to guarantee accuracy and variety of their technique in its base classifica-

tion. A multi-level static-feature dataset was used to evaluate their technique.

Mahdavifar et al. [24] suggested an effective and efficient Android malware category classi-

fication system that used a semi-supervised pseudo-label deep neural network. Although there

were very few labeled training datasets with which they could train their system, their

approach performed better than deep-neural networks that used supervised learning. Their

dataset contained a 11,598 multi-class application library with hybrid features across all five

malware categories (i.e., adware, banking, short message service (SMS), riskware, and benign).

With a specific number of hidden layers and hidden neurons, their method achieved 96.7%

accuracy in detecting malware.

Al-Fawa’reh et al. [25] introduced a convolutional neural-network-based approach for mal-

ware detection using hacked Android package files (APKs). By leveraging different sets of bal-

anced and unbalanced datasets from those created by [24], the authors showed that their

method was highly accurate at detecting malware, with an overall accuracy of 96.4%. Addition-

ally, the transfer-learning models saved training time relative to comparison models.

Additionally, previous research [26] used an RF algorithm based on the datasets created by

[24] to achieve high accuracy in the classification of banking malware. The authors used the

CICFlowMeters tool to obtain the required comma-separated-value files from the malware for

use in malware detection. The classification results using the RF algorithm with feature selec-

tion was 92.5%, and a precision value of 93.28% was achieved with a recall of 93.73%.

Taken together, this review of prior work demonstrates that deep-learning models used

for Android malware classification can produce excellent results when the application fea-

tures are utilized. However, even better outcomes are possible if better feature extraction

techniques are used with GAs [17]. Therefore, in this paper, computational models were

used to classify Android malware from the hybrid features of applications using a feature

selection technique.

3. Methods

3.1. Android operating system

Since Google deployed Android in 2005 [1], the Android OS has become the dominant market

platform for mobile operating systems, with 1.6 billion active Android devices representing

74.13% of mobile devices worldwide and a total of 3.04 million applications on the official

market (Google Play) as of 2020. Thus, the Android OS is a highly valued target for malware

developers.

The Android OS provides a collection of software components built around the Linux ker-

nel. Thus, it is open-source, making it popular for both developers and consumers. It runs

primarily on mobile devices and tablets, although recently it has also been used to run many

internet-of-things (IoT) devices, such as televisions, washing machines, home appliances, and

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 4 / 22

https://doi.org/10.1371/journal.pone.0260232

cars. The open-source nature of Android serves its users’ needs, it may also endanger user pri-

vacy, owing to the permissions that are freely granted to access sensitive information.

3.1.1. Application static analysis. Static analysis [27] typically requires the input of a pro-

gram’s source code, but this allows the investigation of said code without running it, and

thereby causes exposure to potential threats. Functional results are obtained by checking or

simulating the coding structure and statement sequences while handling variable values

throughout the code’s various functions, permissions, and API calls.

Furthermore, static analysis is performed in a non-runtime environment, whereas dynamic

analysis is performed live. Thus, static analysis is good for functional testing, whereas dynamic

analysis is best used to reflect the unique circumstances that cannot be satisfied with purely

functional analysis [28].

3.1.2. Application dynamic analysis. Dynamic behavioral analysis is defined as the detec-

tion and tracking of the behaviors of Android applications during runtime execution to deter-

mine the existence of malware categories [29]. Application-control actions include reading

and writing files, monitoring incoming and outgoing network details, employing encryption

operations, detecting information leakage, sending SMS messages, and making calls [30].

3.1.3. Hybrid analysis. Hybrid analysis combines static and dynamic analysis methods to

further examine the Android application source code while observing the application behav-

iors in real-time.

3.2. Artificial JS optimizer

The Jellyfish optimizer was introduced by Chou and Truong in 2021 [31]. This algorithm was

inspired by the movement and search behavior of jellyfish in the ocean. The implementation

of JS is based on the following three approaches [31, 32]:

1. The jellyfish obey only one dominating condition (i.e., the ocean current or the internal

movement of a group) based upon a time-control procedure.

2. The jellyfish desire to be positioned near food quantities.

3. Food is allocated to jellyfish using a predefined fitness function.

When the jellyfish move inside a swarm, a bloom is created as the result of either active or pas-

sive movements. Food quantities vary with jellyfish movement along a food-search path. After

comparisons between food quantities, the best value of the fitness function estimates the best

locations. The different steps in the JS optimizer can be described as follows.

The population is initialized utilizing a logistic map [33]:

~Piþ1 ¼ W:
~Pi 1 � ~Pi
� �

; 0 � P0 < 1; ð1Þ

where~Pi is the logistic value of the ith jellyfish position. Good performance is achieved if the ϑ
value is equal to four, as proposed in [31]. The ocean current is mathematically described as

~Pi sþ 1ð Þ ¼ ~Pi sð Þ þ rand
��!

1 �
~P� � g � rand2 � m
� �

; ð2Þ

where rand
��!

1 denotes the trajectory random numbers between 0 and 1, � is the vector multipli-

cation operator, γ represents the distribution coefficient, rand2 is a random number between 0

and 1, and μ denotes the population average.

The movements of the jellyfish are controlled by active and passive motions. A motion is

designated as passive if the jellyfish move within the current. Hence, the new position is

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 5 / 22

https://doi.org/10.1371/journal.pone.0260232

described by the following equation:

~Pi sþ 1ð Þ ¼ ~Pi sð Þ þ rand3 � r � ðXb � YbÞ; ð3Þ

where rand3 represents a random number between 0 and 1, ρ is the movement distance from

the current position, and Xb and Yb denote the upper and lower bounds of the search space,

respectively. The new position is presented in a continuous form. Active (intentional) motion

is defined as:

~Pi sþ 1ð Þ ¼ ~Pi sð Þ þ rand
��!

1 �
~M; ð4Þ

where ~M represents the direction of movement expressed in the following equation:

~M ¼
~Pi sð Þ � ~Pj sð Þ; if fitness function ~Pi

� �
< fitness function ~Pj

� �
; 5ð Þ

~Pj sð Þ � ~Pi sð Þ; otherwise: 6ð Þ

8
<

:

The ocean current, as well as active and passive motions, are alternated using the time-con-

trol procedure, C(s). This procedure is mathematically expressed as

C sð Þ ¼ 1 �
s
Smax

� �

� 2 � rand1 � 1ð Þ: ð7Þ

It can be observed that as time proceeds, each jellyfish continues to move inside the swarm

to find the best food location.

The main steps of the artificial JS optimizer algorithm are shown in Algorithm 1.

Algorithm 1: JS optimizer algorithm
artificial JS optimizer
Input objective function f(P), population size (Npop), search space
[Xb:Yb], Max number of iterations (Maxint)
Output the best results and visualization (jellyfish bloom)
1. Begin
2. Define objective function F(P)
3. Set the search space, population size Npop
4. Max number of iterations Maxint
5. Initialize population of jellyfishes xi
6. Calculate the food at each location
7. Find jellyfish with the best location
8. Initialize time: s = 1
9. while s < Smax
10. Fitness evaluation of each iteration (solution)
11. For i = 1:Npop
12. Calculate the time control, C(s), using Eq (7)
13. If c(t) > = 0.5: jellyfish follows ocean current
14. else: Jellyfish moves inside a swarm
15. If Rand [0:1]> = 1-C(s): jellyfish moves passively
16. else: jellyfish moves actively in its direction
17. End if
18. End if
19. End for
20. Update new position to jellyfish
21. Check new bound condition
22. Check stop condition
23. Output the best results and visualization (jellyfish bloom)
24. End while
25. End

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 6 / 22

https://doi.org/10.1371/journal.pone.0260232

3.3. RVFL network

Because of their universal approximation capabilities, single-layer feedforward neural net-

works are commonly used to solve classification and regression problems [34].

RVFL networks [35] are created when real weight values from the input layer to the hidden

layer are randomly created in the appropriate domain and are subsequently retained during

the learning process to avoid the local minima problem [36]. Fig 1 shows the structure of an

RVFL network.

The RVFL network randomly initializes fixed weights between the input nodes and the

enhancement layer in the range [-F, +F]. F is a measurement factor to be calculated for each

dataset during the parameter-tuning stage. During training, only the output weights are

changed, and they are calculated using the Moore–Penrose pseudo-inverse and ridge regres-

sion method.

Enhancement nodes convert input features into enhanced features. First, the input weights

and node biases are generated randomly. Then, both the original and the enhanced features

are concatenated and assigned to output neurons in the output layer.

Let the input layer of the RVFL network receive a group of labeled data, {(xi, yi) | xi 2 Rn, yi
2 Rn, yi 2 Rm, i = 1, . . ., N}; then, the output of the jth enhancement node is calculated as:

Dj ajxi þ bj
� �

¼
1

1þ e
� ajxþbj

� � ; ð8Þ

where aj 2 [−F, F] and bj 2 [0, F] are the weight and bias, respectively, between the input node

and the enhancement layer. The RVFL output is:

Y ¼ Hw; ð9Þ

where w 2 Rn+p represents the weight of the output, and H is an input data matrix. The

Fig 1. Structure of the randomized vector functional link network. The white circles represent input- and output-

layer nodes, whereas the yellow circles represent enhancement-layer nodes.

https://doi.org/10.1371/journal.pone.0260232.g001

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 7 / 22

https://doi.org/10.1371/journal.pone.0260232.g001
https://doi.org/10.1371/journal.pone.0260232

enhancement node output D is

H ¼ H1H2½ � ð10Þ

H1 ¼

x11 . . . x1n

..

. . .
. ..

.

xN1 . . . xNn

2

6
6
4

3

7
7
5;H2 ¼

D1 a1x1 þ b1ð Þ . . . DP aPx1 þ bPð Þ

..

. . .
. ..

.

D1 a1xN þ b1ð Þ . . . DP aPxN þ bPð Þ

2

6
6
4

3

7
7
5

The weight, w, is calculated using the ridge regression:

w ¼ HTH þ
I
C

� �� 1

HTY ð11Þ

or using the Moore–Penrose pseudo-inverse:

w ¼ HyY; ð12Þ

where †, I, and C represent the Moore–Penrose pseudo-inverse, identity matrix, and tradeoff

parameter, respectively.

4. Proposed approach

Many studies have been published on the use of deep-learning classifiers to detect Android

malware from application feature vectors. Fig 2 illustrates the structure of our approach. RVFL

+JS is divided into three stages. The first stage preprocesses the essential dataset features and

normalizes the feature frequencies to within [0,1]. During the second stage, the artificial JS

optimizer is launched to work with the final step to predict the best hyperparameters of the

RVFL network where the classifications are modeled [37].

4.1. Dataset acquisition

We used a public online dataset [24] from the University of New Brunswick Canadian Institute

for Cybersecurity website (https://www.unb.ca/cic/datasets/maldroid-2020.html).

4.2. Dataset normalization

After obtaining the dataset [24] as a CVS file containing vectors of features of size 470 for each

application, as extracted by the dataset authors, we configured and defined each feature with

the frequency of invoking all distinct behaviors of all APK files at a low level. The characteris-

tics vectors were normalized into [0,1] values via ℓ2 normalization, which scales each vector to

the square root of the sum of the squares of all values. The vector’s ℓ2-norm = 1. Let y = (y1, y2,

y3 � � �, yn) be a vector in the n-dimensional real vector space, Rn; then, the ℓ2-norm of vector y,
denoted by |y|, is defined as jyj ¼

ffi
y2

1
þ y2

2
þ y2

3
þ � � � þ y2

n

p
.

4.3. Feature selection using artificial JS optimizer

Feature selection is generally regarded as a preliminary stage in which the optimal subset of

features is determined from the collection of all features. Because our work on Android devices

is limited by the available hardware, our platform’s goal was to decrease complexity by ignor-

ing extraneous (i.e., redundant) features to boost the machine-learning model’s prediction

accuracy.

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 8 / 22

https://www.unb.ca/cic/datasets/maldroid-2020.html
https://doi.org/10.1371/journal.pone.0260232

Fig 2. Proposed randomized vector functional link plus artificial jellyfish swarm model.

https://doi.org/10.1371/journal.pone.0260232.g002

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 9 / 22

https://doi.org/10.1371/journal.pone.0260232.g002
https://doi.org/10.1371/journal.pone.0260232

Because feature selection optimization works as a binary problem using a search space that

is shaped as a hypercube, the position vector uniquely identifies a specific location within the

search space. In a moving system, the current position vector is added to the step vector to

obtain the new position. This technique must be modified to address binary optimization con-

cerns. The continuous data are translated into binary using a V-shaped transfer function [38],

as shown in Fig 3.

The value of the dth dimension of the ith step vector in the current iteration (t) is used as an

input to Eq (13) to generate the probability of changing that element to 0 or 1.

T vidðtÞ
� �

¼j vid tð Þ
� �

=

ffi

1þ vid tð Þð Þ
2

q

j ð13Þ

The ith element of the position vector is converted to 0 or 1 using Eq (14) by plugging the

outcome T vidðtÞ
� �

obtained from Eq (13).

Xðt þ 1Þ ¼
� Xt r < T vikðtÞ

� �

Xt r � T vikðtÞ
� �

(

ð14Þ

Where r is a function that generates a random number between 0 and 1. The value of r has a

major role in determining whether the value of Xt is flipped. When the value of T vikðtÞ
� �

is

small, the chance of flipping the new value X(t + 1) will be also small.

The jellyfish with highest fitness value in each iteration is considered as the best location.

The best location jellyfish and the jellyfish selected by the selection mechanism that searches

for food and a time control mechanism guide the movement of the jellyfish. Because this solu-

tion is continuous, as illustrated in section (3.2), it must be converted to a binary version using

a V-shaped transfer function to suit the feature selection problem. Additionally, the transfer

function should supply a significant possibility to change its position for a large absolute veloc-

ity value, because it would be far from the best solution.

In RVFL+JS, the solution is a one-dimensional vector of Feat elements where Feat is the

number of features in the original dataset. A cell value of 1 or 0 is attached to each vector ele-

ment. When the associated feature is selected, the value is set to 1., otherwise the value is set

to 0.

Fig 3. V-shaped transfer function.

https://doi.org/10.1371/journal.pone.0260232.g003

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 10 / 22

https://doi.org/10.1371/journal.pone.0260232.g003
https://doi.org/10.1371/journal.pone.0260232

For feature selection, the solutions are represented in binary form, either bit 1 or 0. Basi-

cally, bit 1 denotes the selected feature, while bit 0 represents the unselected feature. For exam-

ple, given some features subset of 10 dimensions (1,1,0,1,0,1,1,0,1,1), the 3rd, 5th, and 8th

features are not selected and the others are used for learning phase.

A critical component to consider when planning any optimization procedure is the objec-

tive function. As a wrapper technique, feature selection attempts to retain minimal features

while maximizing the accuracy of the learning algorithm. Both the selection ratio (minimiza-

tion) and the classification error rate (minimization) are targeted in this study with the follow-

ing objective function:

Fitness function ¼ a� ER Mð Þ þ b�
jSfeatj
jFeatj

; ð15Þ

where ER(M) represents the classification error rate when using the KNN classifier, |Sfeat| is

the selected features count, |Feat| is the original features count, and α and β are parameters in

the interval [0, 1], where α is the complement of β. Value α represents the weight of the classifi-

cation error rate, and β represents the selection ratio.

The dataset was randomly divided into a training dataset representing 80% of the data, and

the validation dataset was the remaining 20%. The classification error was computed using the

KNN with k = 5. A KNN-based model was chosen because of its simplicity, ease of implemen-

tation, and inexpensive comparison computation [39].

4.4. Classification using RVFL+JS

As mentioned in Section 3.2, JS optimizes the RVFL network to determine the best hyperpara-

meters and to provide the highest classification accuracy rate. For this reason, the dataset was

divided into training and testing datasets. First, the training dataset was processed during the

RVFL network training stage, followed by testing to determine model performance. The full

classification process is performed according to the following procedures:

• Initialization: The JS begins by randomly generating npop for the optimization process; each

population is a vector of the hyperparameter from a specific range of RVFL hyperparameters.

• Fitness evaluation: The second procedure determines the fitness value of the population by

constructing the RVFL network and training it using the JS parameters and the training

dataset. The construction of the RVFL+JS is achieved by extracting the necessary elements

from the population. Many neurons, biases, scale modes, scales, and seeds are used to con-

struct the RVFL.

• When the jellyfish move substantially inside a swarm, a bloom is created. The movements

are either active or passive. The food quantity varies at different locations according to the

path of the swarm during the food search. After comparisons of food quantity, the best value

of the fitness function estimates the best locations.

• The active and passive motions control the movements of the jellyfish using the time control

procedure, C(s), as time proceeds. Thus, jellyfish continue to move inside the swarm to

attempt to find the best location for food.

• Termination: All previous procedures, apart from initialization, are repeated for as many

iterations as necessary. Then, the best solution returned by the RVFL+JS is used to test the

model’s accuracy against the testing dataset.

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 11 / 22

https://doi.org/10.1371/journal.pone.0260232

5. Experimental results

5.1. Metrics

The performance metrics to evaluate and compare the algorithms combined with the RVFL

network include accuracy, sensitivity, specificity, precision, false-positive rate (FPR), and

F1-score [40].

Because we performed our classification on a multi-class dataset, we calculated perfor-

mance metrics as:

• A true-positive (TP) value was found when the actual and predicted values were the same.

• A true-negative (TN) value for a class was the sum of values of all columns and rows apart

from the values calculated.

• A false-positive (FP) value for a class was the sum of values for the corresponding column,

apart from the TP value.

• A false-negative (FN) value for a class was the sum of the values of corresponding rows,

apart from the TP value.

The accuracy of the model was defined as the number of correct predictions. In common

usage, this is compared to all the previous predictions:

Accuracy ¼ ðTPþ TNÞ=ðTP þ FN þ FPþ TNÞ ð16Þ

Sensitivity is the screening test’s ability to find a TP. This metric measures the uncertainty

in the output of the model [41]:

Sensitivity ¼ TP=ððTP þ FNÞ�100Þ ð17Þ

Specificity is the screening test’s ability to find a TN:

Specificity ¼ TN=ððFP þ TNÞ�100Þ ð18Þ

Precision indicates how many of the truly predicted values turned out to be positive:

Precision ¼ TP=ðTP þ TNÞ ð19Þ

The recall measure corresponds to the proportion of values predicted as positive that were

actually positive:

Recall ¼ TP=ðTP þ FNÞ ð20Þ

Lastly, the F1-score is the mean of precision and recall on a harmonic scale. The macro-F1

is used for multi-class classifications [42], calculated using the previous metrics and the classes

of the unweighted mean [41]:

F1 � Score ¼ ð2 � Precision � RecallÞ=ðPrecisionþ RecallÞ: ð21Þ

5.2. Dataset

Mahdavifar et al. [24] introduced a new Android malware dataset (CICMalDroid2020), which

is advantageous to use owing to its four key properties:

• Large: It encompasses 11,598 Android apps.

• Recent: New (up to 2018) and advanced Android samples are included.

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 12 / 22

https://doi.org/10.1371/journal.pone.0260232

• Diverse: Samples consists of five different application families: adware, banking malware,

SMS malware, riskware, and benign.

• Comprehensive: It contains hybrid features.

The results were analyzed and divided into three large groups:

• Statically extracted information: permissions, file types, intents, services, frequency counts

for various file types, occurrences of obfuscation, and sensitive API invocations.

• Dynamically observed behaviors: system calls, binder calls, and composite behaviors.

• Packet capture (PCAP): traffic network logs reported during the study.

The dataset uses a multi-class five-category family grouping. The distribution is shown in

Table 1.

5.3. Experimental results

To accommodate fair comparisons, experiments were carried out for all procedures under the

same conditions. The main details of the hardware and software of the used computing system

are listed in Table 2.

For RVFL Matlab coding, we used the same code from the standard RVFL literature pro-

vided publicly by the copyright holders [43], which ensured that RVFL+JS can be compared

with past and future works. The only way to compare algorithms fairly was to initialize them

to the same population sizes and to apply the same process termination conditions (i.e., num-

ber of iterations). Our code is available online in a GitHub repository for public use https://

github.com/emadtawfeek/optimizing-RVFL-with-Jellyfish-search-algorithm. Table 3 lists the

parameters of our model.

Table 4 lists private parameter settings of each metaheuristic optimization algorithm

according to the relevant articles from which they were sourced [6–8, 31].

Optimizing all RVFL hyperparameters can lead to an NP-hard problem. Hence, we used

just this set of hyperparameters to be optimized. We set a search space for each algorithm to

Table 1. Dataset category distribution.

CATEGORY NUMBER OF SAMPLES

ADWARE 1,253

BANKING 2,100

SMS 3,904

RISKWARE 2,546

BENIGN 1,795

TOTAL 11,598

https://doi.org/10.1371/journal.pone.0260232.t001

Table 2. Hardware and software of computing system.

Name Settings

Hardware Intel(R) Core (TM) i7-6700HQ CPU @ 2.60 GHz

Memory 8,192-MB RAM

Hard drive 128 SSD, 1 Tera HDD

Software Windows 10 Pro 64-bit

Language MATLAB R2020a

https://doi.org/10.1371/journal.pone.0260232.t002

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 13 / 22

https://github.com/emadtawfeek/optimizing-RVFL-with-Jellyfish-search-algorithm
https://github.com/emadtawfeek/optimizing-RVFL-with-Jellyfish-search-algorithm
https://doi.org/10.1371/journal.pone.0260232.t001
https://doi.org/10.1371/journal.pone.0260232.t002
https://doi.org/10.1371/journal.pone.0260232

obtain the best combination of hyperparameters to optimize the RVFL network, as illustrated

in Table 5.

Considering the above preconditions, all RVFL hyperparameters are listed:

• N: represents the number of hidden neurons

• Bias: checks whether the network has a bias in the output neurons

• Scale: percent of random features that will be linearly scaled

• Scale mode: illustrates how features will be scaled (1: features for all neurons; 2: features for

each hidden neuron separately; and 3: scale the randomization range for a uniform

distribution.)

• Seeds: random

• Activation Function: Radbas

• Updating Method: ridge regression.

• Link between the input and output: true

• Random Type: different randomization methods (currently only support Gaussian and uni-

form). We used uniform.

RVFL+JS obtained the optimized hyperparameters listed in Table 6. Then, we ran each

algorithm for 30 times. We obtained the average of all runs, the standard deviation to measure

Table 3. Parameter settings of all metaheuristic algorithms for optimizing RVFL.

Parameter

Population 50

Number of iterations 100

https://doi.org/10.1371/journal.pone.0260232.t003

Table 4. Private parameter settings of each metaheuristic optimization algorithm.

PSO Cognitive component (c1) 2

Social component (c2) 2

Inertial weight 0.2–0.9

GA Selection Stochastic Universal Sampling

Crossover uniform

Mutation Real coded

Alpha α 0

Crossover probability 0.9

Mutation probability 0.1

GWO Α decreased from 2 to 0

JSA The parameters governing the JS algorithm include population size and number of

iterations.

https://doi.org/10.1371/journal.pone.0260232.t004

Table 5. Lower and upper space-search bounds for all metaheuristic algorithms.

N Bias Scale Scale mode

Lower bound 100 0 0.0001 1

Upper bound 1,000 1 0.9999 3

https://doi.org/10.1371/journal.pone.0260232.t005

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 14 / 22

https://doi.org/10.1371/journal.pone.0260232.t003
https://doi.org/10.1371/journal.pone.0260232.t004
https://doi.org/10.1371/journal.pone.0260232.t005
https://doi.org/10.1371/journal.pone.0260232

the amount of variation or dispersion for the set of values, and the best execution result. Then,

we compared our results on these different metrics for RVFL+JS with those of PSO, GWO,

and GA. We then compared RVFL+JS with standard RVFL. The results are listed in Tables 6–

11 for the training and testing datasets.

5.4. Statistical analysis

In general, comparing algorithms using statistical metrics such as best, SD, and Avg over 30

independent runs does not compare each run. It is still possible for superiority to arise by

Table 6. Measurement accuracy of RVFL+ JS against other metaheuristic algorithms.

Accuracy Training Testing

Algorithm AVG SD Best AVG SD Best

RVFL + JS 97.58% 0.5278% 98.15% 97.22% 0.4241% 98.41%

RVFL + GA 92.01% 0.5229% 97.96% 96.89% 0.3165% 97.41%

RVFL + PSO 92.69% 0.3392% 97.91% 96.85% 0.5509% 98.41%

RVFL + GWO 92.93% 0.3935% 98.04% 96.95% 0.3797% 98.41%

Standard RVFL 89.36% 0.7056% 90.36% 89.03% 1.1050% 90.39%

https://doi.org/10.1371/journal.pone.0260232.t006

Table 7. Measurement macro F1-score of RVFL+ JS against other metaheuristic algorithms.

F1-score Training Testing

Algorithm AVG SD Best AVG SD Best

RVFL + JS 97.90% 0.4166% 98.36% 97.51% 0.4055% 98.58%

RVFL + GA 92.42% 0.4377% 98.21% 97.23% 0.2892% 97.77%

RVFL + PSO 93.11% 0.2870% 98.16% 97.21% 0.5017% 98.58%

RVFL + GWO 93.37% 0.3306% 98.28% 97.32% 0.3387% 98.58%

Standard RVFL 89.92% 0.7227% 90.99% 89.51% 1.2128% 90.81%

https://doi.org/10.1371/journal.pone.0260232.t007

Table 8. Measurement sensitivity of RVFL+ JS against other metaheuristic algorithms.

Sensitivity Training Testing

Algorithm AVG SD Best AVG SD Best

RVFL + JS 97.72% 0.5376% 98.31% 97.29% 0.4380% 98.47%

RVFL + GA 92.13% 0.4887% 97.96% 96.93% 0.3563% 97.51%

RVFL + PSO 92.83% 0.3229% 97.89% 96.88% 0.5587% 98.47%

RVFL + GWO 93.06% 0.3712% 98.06% 97.00% 0.4010% 98.47%

Standard RVFL 88.74% 0.7724% 89.80% 88.43% 1.1736% 90.11%

https://doi.org/10.1371/journal.pone.0260232.t008

Table 9. Measurement specificity of RVFL+ JS against other metaheuristic algorithms.

Specificity Training Testing

Algorithm AVG SD Best AVG SD Best

RVFL + JS 99.33% 0.1631% 99.50% 99.23% 0.2411% 99.56%

RVFL + GA 93.96% 0.1498% 99.42% 99.16% 0.1597% 99.56%

RVFL + PSO 94.67% 0.0976% 99.41% 99.11% 0.1541% 99.56%

RVFL + GWO 95.00% 0.1144% 99.45% 99.14% 0.1062% 99.56%

Standard RVFL 97.00% 0.2156% 97.27% 96.93% 0.3023% 97.35%

https://doi.org/10.1371/journal.pone.0260232.t009

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 15 / 22

https://en.wikipedia.org/wiki/Statistical_dispersion
https://doi.org/10.1371/journal.pone.0260232.t006
https://doi.org/10.1371/journal.pone.0260232.t007
https://doi.org/10.1371/journal.pone.0260232.t008
https://doi.org/10.1371/journal.pone.0260232.t009
https://doi.org/10.1371/journal.pone.0260232

chance despite the low probability in 30 runs. Thus, a non-parametric statistical test was used

to compare the findings of each algorithm and to determine their significance.

The Wilcoxon rank sum test was employed to determine the significance of the data in this

work as a non-parametric statistical test [44]. Table 12 summarizes the p-values at 5% derived

from this test. Since p-values less than 0.05, Table 12 demonstrates RVFL + JS’s significant

advantage to the other methods.

5.5. Discussion and comparison

Feature selection using JS requires a wrapper methodology in which multiple feature sets are

prepared, analyzed, and compared for better combinations. Predictive models were employed

to determine which combinations of features best predict the model performance.

We used a dataset [24] of hybrid features containing intents, method tags, permissions, API

calls, file types, obfuscation, and components for static analysis. We used system calls, binder

calls, composite behaviors, API calls, networks, and logs for dynamic analysis.

JS binary feature selection reduced the number of hybrid features from 470 to 195, and it

required 8.5 hours, with 88.87% accuracy percentage. The run consisted of 250 iterations. Fig 4

illustrates the convergence curve of the feature selection process. The feature reduction per-

centage exceeded the percentage of publication [17], which reduced the dimensionality using

the GA. However, the no-free-lunch optimization theorem showed that there was no assur-

ance that the optimizer would be good enough to address all of the optimization problems.

Thus, the current stochastic-based feature selection methods may not be suitable for some

tasks.

Table 11. Execution time of RVFL+ JS against other metaheuristic algorithms.

Algorithm Time (minutes)

RVFL + JS 30.5

RVFL + GA 40.1

RVFL + PSO 37.9

RVFL + GWO 62.3

Standard RVFL 0.02

https://doi.org/10.1371/journal.pone.0260232.t011

Table 10. Measurement FPR of RVFL+ JS against other metaheuristic algorithms.

FPR Training Testing

Algorithm AVG SD Best AVG SD Best

RVFL + JS 0.00677 0.00132 0.01010 0.00768 0.00141 0.01240

RVFL + GA 0.00793 0.00150 0.01010 0.00884 0.00071 0.01010

RVFL + PSO 0.00798 0.00098 0.00960 0.00885 0.00154 0.01170

RVFL + GWO 0.00839 0.00114 0.01000 0.00857 0.00106 0.00940

Standard RVFL 0.03001 0.00212 0.03720 0.03069 0.00302 0.03850

https://doi.org/10.1371/journal.pone.0260232.t010

Table 12. Results from the Wilcoxon rank sum test (p� 0.05).

RVFL + JS vs. RVFL + GA RVFL + JS vs. RVFL + PSO RVFL + JS vs. RVFL + GWO RVFL + JS vs. Standard RVFL

Training dataset 0.0174 0.0083 0.0018 2.8544e-18

Testing dataset 0.0344 7.0459e-04 7.8006e-04 8.0907e-19

https://doi.org/10.1371/journal.pone.0260232.t012

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 16 / 22

https://doi.org/10.1371/journal.pone.0260232.t011
https://doi.org/10.1371/journal.pone.0260232.t010
https://doi.org/10.1371/journal.pone.0260232.t012
https://doi.org/10.1371/journal.pone.0260232

As observed in Tables 6–11 and Figs 5–8, the RVFL+JS classification metrics (i.e., accuracy,

F1-score, sensitivity, specificity and FPR) demonstrate that this method had the best perfor-

mance results with the training and testing data, and required the minimal running time. This

is a result of Jellyfish search algorithm’s design simplicity [31], showing that RVFL+JS is more

effective than other metaheuristic algorithms.

5.6. Comparison of the same dataset with other works

The proposed model was compared with those of recent studies [24–26]. The previous experi-

ments used the same dataset with the different models listed in Table 13.

The accuracy from [24] was 96.7%, from [25] was 96.4%, and from [26] was 95.0%. Fig 9

shows a comparison of the performance.

Fig 4. Convergence curve of feature selection process accuracy.

https://doi.org/10.1371/journal.pone.0260232.g004

Fig 5. Accuracy, macro F1-score, sensitivity, and specificity for the training dataset.

https://doi.org/10.1371/journal.pone.0260232.g005

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 17 / 22

https://doi.org/10.1371/journal.pone.0260232.g004
https://doi.org/10.1371/journal.pone.0260232.g005
https://doi.org/10.1371/journal.pone.0260232

6. Conclusion and future work

Because of the rapid growth in the popularity of Android platform devices, hackers and attack-

ers have a large playing field that is full of potential victims. Our work addresses this threat by

Fig 6. Accuracy, macro F1-score, sensitivity, and specificity for the training dataset.

https://doi.org/10.1371/journal.pone.0260232.g006

Fig 7. Comparison of false positive rates for the training and testing dataset.

https://doi.org/10.1371/journal.pone.0260232.g007

Fig 8. Time in minutes for each algorithm’s execution time.

https://doi.org/10.1371/journal.pone.0260232.g008

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 18 / 22

https://doi.org/10.1371/journal.pone.0260232.g006
https://doi.org/10.1371/journal.pone.0260232.g007
https://doi.org/10.1371/journal.pone.0260232.g008
https://doi.org/10.1371/journal.pone.0260232

examining the machine-learning platforms that are currently used to detect malware and

other nefarious practices. We investigated Android application features and used the artificial

JS optimizer to determine the effective features of malware detection.

Our work improves machine-learning efficiency, attaining a state-of-the-art malware detec-

tion accuracy of 98.41% while determining RVFL network hyperparameters that reduces

runtime costs. In future research, the performance of our approach may be improved using

additional machine-learning models. These can be compared with ready-to-use packages such

as HyperOpt and Optuna frameworks to produce an automated tool for analyzing Android

applications and generating a dynamically updated dataset. This will be beneficial to future

researchers, as well as Android uses, as Android applications are published continuously and

new security measures must be developed alongside them.

Supporting information

S1 File.

(RAR)

Author Contributions

Conceptualization: Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat.

Data curation: Emad T. Elkabbash.

Formal analysis: Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat.

Investigation: Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat.

Table 13. Accuracy comparison of other works to the proposed model.

Paper Classifier Best accuracy

Mahdavifar et al. (2020) [24] Pseudo-Label Deep Neural Network 96.7%

AL-FAWA’REH et al. (2021) [25] Random forest 96.4%

SAPUTRA et al. (2021) [26] Convolutional Neural Networks 92.5%

Our approach RVFL+JS 98.41%

https://doi.org/10.1371/journal.pone.0260232.t013

Fig 9. Accuracy comparison of other works to the proposed model.

https://doi.org/10.1371/journal.pone.0260232.g009

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260232.s001
https://doi.org/10.1371/journal.pone.0260232.t013
https://doi.org/10.1371/journal.pone.0260232.g009
https://doi.org/10.1371/journal.pone.0260232

Methodology: Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat.

Project administration: Reham R. Mostafa.

Software: Emad T. Elkabbash.

Supervision: Reham R. Mostafa, Sherif I. Barakat.

Validation: Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat.

Visualization: Emad T. Elkabbash, Reham R. Mostafa.

Writing – original draft: Emad T. Elkabbash.

Writing – review & editing: Emad T. Elkabbash, Reham R. Mostafa, Sherif I. Barakat.

References
1. Available online on “https://www.statista.com/topics/876/android/”

2. Available online on “https://www.statista.com/statistics/266210/number-of-available-applications-in-

the-google-play-store/”

3. Hur J, Shamsi J. A survey on security issues, vulnerabilities and attacks in Android based smartphone.

2017 International Conference on Information and Communication Technologies (ICICT). 2017;.

4. Gibert D, Mateu C, Planes J. The rise of machine learning for detection and classification of malware:

Research developments, trends and challenges. Journal of Network and Computer Applications. 2020;

153:102526.

5. Ibrahim H, Mazher W, Ucan O, Bayat O. A grasshopper optimizer approach for feature selection and

optimizing SVM parameters utilizing real biomedical data sets. Neural Computing and Applications

[Internet]. 2018 [cited 25 September 2021]; 31(10):5965–5974. https://doi.org/10.1007/s00521-018-

3414-4

6. Yang CS, Chuang LY, Li JC, Yang CH (2008) Chaotic maps in binary particle swarm optimization for

feature selection, pp. 107–112

7. Emary E, Zawbaa HM, Grosan C, Hassenian AE (2015) Feature subset selection approach by gray-

wolf optimization, vol 334

8. MIRJALILI Seyedali. Genetic algorithm. In: Evolutionary algorithms and neural networks. Springer,

Cham, 2019. p. 43–55.

9. Abd Elaziz M, Senthilraja S, Zayed M, Elsheikh A, Mostafa R, Lu S. A new random vector functional link

integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal

collector combined with electrolytic hydrogen production system. Applied Thermal Engineering. 2021;

193:117055.

10. Yu L, Wu Y, Tang L, Yin H, Lai K. Investigation of diversity strategies in RVFL network ensemble learn-

ing for crude oil price forecasting. Soft Computing. 2020; 25(5):3609–3622.

11. Abd Elaziz M., Shehabeldeen T. A., Elsheikh A. H., Zhou J., Ewees A. A., & Al-qaness M. A. Utilization

of Random Vector Functional Link integrated with Marine Predators Algorithm for tensile behavior pre-

diction of dissimilar friction stir welded aluminum alloy joints. Journal of Materials Research and Tech-

nology, 2020, 9.5: 11370–11381.

12. El-Hasnony I, Barakat S, Mostafa R. Optimized ANFIS Model Using Hybrid Metaheuristic Algorithms

for Parkinson’s Disease Prediction in IoT Environment. IEEE Access. 2020; 8:119252–119270.

13. Zhang Y., Peng Z., Guan Y., & Wu L. Prognostics of battery cycle life in the early-cycle stage based on

hybrid model. Energy, 2021, 221: 119901.

14. Sun, Y., Xie, Y., Qiu, Z., Pan, Y., Weng, J., & Guo, S. Detecting android malware based on extreme

learning machine. In: 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing,

15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Com-

puting and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE,

2017. p. 47–53.

15. Sulaimon S. A., Adebayo O. S., Bashir S. A., & Ismaila I. Android Malware Classification using Whale

Optimization Algorithm. i-manager’s Journal on Mobile Applications and Technologies, 2018, 5.2: 37.

16. Koli J. RanDroid: Android malware detection using random machine learning classifiers. 2018 Technol-

ogies for Smart-City Energy Security and Power (ICSESP). 2018;.

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 20 / 22

https://www.statista.com/topics/876/android/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://doi.org/10.1007/s00521-018-3414-4
https://doi.org/10.1007/s00521-018-3414-4
https://doi.org/10.1371/journal.pone.0260232

17. Fatima, A., Maurya, R., Dutta, M. K., Burget, R., & Masek, J. Android malware detection using genetic

algorithm based optimized feature selection and machine learning. In: 2019 42nd International Confer-

ence on Telecommunications and Signal Processing (TSP). IEEE, 2019. p. 220–223.

18. Kim T., Kang B., Rho M., Sezer S., and Im E. G, "A multimodal deep learning method for android mal-

ware detection using various features," IEEE Transactions on Information Forensics and Security, 14

(3), 773–788, 2019.

19. Türker, Sercan; Can, Ahmet Burak. AndMFC: Android Malware Family Classification Framework. In:

2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC Workshops). IEEE, 2019. p. 1–6.

20. Badhani Shikha; Muttoo Sunil K. CENDroid—A cluster-ensemble classifier for detecting malicious

Android applications. Computers & Security, 2019, 85: 25–40.

21. Ali Waleed. Hybrid Intelligent Android Malware Detection Using Evolving Support Vector Machine

Based on Genetic Algorithm and Particle Swarm Optimization Hybrid Intelligent Android Malware

Detection Using Evolving Support Vector Machine Based on Genetic Algorithm and Particle Swarm

Optimization. IJCSNS, 2019, 19.9: 15.

22. Mehtab A, Shahid W, Yaqoob T, Amjad M, Abbas H, Afzal H, et al. AdDroid: Rule-Based Machine

Learning Framework for Android Malware Analysis. Mobile Networks and Applications. 2019; 25

(1):180–192.

23. Zhu H, Li Y, Li R, Li J, You Z, Song H. SEDMDroid: An Enhanced Stacking Ensemble Framework for

Android Malware Detection. IEEE Transactions on Network Science and Engineering. 2021; 8(2):984–994.

24. Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. Dynamic Android Malware

Category Classification using Semi-Supervised Deep Learning. In: 2020 IEEE Intl Conf on Dependable,

Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on

Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/

CBDCom/CyberSciTech). IEEE, 2020. p. 515–522.

25. Al-Fawa’reh, M., Saif, A., Jafar, M. T., & Elhassan, A. Malware Detection by Eating a Whole APK. In:

2020 15th International Conference for Internet Technology and Secured Transactions (ICITST). IEEE,

2020. p. 1–7.

26. Saputra, Ahmad Aji Guntur; Stiawan, Deris; Heryanto, Ahmad. Klasifikasi Malware Banking PADA

Android Menggunakan Algoritma Random Forest. 2021. PhD Thesis. Sriwijaya University.

27. Li L., Bissyandé T. F., Papadakis M., Rasthofer, et al. Static analysis of android apps: A systematic liter-

ature review. Information and Software Technology, 2017, 88: 67–95.

28. Fan W., Zhang D., Chen Y., Wu F., & Liu Y. A. EstiDroid: Estimate API Calls of Android Applications

Using Static Analysis Technology. IEEE Access, 2020, 8: 105384–105398.

29. Qiu, J., Nepal, S., Luo, W., et al. Data-driven android malware intelligence: a survey. In: International

Conference on Machine Learning for Cyber Security. Springer, Cham, 2019. p. 183–202.

30. Kapratwar, Ankita; Di Troia, Fabio; Stamp, Mark. Static and dynamic analysis of android malware. In:

ICISSP. 2017. p. 653–662.

31. Chou J.-S., Truong D.-N.J.A.M., and Computation, A novel metaheuristic optimizer inspired by behavior

of jellyfish in ocean. 2021. 389: p. 125535.

32. Chou J.-S., Truong D.-N.J.C., Solitons, and Fractals, Multi objective optimization inspired by behavior

of jellyfish for solving structural design problems. 2020. 135: p. 109738.

33. Sun Z., Wang N., Bi Y., & Srinivasan D. Parameter identification of PEMFC model based on hybrid

adaptive differential evolution algorithm. 2015. 90: p. 1334–1341.

34. Abd Elaziz M., Hemedan A. A., Ostaszweski M., Schneider R., & Lu S. Optimization ACE inhibition

activity in hypertension based on random vector functional link and sine-cosine algorithm. Chemo-

metrics and Intelligent Laboratory Systems, 2019, 190: 69–77.

35. Pao Yoh-Han; Park Gwang-Hoon; Sobajic Dejan J. Learning and generalization characteristics of the

random vector functional-link net. Neurocomputing, 1994, 6.2: 163–180.

36. Zhang Le; Suganthan Ponnuthurai N. A comprehensive evaluation of random vector functional link net-

works. Information sciences, 2016, 367: 1094–1105.

37. Ashraf N. M., Mostafa R. R., Sakr R. H., & Rashad M. Z. Optimizing hyperparameters of deep reinforce-

ment learning for autonomous driving based on whale optimization algorithm. Plos one, 2021, 16.6:

e0252754. https://doi.org/10.1371/journal.pone.0252754 PMID: 34111168

38. Hammouri A. I., Mafarja M., Al-Betar M. A., Awadallah M. A., & Abu-Doush I. An improved Dragonfly

Algorithm for feature selection. Knowledge-Based Systems, 2020, 203: 106131.

39. Too Jingwei; Mirjalili Seyedali. A hyper learning binary dragonfly algorithm for feature selection: A

COVID-19 case study. Knowledge-Based Systems, 2021, 212: 106553.

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 21 / 22

https://doi.org/10.1371/journal.pone.0252754
http://www.ncbi.nlm.nih.gov/pubmed/34111168
https://doi.org/10.1371/journal.pone.0260232

40. Raghuraman, C., Suresh, S., Shivshankar, S., & Chapaneri, R. Static and dynamic malware analysis

using machine learning. In: First International Conference on Sustainable Technologies for Computa-

tional Intelligence. Springer, Singapore, 2020. p. 793–806.

41. Saltelli Andrea. Sensitivity analysis for importance assessment. Risk analysis, 2002, 22.3: 579–590.

https://doi.org/10.1111/0272-4332.00040 PMID: 12088235

42. Kolo, Brian. Binary and multiclass classification. Lulu. com, 2011.

43. Zhang Le (2021). RVFL_train_val(trainX,trainY,testX,testY,option) (https://www.mathworks.com/

matlabcentral/fileexchange/65299-rvfl_train_val-trainx-trainy-testx-testy-option), MATLAB Central File

Exchange. Retrieved June 29, 2021.

44. Hashim F, Houssein E, Mabrouk M, Al-Atabany W, Mirjalili S. Henry gas solubility optimization: A novel

physics-based algorithm. Future Generation Computer Systems. 2019; 101:646–667.

PLOS ONE Android malware classification using optimized machine learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260232 November 19, 2021 22 / 22

https://doi.org/10.1111/0272-4332.00040
http://www.ncbi.nlm.nih.gov/pubmed/12088235
https://www.mathworks.com/matlabcentral/fileexchange/65299-rvfl_train_val-trainx-trainy-testx-testy-option
https://www.mathworks.com/matlabcentral/fileexchange/65299-rvfl_train_val-trainx-trainy-testx-testy-option
https://doi.org/10.1371/journal.pone.0260232

