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Abstract

This study investigated the relationship between urban form and land surface temperature

(LST) using the Multi-access Geographically Weighted Regression (MGWR) model. A case

study on Nanjing City was conducted using building data, point-of-interest (POI) data, land

use data, remote sensing data, and elevation data. The results show that the MGWR model

can reveal the influence of altitude, urban green space, road, building height (BH), building

density (BD) and POI on LST, with a superior fitting effect over the geographically weighted

regression model. LST in Nanjing exhibits a significant spatial differentiation, and the distri-

bution of LST hotspots is spatially consistent with the level of urban construction. In terms of

the two-dimensional landscape pattern, LST decreases with altitude and increases with

POI. In terms of the three-dimensional structure, building height has a positive correlation

with LST. POI, urban roads, and urban buildings positively affect LST, while urban green

space and altitude negatively affect LST. The results of this study were verified against

existing findings. The LST of areas with high-rise and super high-rise buildings is lower than

that of areas with mid-rise building, which can be attributed to the large number of shadow

areas formed by high-rise and super high-rise buildings. A similar phenomenon was also

observed between areas with medium- and high-density buildings. These findings provide a

reference for urban architecture planning and can help to develop urban heat island adapta-

tion strategies based on local conditions.

Introduction

With the continuous expansion and increase of the scale and number of cities in China, the

boundary between urban and rural areas is becoming increasingly blurry. The urbanization

rate of China’s permanent population reached 60.60% in 2019(http://data.stats.gov.cn).The

continuous expansion of the scale of related industrial activities [1, 2] is driving economic

growth, improving the employment environment, and increasing the income of residents [3–

5]. However, this expansion has also led to negative effects on the quality of human settle-

ments, social and economic development [6–9]. In particular, the urban heat island effect,
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especially urban heat waves associated with global warming, can increase the vulnerability of

populations to various health issues, such as heatstroke, and even death [10]. Therefore,

improving the urban thermal environment has become the focus of relevant scholars and insti-

tutions [11]. To measure the quality of the urban thermal environment and mitigate the nega-

tive effects, it is necessary to analyze the spatiotemporal pattern of the thermal environment

and its influencing factors. For this purpose, various indicators have been developed. Among

them, Land Surface Temperature (LST), a basic parameter in the fields of meteorology and

ecological changes [12–14], has become an important indicator [15–17], facilitating detailed

analyses [18, 19].

The relationship between urban landscape patterns, such as land use type and blue-green

space [20], and surface temperature has received extensive attention worldwide. At present,

researchers in the field of LST studies are focusing on the following aspects: (1) The impact of the

two-dimensional urban landscape pattern on LST, analyzing the impact of different land use

types on LST from the perspective of land use type and land use type transformation [1, 21]; (2)

Statistical analysis of the mathematical relationship between surface factors and LST using indica-

tors, such as normalized difference vegetation index, normalized difference moisture index, nor-

malized difference built-up index, and building density (BD) [3, 22, 23]; (3) Correlation between

the three-dimensional structure and LST based on indicators, such as building height (BH), floor

area ratio (FAR), and sky view factor (SVF) [24–26]. It is worth noting that the process of urbani-

zation involves a contradiction between population concentration and limited supply of con-

struction land, which further leads to the rapid expansion of cities in the two-dimensional

direction and the continuous increase of BH [27, 28]. However, most studies investigated the

relationship between surface factors and LST through simple or single regression analysis, ignor-

ing the spatial autocorrelation and spatial information between the two. In addition, research on

the relationship between urban form and LST mostly focus on a single factor of urban form

(two-dimensional or three-dimensional), especially the two-dimensional form. For mega cities

famous for their ecology (Gardens) (with a permanent resident population of over 8.5 million),

such as Nanjing, the lack of multi-factor analysis combined with the two-dimensional landscape

pattern and three-dimensional structural form makes it difficult for existing studies to further

explore the impact of urban spatial differences on urban thermal environment. In addition, the

urban spatial planning system has undergone major changes, and the three-dimensional urban

structure is undergoing significant changes [29, 30]. Therefore, the existing approach of analyzing

the urban thermal environment needs to be clarified and the two-dimensional landscape and

three-dimensional space of urban landscapes need to be optimized.

This study aims to comprehensively explore the relationship between urban form (two-

dimensional landscape pattern and three-dimensional structural form) and LST. For this pur-

pose, the Multi-scale Geographically Weighted Regression (MGWR) model, a mono-window

algorithm, was used to quantitatively analyze the spatial pattern of related surface factors in

each local climate zone of Nanjing on LST. With this approach, this study addresses the lack of

multi-factor analysis to a certain extent. The findings will provide support for regulating the

urban thermal environment and improving the quality of urban human settlements.

Study area and data sources

Overview of the study area

Nanjing is located at 31˚14’N-32˚36’N, 118˚22’E-119˚14’E. It is a low altitude area with a humid

subtropical climate (Cfa). According to meteorological records, On July 28, 2018, extreme high

temperature weather occurred, which was 37.20˚C. It has 11 districts with a total area of 6587

km2 and a built-up area of 817 km2. As of 2019, permanent residents account for a population
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of 8.5 million and an urbanization rate of 83.2%. The increasing concentration of population

and amount of industrial activities are exacerbating the urban heat island effect (Fig 1).

Data source and processing

In this study, building data, POI data, land use data, remote sensing data and elevation data

were selected. The data sources and descriptions are shown in Table 1. BH and BD reflect the

concentration of buildings in the vertical and horizontal directions, respectively. To a certain

extent, the two have the greatest impact on the three-dimensional structure of the city, and the

degree of LST has the most direct effect [16, 31, 32]. According to the 2019 Unified Standards

for Civil Building Design, BH is divided into 3 types: low-rise civil buildings (�27 m), high-

rise civil buildings (27–100 m), and super high-rise buildings (>100 m) [31, 33]. Considering

Fig 1. Location of the study area. The location of Nanjing in China and Jiangsu. examined in this paper, in Jiangsu

Province (blue), in Nanjing City (red), and on the right side is the District of Nanjing city. This map is drawn by the

authors. This map was created using ArcGIS1 software by Esri, ©National Platform for Common Geospatial

Information Services, ©USGS, ©Resource and Environment Science and Data Center, ©Baidu, ©OpenStreetMap and

contributors, Creative Commons Attribution 4.0(CC BY 4.0).

https://doi.org/10.1371/journal.pone.0260205.g001

Table 1. Data source and description.

Data Time Data interpretation Data sources

Building data 2019 Vector data http://ditu.amap.com

POI 2019 Point data http://ditu.amap.com

Land Use/Cover Change (LUCC) 2018 Raster data http://www.resdc.cn/

Landsat 8-OLI (Resolution 30 m)

Remote sensing 2019-08-12 Landsat 8-OLI (Resolution 30 m) glovis.usgs.gov

DEM 2009 SRTM DEM (Resolution 30 m) http://www.gscloud.cn/

Administrative boundary 2019 Vector data https://www.tianditu.gov.cn/

https://www.openstreetmap.org/

https://doi.org/10.1371/journal.pone.0260205.t001
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the findings of existing research and the status quo of the research area, with 20% and 40% as

the boundary, BD was divided into three types: sparse, open and compact [34]. POI data were

obtained through Baidu Map API, and the data were cleaned and selected for nuclear density

analysis. LST data were obtained through inversion using ENVI5.3 software with Landsat 8

products, which were geometrically corrected [35]. Urban green space and aspect were

obtained from digital elevation data using the ArcGIS 10.7 surface analysis function.

Methods and factor selection

Mono-window algorithm

LST is one of the important parameters in the study of surface energy balance. The commonly

used methods of remote sensing inversion of LST mainly include the radiative transfer equa-

tion method, single window algorithm, single channel algorithm, and split window algorithm.

Qin et al. [27] analyzed atmospheric water vapor content using the mono-window algorithm

and found a significant negative correlation between atmospheric transmittance and the inver-

sion error of LST [36]. Nanjing has many water bodies, and summer is mostly hot and humid.

As the area features low atmospheric permeability and high accuracy of LST inversion, Landsat

TM 6 band and Landsat 8 TIRS 10 were selected, and a mono-window algorithm was used to

invert LST. The inversion formula can be expressed as follows:

TS ¼ fa6ð1 � C6 � D6Þ þ ½b6ð1 � C6 � D6Þ þ C6 þ D6�T6 � D6Tag=C6 ð1Þ

C6 ¼ ε6t6 ð2Þ

D6 ¼ ð1 � ε6Þ½1þ ð1 � ε6Þt6� ð3Þ

where TS is surface inversion temperature (K); a6 and b6 are constants; T6 is luminance tem-

perature (K); Ta is the average temperature of the atmosphere (K); and C6 and D6 are interme-

diate variables, which can be obtained from ε6 (surface specific emissivity) and τ6
(atmospheric transmittance in the thermal infrared band).

MGWR model

Compared with the classic geographically weighted regression (GWR) model, the kernel func-

tion and bandwidth selection of MGWR continue the selection criteria in the classic GWR,

but the MGWR model adds spatially stable variables, and each regression coefficient βbwj is

based on local regression. Moreover, each bandwidth is different. The calculation formula is as

follows:

yi ¼
Pk

j¼1
bbwjðui; viÞxij þ εi ð4Þ

where bwj is the bandwidth of the regression coefficient of the j-th variable, (ui, vi) represents

the coordinates of the i-th local point in geographic space, xij is the influencing factor, and εi is

the random error term.

Selection of impact factors

According to the principle of surface heat radiation and thermodynamic characteristics, LST is

affected by thermal channels and near-surface gas LST. In low-altitude areas such as Nanjing,

changes in surface radiation caused by topography, impervious surfaces, human Activity sig-

nificantly affect the regional surface radiation. Referring to previous studies [1, 37–40],
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combined with the actual situation in the study area, and considering issues such as data avail-

ability, this study selected the factors listed in Tables 2 and 3.

Results and analysis

Spatial pattern characteristics of LST

Using Landsat 8 images, the overall distribution of LST was inversed according to the single

window algorithm (Fig 2). The highest LST of Nanjing was 37.121˚C, the lowest was 19.923˚C,

and the average was 28.525˚C. According to an analysis of hot spots, excluding outliers and

the spatial distribution of LST As shown in Fig 3.

Overall, hotspots in Nanjing are concentrated mainly in Xuanwu District, Qixia District,

Pukou District, Lishui District, Jiangning District, and Gaochun District. The highest value of

LST was 37.12˚C in Qixia District, over an area located near the Lingang Industrial Concentra-

tion Zone in Qixia District and Nanjing Economic and Technological Development Zone.

The area along the river between the two zones is largely covered by industrial land and resi-

dential land, with little vegetation. At the same time, the lowest value of LST in Nanjing was

also observed in Qixia District, specifically in the Qixia Mountain. The area lies 268 m above

sea level. The land use type is woodland, and the vegetation coverage is relatively high, with

less interference from human activities. The distribution characteristics of LST hotspots in

Table 2. Descriptions of major explanatory variables.

Variable name Unit Description

Intercept ˚C Model intercept term, inversion of location factors.

Altitude m Altitude of Nanjing.

Urban Green Space m2 Urban green space and park distribution in Nanjing.

Road Classification Distribution of roads of grade three and above.

Building Height

(BH)

Classification 1 is a low-rise building, 2 is a high-rise building, and 3 is a super high-rise

building.

Building Density

(BD)

Classification 1 is sparse, 2 is open building, 3 is compact building

POI - Spatial distribution of industrial activities.

https://doi.org/10.1371/journal.pone.0260205.t002

Table 3. Statistics of LST in each district.

District Minimum Temperature Maximum Temperature Cold spot Proportion Hot spot Proportion

Xuanwu 22.978 31.570 413��� 0.074 2172��� 0.391

Yuhuatai 22.924 34.608 98��� 0.030 331��� 0.103

Qinhuai 24.506 31.744 24� 0.006 Not significant Not significant

Gulou 22.856 30.141 39��� 0.008 Not significant Not significant

Jianye 22.887 33.677 169��� 0.047 Not significant Not significant

Qixia 19.923 37.121 61��� 0.030 838�� 0.410

Pukou 22.845 35.846 481��� 0.106 2771�� 0.609

Luhe 20.666 33.437 927��� 0.147 3452 0.550

Lishui 20.204 33.871 694��� 0.131 3323�� 0.659

Jiangning 21.724 36.274 761��� 0.163 2056��� 0.441

Gaochun 21.104 35.072 417��� 0.119 1681��� 0.48

���indicates a confidence level of 0.99

�� indicates a confidence level of 0.95

� indicates a confidence level of 0.90.

https://doi.org/10.1371/journal.pone.0260205.t003
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other areas are related to the cluster distribution of urban land, rural residential areas and

other construction land, and the scattered distribution of waters and forests and grasslands,

and are strongly affected by human activities.

Distribution of impact factors

After cleaning, calibrating, deleting anomalies, and other processing of building data, a total of

164,581 building areas were obtained (Fig 4A). Low-rise, high-rise, and super high-rise build-

ings accounted for 64.20%, 32.84%, and 2.96%, respectively. Low-, medium-, and high-density

buildings accounted for 57.89%, 26.60%, and 15.50%, respectively. The proportion of building

area in each district is as follows: Qinhuai District (29.23%) > Xuanwu District (15.17%)>

Yuhuatai District (11.16%) > Jianye District (9.91%) > Jiangning District (9.91%) > Pukou

District (9.65%) >Qixia District (8.75%) > Luhe District (4.02%) > Lishui District (1.751%)

> Gaochun District (0.420%) > Gulou District (0.03%).

Regarding land occupied by buildings in terms of BH (Table 4), Gaochun District has fewer

building areas (blocks) at 692 blocks, mainly comprising low-rise buildings with a small num-

ber of high-rise buildings. Gulou District has a very high proportion of super high-rise build-

ings, with a very low proportion of low-rise buildings and a moderate proportion of high-rise

civil buildings. Low-rise buildings are mainly distributed in Jiangning District, Yuhuatai Dis-

trict, Qinhuai District, Pukou District, and Xuanwu District. Lishui District and Qixia District

mainly comprise low-rise and high-rise buildings, with a relatively low proportion of high-rise

buildings. Jianye District is dominated by low-rise buildings, with high-rise buildings account-

ing for 38.24%, and the proportion of super high-rise buildings is relatively low. The main

Fig 2. Spatial distribution of LST in Nanjing. The Land surface temperature (LST)of Nanjing city and its districts, (a)

Jianye; (b) Gulou; (c) Luhe; (d) Qixia; (e) Pukou; (f) Qinhuai; (g) Jiangning; (h) Xuanwu; (i) Yuhuatai; (j)Lishui;(k)

Gaochun. This map is drawn by the authors. This map was created using ArcGIS1 software by Esri, ©National

Platform for Common Geospatial Information Services, ©OpenStreetMap and contributors, Creative Commons

Attribution 4.0(CC BY 4.0).

https://doi.org/10.1371/journal.pone.0260205.g002
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building types in Luhe District are low-rise and high-rise buildings, with a low distribution of

super high-rise buildings.

Regarding the proportion of land occupied by buildings in terms of BD (Table 4), Gaochun

District is dominated by low-density buildings, with a very low proportion of medium- and

high-density buildings. The proportion of buildings is relatively low in Gulou District, with

high-density buildings accounting for 89.09%, and low- and medium-density buildings

accounting for 10.91%. Pukou District and Xuanwu District are dominated by low-density

buildings, with no medium-density buildings; Yuhuatai District and Qinhuai District mainly

include low-density buildings, with some moderate and high-density buildings; Lishui District

and Jiangning District mainly include low-density buildings and medium-density buildings.

Jianye District has a relatively high proportion of low-density buildings, and a moderate pro-

portion of medium- and high-density buildings. Qixia District is dominated by low- and

medium-density buildings. Moreover, the proportions of the two are similar, and the distribu-

tion of high-density buildings is relatively small. Luhe District has a relatively high proportion

of medium-density buildings, and moderate proportions of low- and high-density buildings.

POI represents the distribution of urban physical facilities. After data crawling and clean-

ing, a total of 238423 POI were obtained, with a bandwidth of 0.6 km. The core density of POI

in Nanjing was 2.18–996.91/km2, showing a spatial distribution of "low around and high in the

center" (Fig 4B). The distribution of POI and nuclear density in each region are shown in

Table 5. The overall number of POI in Jiangning District, Pukou District, and Luhe District

Fig 3. Hot spot analysis of LST. Hot spot analysis of Land surface temperature (LST). (a) Jianye; (b) Gulou; (c) Luhe; (d) Qixia; (e)

Pukou; (f) Qinhuai; (g) Jiangning; (h) Xuanwu; (i) Yuhuatai; (j) Lishui; (k) Gaochun. This map is drawn by the authors. This map was

created using ArcGIS1 software by Esri,©National Platform for Common Geospatial Information Services, ©OpenStreetMap and

contributors, Creative Commons Attribution 4.0(CC BY 4.0).

https://doi.org/10.1371/journal.pone.0260205.g003
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was higher than that in other districts, and the overall number of POI was the lowest in Gao-

chun district. With an extremely low value, the regional nuclear density was the lowest in

Yuhuatai District, whereas it was the highest in Qinhuai District. The spatial clustering distri-

bution of POI in each region exhibited different trends. Qixia District and Luhe District corre-

sponded to the distribution of "upper low high", with percentages of points between the lowest

Fig 4. Spatial distribution of impact factors. Spatial distribution of impact factors. (a) Building date, open midrise

(blue), Compare highrise (green), Spare lowrise (red),data source (http://ditu.amap.com); https://www.openstreetmap.

org; (b) Kernel density of POI, data source (http://ditu.amap.com); (c) Line density of Road, data source (http://ditu.

amap.com); (d) Urban Green Space(green), data source (http://www.resdc.cn/); (e) DEM, data source (http://www.

gscloud.cn/). This map is drawn by the authors. This map was created using ArcGIS1 software by Esri,©National

Platform for Common Geospatial Information Services, ©Resource and Environment Science and Data Center,

©Baidu, ©OpenStreetMap and contributors, Creative Commons Attribution 4.0(CC BY 4.0).

https://doi.org/10.1371/journal.pone.0260205.g004

Table 4. Statistics of buildings in each district.

District Building area (piece) Proportion of various building heights (BH) Proportion of building density (BD)

Low-rise building High-rise buildings Super high-rise buildings Spare buildings Open buildings Compact buildings

Gaochun 692 96.53% 3.47% 0.00% 96.24% 3.03% 0.72%

Lishui 2881 50.57% 46.27% 3.16% 47.66% 33.32% 19.02

Jiangning 16312 62.31% 35.53% 2.16% 49.66% 35.78% 14.57%

Yuhuatai 18362 65.60% 31.19% 3.21% 60.11% 22.06% 17.84%

Jianye 16317 55.28% 38.24% 6.48% 50.59% 24.03% 25.39%

Qinhuai 48104 67.48% 30.23% 2.29% 62.15% 22.19% 15.66%

Gulou 55 7.27% 21.82% 70.91% 5.46% 5.45% 89.09%

Xuanwu 24962 68.41% 30.30% 1.29% 61.57% 26.22% 12.21%

Qixia 14398 47.88% 46.07% 6.06% 41.14% 40.66% 18.20%

Pukou 15884 76.11% 21.08% 2.81% 72.07% 18.30% 9.64%

Luhe 6614 38.25% 52.60% 9.15% 30.72% 44.80% 24.48%

https://doi.org/10.1371/journal.pone.0260205.t004
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value and standard deviation of 61.16% and 53.49%. Jiangning District and Yuhuatai District

showed a distribution trend of "low in the lower part and high in the upper part", with percent-

ages of points between the lowest value and standard deviation of 61.66% and 52.73%, respec-

tively. Pukou District and Jianye District showed a distribution trend of "left low and right

high", with percentages of 56.915% and 56.64%, respectively, for points between the minimum

value and standard deviation. Xuanwu District and Qinling District showed percentages of

56.915% and 56.64%, respectively. Huaihe District exhibited a distribution trend of "right low,

left high" with percentages of 51.86% and 43.01%. Gaochun District and Lishui District

showed distribution trends of "low edge, high middle", with percentages of 52.66% and

51.64%. The overall distribution of POI nuclear density in Gulou District was uniform.

After checking the topology of road network data, they were calibrated based on Google

Earth Pro2019. Referring to existing research and the actual situation of the research area,

highways, urban traffic arterial roads, and urban branch roads were reserved (Fig 4C), setting

a 1 km × 1 km grid, and the road network density (road network density = total road length

km/grid area km2) was calculated. The results are shown in Table 6, for which abnormal values

were removed. The higher the road network density, the stronger the regional road accessibil-

ity, promoting travel among urban residents. The higher the connectivity, the more conve-

nient the regional traffic; conversely, the lower the density of the road network, the less the

Table 5. POI statistics of each district.

District POI (piece) Proportion (%) Density (pcs/km2) Standard deviation

Gaochun 10517 4.411 2.852–727.334 65.092

Lishui 14788 6.202 2.938–749.145 62.990

Jiangning 59429 24.926 3.046–776.841 94.372

Yuhuatai 16329 6.849 2.183–556.779 112.759

Jianye 10592 4.443 2.677–682.616 149.710

Qinhuai 15374 6.448 3.909–996.906 193.122

Gulou 18938 7.943 3.540–902.626 183.731

Xuanwu 14226 5.967 3.085–786.590 145.226

Qixia 23998 10.065 2.377–606.095 91.722

Pukou 28579 11.987 2.841–724.402 92.142

Luhe 25653 10.759 2.332–594.628 72.375

Total 238423 100

https://doi.org/10.1371/journal.pone.0260205.t005

Table 6. Road statistics of each district.

District Road network density (km/km2) Standard deviation (km/km2)

Gaochun 0.011–15.645 2.933

Lishui 0.009–15.516 3.436

Jiangning 0.004–15.573 3.853

Yuhuatai 0.037–18.111 5.377

Jianye 0.068–16.816 6.174

Qinhuai 1.109–14.263 4.910

Gulou 0.143–15.805 5.647

Xuanwu 0.110–14.534 5.163

Qixia 0.009–12.112 4.431

Pukou 0.004–14.918 3.199

Luhe 0.002–12.878 3.371

https://doi.org/10.1371/journal.pone.0260205.t006
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distribution of arterial roads and highways in the area, which greatly reduces road accessibility

and decreases the convenience of residents to travel. Combining Figs 1 and 2, the road net-

work in Nanjing shows uneven development. Areas with high levels of road network density

are mainly distributed in the central area, including the districts of Jianye, Gulou, and Yuhua-

tai, which may be clustered with buildings. It is related to the dense distribution of entertain-

ment venues such as cultural centers. Areas with low levels of road network density are mainly

distributed in the south, northeast, and northwest regions, such as the districts of Gaochun,

Qixia, Luhe, and Pukou, which may have large areas of water and forests. The distribution of

grassland and farmland is related to the scattered distribution of rural settlements.

In terms of altitude and urban green space, Nanjing is in a low altitude area, dominated by

lacustrine plains and valley bottoms, with a small amount (39.2% of the total area) of undulat-

ing mountains and hills, plains, depressions, rivers, and lakes. The Ningzhen Mountains and

Jiangbei Laoshan straddles the central part of the city, and the south is a geomorphologically

complex area composed of topographical units, such as low mountains, valley plains, and riv-

ers. As mountainous areas, the highest altitudes of Xuanwu, Pukou, and Jiangning districts are

higher than those of other regions (Fig 4E). The density of urban green space (total area of

urban gardens and green space/total area of urban land) is shown in Fig 4D. The urban green

space in Nanjing shows a widely variable spatial distribution, mainly concentrated in Xuanwu

Lake, Zijin Mountain, and ancient city walls in the city center. Overall, in addition to urban

green spaces near the "Central Park", they are concentrated in the Riverside Scenic Belt, Qin-

huai River Scenic Belt, and Pukou Central Park.

Relationship between LST and impact factors

To quantitatively analyze the spatial distribution characteristics of LST and its factors in Nan-

jing, altitude, urban green space, slope, aspect, BD, BH, and POI were analyzed. A correlation

test of the variables was conducted, and the results showed that the Moran’s between slope and

aspect is less than 0.2, with a small spatial correlation. As this index failed the Moran’s test, it

was not included in the global variable. The remaining indexes all showed values greater than

0.7, with some at the 1% level, showing significant spatial positive correlation. Accordingly,

they were included in the local variables for calculation.

Table 7 shows that the goodness of fit (R2) of MGWR is slightly higher than that of the pre-

cision GWR model, and the value of the corrected Akaike information criterion (AICc) is also

lower than that of the classic GWR model. Therefore, MGWR can be assessed to have higher

performance than the classic GWR. Comparing the residual sum of squares, the value of

MGWR was also smaller than that of GWR. Moreover, MGWR requires fewer parameters to

obtain a regression result closer to the true value.

The spatial distribution of each influencing factor is shown in Fig 4. The MGWR analysis

results show that the spatial distribution of each influencing factor and LST have significant

Table 7. Model index of GWR and MGWR.

Model MGWR GWR

R2 0.928 0.883

AICC 1303 1186

Adj. R2 0.902 0.875

Residual sum of squares 1323 1977

Sig. 0.000� 0.000�

� Indicates that the test passed at the 5% significance level.

https://doi.org/10.1371/journal.pone.0260205.t007

PLOS ONE Relationship between urban morphology and land surface temperature —A case study of Nanjing City

PLOS ONE | https://doi.org/10.1371/journal.pone.0260205 February 9, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0260205.t007
https://doi.org/10.1371/journal.pone.0260205


similarities and differences. LST decreased with increasing altitude, urban green space, and

BH, whereas it increased with increasing values of BD and POI. The goodness of fit between

POI and LST was the highest, reaching 0.96, followed by that between BD and LST (0.95) and

between BH and LST (0.94). The values of goodness of fit between altitude, urban green space

and LST were good (0.73, 0.61, respectively), and that between aspect and LST was average

(0.37). These results further show that the natural environment is the basic factor affecting the

spatial distribution of LST, and changes in the surface environment caused by human activities

have a particularly significant impact on urban LST. Industrial facilities and business districts,

such as Xinjiekou business district in Qinhuai District, Taipingmen business district in

Xuanwu District, and Shuiximen business district in Jianye District, are concentrated in

Xuanwu District, Qinhuai District, Gulou District, Jianye District, and other downtown areas,

which also account for the main low-rise buildings and super-high buildings in Nanjing. At

the same time, a large number of buildings are concentrated in the central area, which further

increases the flow of people. The concentrated POI distribution has a significant positive cor-

relation with the spatial distribution of LST.

The statistical description of each coefficient of MGWR is shown in Table 5. The Intercept
represents the positive influence of location factors on LST. The value of Intercept was between

-0.49 and 1.46, the average value was 0.485, and the standard deviation was 0.975, indicating

that under the same natural conditions, the influencing factors would change the LST of Nan-

jing by -0.49–1.46˚C, with an average change of 0.485˚C. The influence of location factors on

LST widely varies.

Urban roads have a significant positive impact on LST (Table 8). Herein, roads in Nanjing

are divided into three levels according to the classification standards of urban roads: Arterial
Road, Secondary Road, and Access Road. Arterial Road ranges from -0.42 to 1.41, with an aver-

age value of 0.495, Secondary Road ranges from -0.34 to 1.53, with an average value of 0.595,

and Access Road ranges from 0.76 to 1.97, with an average value of 1.365. These results show

that in urban roads, branch roads have a greater impact on LST. In other words, under the cir-

cumstance that the influence of other factors remains unchanged, the LST around a branch

road (Access Road) would be approximately 1.365˚C higher than that in the surrounding areas.

Therefore, the density of urban roads will also affect LST.

Referring to the literature [41], quantitative indicators of local climate zones, and the actual

situation of Nanjing, the study area was divided into low-density low-rise building areas,

Table 8. Statistical description of MGWR coefficients.

Variable Min Max Median Std Mean

Intercept -0.49 1.46 0.485 0.975 0.485

Arterial Road -0.42 1.41 0.495 0.915 0.495

Secondary Road -0.34 1.53 0.595 0.935 0.595

Access Road 0.76 1.97 1.365 0.605 1.365

BuildingHeight.1 -0.14 0.21 0.035 0.175 0.035

BuildingHeight.2 0.45 3.01 1.73 1.28 1.73

BuildingHeight.3 -0.6 3.76 1.58 2.18 1.58

Urban Green Space -1.42 0.26 -0.58 0.84 -0.58

Compact Highrise -0.43 0.67 0.14 0.55 0.12

Open Midrise -0.52 3.68 1.55 2.1 1.58

Lightweight Rise 0.29 1.2 0.741 0.455 0.745

POI -0.72 1.6 0.47 1.16 0.44

DEM -2.5 -0.25 -1.381 1.125 -1.375

https://doi.org/10.1371/journal.pone.0260205.t008
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medium-density high-rise building, areas and high-density super high-rise building area (Fig

4E), and the relationships between BH, BD, and LST were analyzed. Low-rise building areas

(BuildingHeight.1) showed LST values ranging from -0.14 to 0.21, with an average value of

0.035. High-rise building areas (BuildingHeight.2) showed LST values ranging from 0.45 to

3.01, with an average value of 1.73. Super high-rise building areas (BuildingHeight.3) showed

LST values ranging from -0.6–3.76, with an average value of 1.58. This further shows that there

is a significant positive correlation between BH and LST. From the perspective of the absolute

value of the coefficient, the area of middle-rise buildings has the greatest impact on LST. In

terms of BD, the value of the impact of high-density high-rise buildings on LST ranged from

-0.43 to 0.67, with an average value of 0.12˚C. The value for medium-density high-rise building

areas ranged from -0.52 to 3.68, with an average value of 1.58˚C. The value for low-density

low-rise buildings ranged from 0.29 to 1.2, with an average value of 0.745˚C. The absolute

value of the influence coefficient shows that high-rise buildings and medium-density mid- and

high-rise buildings have the greatest influence on LST. Previous studies suggested that

increases in BH will increase LST. In contrast, this study shows that increases in BH do not

necessarily lead to an increase in LST. This can be attributed to increased shadow areas gener-

ated by high-rise buildings, leading to lower temperatures within a certain range [42].

Urban green space and LST in Nanjing exhibit a negative correlation, with an impact coeffi-

cient of -0.58˚C, indicating that increases in urban green space will decrease LST. Under the

condition that other factors remain unchanged, the LST of urban green space is lower than

that of surrounding areas by 0.58˚C. In contrast, POI has a positive correlation with LST. The

higher the intensity of human activities, the higher the LST, but its impact coefficient is 0.44,

which is moderate. The DEM coefficient ranged from -2.5 to -0.25. This implies that the LST

of areas at higher altitudes is lower than that of areas at lower altitudes by 1.375˚C on average.

Conclusion

In this study, the MGWR model was used to determine the relationship between urban form

and surface temperature for the first time. Combining POI data, building data, and remote

sensing data of Nanjing, the spatial differentiation of urban form (two-dimensional landscape

pattern and three-dimensional structure form) and LST and its influencing factors were ana-

lyzed. The following main conclusions can be drawn:

(1) The spatial differentiation of LST in Nanjing is significant, and the distribution of LST

hotspots exhibits a distinct spatial consistency with the level of urban construction. The highest

LSTs in Qixia District (37.121˚C), Jiangning District (36.274˚C), and Pukou (35.846˚C) are

higher than those in other areas, and the lowest LSTs in Qixia District (19.923˚C), Lishui Dis-

trict (20.204˚C), and Luhe District (20.666˚C) are lower than those in other areas.

(2) Compared with classic GWR, MGWR supports the analysis of multiple influencing fac-

tors or variables at different scales and provides better fitting effect than GWR. In this study,

some factors exhibited significant differences in their effects on LST. Except for the aspect and

slope, the other influencing factors all showed significant spatial correlation with LST. In

terms of the two-dimensional landscape pattern, the higher the altitude, the lower the LST; the

higher the POI concentration, the higher the LST. In terms of the three-dimensional structure,

BH and LST are positively correlated.

Advantages and limitations

The conclusions of this research and existing research results are mutually confirmed [39, 43,

44]. In plain areas with low altitude and gentle slopes, the development of human activities is

less difficult, human activities are frequent, and construction land is concentrated. Areas with
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concentrated secondary and tertiary industries are more likely to have higher LST, whereas

areas with mountains and agricultural land are likely to have lower LST due to several factors

such as altitude and vegetation [45, 46]. It is noteworthy that, unlike the findings of previous

studies, an obvious positive correlation was found between urban BH, BD, and LST. However,

the LST of high-rise and super high-rise building areas was found to be lower than that of mid-

rise building areas. This could be explained by the expansion of shadow areas generated by

super high-rise buildings; similar phenomena were also observed between medium-density

building areas and high-density building areas [42, 47].

Based on the existing research, this paper determines the impact of different human activi-

ties on the urban thermal environment, and further proves that urban green space can help

alleviate the urban heat island effect [22, 48]. The process of urbanization has led to overpopu-

lation and excessive industrial concentration, causes a change in the nature of heat exchange at

the bottom, and aggravating the formation and development of the urban heat island effect,

which requires the attention of urban planning agencies [49]. In addition, based on the results

of this article, strategies to reduce heat stress by addressing the urban heat island effect, (e.g.,

control the scale of urban built-up areas, optimize urban spatial structure, increase urban

green areas, alleviate urban population concentration and other measures). We should also

cooperate with commercial real estate developers to control the height and density of new

buildings, optimize the design of future urban parks, increase the construction of urban venti-

lation corridors and green spaces, and further alleviate the urban heat island effect [8].

Advantages

This study integrates POI data, building data, urban road data sets and other data to analyze

the factors that affect the urban thermal environment. First, in order to assess the human activ-

ities that may be responsible for the model described here, we compare land use data with pop-

ulation density data, etc., and conclude that the POI data represents the geographic

information and utilization characteristics of various facilities. Secondly, for the classification

of building height in Nanjing, after many field investigations and analysis of historical remote

sensing images, a more reasonable density classification (limited to 40%) is finally determined.

This research will have greater practical value. Third, this study uses a multi-dimensional per-

spective (two-dimensional and three-dimensional structure) to study the current status of

Nanjing’s thermal environment, and explores the current status of Nanjing’s thermal environ-

ment from a more specific plane dimension and a deeper perspective. In view of the multi-

dimensional perspective of this study, MGWR is used instead of GWR to explore non-station-

ary relationships in the modeling space [22, 44].

Multi-scale Geographically Weighted Regression (MGWR) is a recent advancement to the

classic GWR model. Compared with the traditional GWR model, The MGWR model has

advantages in acquiring the ability of different scales [18]. The MGWR model can effectively

analyze the multi-scale relationship between the urban thermal environment and its influenc-

ing factors, and has a positive effect on urban dynamic development and urban thermal envi-

ronment management.

Limitations

The MGWR model facilitated multi-factor analysis of LST. However, due to issues such as

data availability and collinearity, the application of the MGWR model has certain limitations.

The urban landscape is a complex dynamic system composed of infrastructure, human activi-

ties, and social connections. Changes in urban surface temperature need to be observed from a

more micro perspective [8, 50]. Urban ground monitoring data have not been fully disclosed,
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which limits the study. In addition, street view data were used in the study of the urban ther-

mal environment, and the number of street scenes in this area requires further investigation

[51]. In the future, the interaction between different influencing factors should be considered,

and the influencing factors of LST should be analyzed in more detail to provide a more com-

prehensive perspective for urban or regional environmental governance and planning.
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