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Abstract

This paper evaluates the performance of eight tests with null hypothesis of cointegration on
basis of probabilities of type | and Il errors using Monte Carlo simulations. This study uses a
variety of 132 different data generations covering three cases of deterministic part and four
sample sizes. The three cases of deterministic part considered are: absence of both inter-
cept and linear time trend, presence of only the intercept and presence of both the intercept
and linear time trend. It is found that all of tests have either larger or smaller probabilities of
type | error and concluded that tests face either problems of over rejection or under rejection,
when asymptotic critical values are used. It is also concluded that use of simulated critical
values leads to controlled probability of type | error. So, the use of asymptotic critical values
may be avoided, and the use of simulated critical values is highly recommended. It is found
and concluded that the simple LM test based on KPSS statistic performs better than rest for
all specifications of deterministic part and sample sizes.

1. Introduction

The concept of cointegration was firstly proposed by [1]. If two or more than two integrated of
order one variables possess a long run relationship, then it is termed as existence of cointegra-
tion among them. For two variables X and Y: integrated of order one, if their linear combina-
tion: aX + bY is integrated of order zero, then X and Y are possessing a long run relationship
and they are said to be cointegrated. Note that cointegration analysis is based on the issue that
all variables must be I(1), but this may depend on selecting the structural breaks (see, e.g., [2]).
Soon after the development of concept of “cointegration”, a huge variety of tests were proposed
to test it like [3-5] and many more. Most of these tests proposed were testing the null of no coin-
tegration. These tests have been widely and frequently used in economics and finance to assess
the long run relationship between a set of time series. Some of these studies are but not limited
to; [6-10]. In their pioneered paper, [11] proposed first test assessing the null of cointegration.
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After, this pioneer paper, more cointegration tests evaluating the null of cointegration were
developed, assuming different underlying data generation ([12,13] and many others).

As all of these proposed tests were based on different underlying assumptions about the coin-
tegrated system and were assuming different data generations, so they were showing different
conclusions about the existence of cointegration for the same empirical problem ([14,15]).
Therefore, there was a need to assess their performance and to choose winner/winners among
the tests which best fits an empirical problem. To fill this vacuum in literature, numerous com-
parative studies have been published. Most of these studies used Monte Carlo Simulations
(MCS) to evaluate and assess the performance of tests. However, there are fewer real data based
comparative studies of cointegration tests ([16,17]). MCS have been frequently used for such
comparative studies ([18-23]). These studies ([14,15,24-26] and many more), using MCS were
assessing and evaluating the performance of tests based on two properties, the size: “the probabil-
ity of rejection of null hypothesis when actually it is true” and the power: “the probability of
rejection of null hypothesis when actually it is false”. A test is regarded and considered better
than other, if it has a controlled size around nominal size and has relatively higher power than
the others. Most of these comparative studies of cointegration tests were considering a limited
number of alternative hypotheses (2 to 4), although the alternative hypothesis can take on infinite
values in an alternative space. Two studies i.e. of [14] and [15] were the most extensive ones.
They considered different data generating processes and considered more than 8 point alterna-
tive hypotheses, trying to cover the whole alternative space. [14] and [15] concluded that there is
no significant evidence that one test is superior than others. According to them, if one test is per-
forming better for some subset of alternative hypothesis, then the same test is performing worst
in another subset of alternative hypothesis. So, a general conclusion is very difficult to draw.

Except the study of [27], all of comparative studies of cointegration tests were either
addressing a selected set of null of no cointegration tests or a selected set of mixture of both
kind of tests having opposite null hypothesis. [27] compared 6 tests (null of cointegration) on
basis of the same size and power properties. Although, [27] considered different data generat-
ing processes and estimated the power curves, however, the conclusions are same as [14] and
[15]. We are not able to find any other comparative study of null of cointegration tests.

As these tests are based on different underlying assumptions and for a particular real data
set, one does not know that whether the data satisfies the assumptions of the test or not, there-
fore the selection of the test is a very critical decision. Therefore this study compares the tests
on a very basic type of data generations and it is assumed that if a test is performing poor here,
it will be doing the same for other data generations. However, it cannot be confirmed that the
best performer will remain the best for other data generations. Moreover, majority of the com-
parative studies of cointegration tests, in the literature, didn’t use size adjusted powers. These
studies were comparing the tests on basis of size and power and if the tests have size distortions
then for power comparison, these size distortions were not controlled. Moreover, fewer num-
ber of alternative hypothesis and data generations were considered to assess the relative perfor-
mance. The aim of this paper is twofold: comparison of tests on basis of the probability of
Type I error, known as size of test using asymptotic critical values or distributions developed
by the respective authors, controlling the probability of Type I error around the assumed nom-
inal probability of Type I error (usage of simulated critical values) and comparison of tests
based on probability of Type II error when the probability of Type I error is controlled around
anominal level. These probabilities are defined as:

o = Prob(Type I Error) = Prob(Rejecting Hy|H, is True)

f = Prob(Type II Error) = Prob(Failing to Reject H,|H, is False)
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a is also known as Size of the test. Whereas, Power of the test is (1 — ). The conclusions and rec-
ommendations of this study will be beneficial to a large audience: practitioners, statisticians, data
scientists and applied researchers, as it will give the guidelines about a better performing test and
worst performing test. These classifications of better and worst performance will be based on o
and S. This study will also be helpful to the audience for the selection of type of critical values.

This study is structured as: next section of “Methodology” elaborated the details of tests and
the framework followed to assess the performance of these. “Methodology” is followed by
“Results and Discussion” section, discussing the results in greater detail and then the last sec-
tion is “Conclusions and Recommendations”. The “References” are listed at the end.

2. Methodology

In this study, eight tests belonging to the class of null of cointegration are compared, the details
of these tests are laid out in “Tests to be compared”. The next section “Artificial Data Genera-
tion” lists the set of equations used to generate a cointegrated system and the procedure of esti-
mation of & (for both asymptotic and simulated critical values is detailed in "Estimation of
Empirical ". Continuingly, the next section "Estimation of Simulated Critical Values" details
out the steps followed to obtain simulated critical values by fixing o and the next section "Esti-
mation of 8" specifies the steps to be followed to estimate 3, the probability of Type II Error in.
MATLAB has been used to carry out the analysis.

2.1. Tests to be compared

The eight tests have been compared in the current study and these tests were selected on basis
of their frequently use in the economics/econometrics literature. Moreover, these are the pio-
neer null of cointegration tests. Furthermore these tests have been chosen from the previous
studies like [14,15,27] on the basis of their relative performance. The eight tests compared in
this study are detailed as:

2.1.1. LM test based on KPSS statistic (LM). Considering two different kinds of variables
say Z,and W;, Vi =1, 2,—- - — -, k where both of these kinds of variables are integrated of
order one i.e. I(1). [11] proposed the estimation of Ordinary Least Squares (OLS) regression
first, i.e.

k
Z, =0y, + Y BW,+v,  t=12-———— T (1)
i=1
Where Z, and W, are dependent and independent variables respectively. y; represents the
deterministic part. [11] proposed that that the LM type test introduced by [28] for testing sta-

P

2 (m)

tionarity of time series, can be used for testing the null of cointegration. i.e. LM = T2

J .
where R, = 30, and A (m) = “*. The 0, are the residuals estimated from Eq (1). The LM test
t=1

does not follow any regular distribution, therefore the current study uses the critical values of
the LM as provided in [29].

2.1.2. Leybourne and McCabe’s test (LBI). [11] proposed that the same LM test with a
non-parametric modification can also be used for the said purpose as stated by [11]. Actually,
they proposed a long run variance as compared to the contemporaneous variance, i.e.
S

LBI=T""
A (m)
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J T m T
where R, = 21 b, and A*(m) = T~ 21 07 +2T'>" > 0,0, . Again 0, are the residuals esti-
t= t=

s=1 t=s+1

mated from Eq (1). The lag truncation parameter m is very vital and plays a crucial role in
empirical studies. According to [15], the size and power of the test depends on it. The current
study is considering I = 4, as recommended by [15] i.e. at this value, size of test is controlled
around the nominal size and also the test has reasonable powers. Same as the LM test, the LBI
does not follow any standard statistical distribution, therefore this study is using the critical
values for LBI test as provided [29].

2.1.3. Shin’s C test (Sc). [12] proposed two modifications to the same LM type test. First
[12] proposed to use the Dynamic OLS (DOLS) regression and secondly [12] proposed to use
a weighting kernel in estimating the long run variance. The DOLS regression is

Z,=0Y, AW, + Y mAW,  +v,  t=1,2————— ,T (2)

i=—r

Where Z;, and W, are dependent and independent variables matrices of order T'x 1 and T x m
respectively. The same LM type test, in this case named as Cis

T
—9 ZjZI R}Q
K (m)

C=T

where R, = ZJ: b, and A*(m) = T~ XT: 02 427! Xm: (1 —AK(m + 1)71) ZT: 0,0, .
=1 t=1 s=1 t=s+1

Again, same as LM and LBI, 0, are the residuals estimated from Eq (2) using OLS. The
selection of lag truncation parameter m is again vital for the performance of test as it has been
already discussed in section 2.1.2. However, the current study is considering m = 4 as proposed
by [15]. Similarly [12] recommended r = 5, so the current study is using r = 5. The critical val-
ues for the test are used from [12].

2.1.4. McCabe—Leybourne -Shin test (Ls). For the same LM type test, a different estima-
tion methodology and process was proposed by [29]. [29] proposed the use of Maximum Like-
lihood Estimation (MLE) in place of OLS. They proposed that first the residuals from DOLS
regression may be estimated i.e. 0, and then the residuals 7}, may be estimated using MLE from

»
the regression 0, = > 7,AD,_, + 1,. According to them the selection of p is on the basis of the
i=1

minimum Akaike information Criterion (AIC). The modified LM test statistic now named
asLs

),
Ls = —1-le
' T T8(m)

where Q = PP’ for P being the lower triangular matrix of ones. Similarly, $?(m) = @ The cur-
rent study is considering 4 as the maximum value of p and the critical values are used from
[29].

2.1.5. Hausman H, and H, tests (H; and H,). A test statistic comparing two estimators
was proposed by [13]. According to [13], under the null of cointegration both of the estimators
are consistent. However, under the alternative of no cointegration one estimator is inconsis-

tent. One estimator is of y say 0 1» when Eq (2) is estimated using DOLS estimation and for the
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second estimator, estimate the regression and obtain

W, =2z~ ®AW,, (3)

Jj=-—r
7; being the OLS estimates from Eq (2). The following regression is used to estimate the second

estimator say 0, i.e.

Aw, = 0,AW, + ¢, (4)

The two estimators 0, and 0, are used to estimate both of the Hausman type test statistics

16H—< - )(¢D+xp) (éL 9)andH-< )lpD( )Wherel#L

and 1, are the estimated variance covariance matrices of 0, and 0, respectively. The critical
values of the two tests have been taken from [13] in the current study.

2.1.6. Hansen’s L, test (Lc). Fully modified estimation method [30] was used by [31] to
propose a test of null of cointegration. The fully modified estimation method involves the esti-
mation of Eq (1) by OLS and the OLS residuals are obtained, i.e. 0,. Define another vector of
difference as AW;, = y; fori=1,2,—————— k. Define the matrix {, as {; = (v;, y4/). Esti-
mates a VAR(1) model for {, as {; = ®,_; + v. Use the estimated residuals ¥, to find the

N T R T T R T N

A, =>w(l/M):> ¥,/ and Q=3 w(l/M)L > 9,9, . Where w(I/M) being an
=0 t=I+1 I=-T t=I+1

appropriate weighting scheme. The current study is using the quadratic spectral kernel i.e.

. sin(67(1/ M))/ ~ .
w(l/M) = o (215/ M)2 { (6(7615([(/ M]\)/I));55 - cos(<67r (l/ M))/S) } The automatic band-

width estimator is given as

R . 1/5 . )4 4 ~2~4 )4 ~4
M= 1.3221{(5(2))7"} and$(2) =y Fala [N Tu (5)
a=1 (]‘7:061) a=1 (l_pa)
p, and 62 are the “a™ endogenous variable’s estimated AR coefficient and variance of residu-
als. The estimates A, and Q, are recolored to obtain Q = (I- (i))flflv (I- Ci)’)7l and
A= (I- dA))fllA\v(I - (f)’)71 (I- (i))fl(f)ﬁ. Where = = +(,(,". The variance covariance matri-

oo v oo

A

y

cesie. Q and A are partitioned as Q = and A =

Auu .
. To obtain the
o i Hp

Fully Modified OLS (FMOLS) estimator, following are estimated first

Q,=Q, QquWlQ (6)
and Aiﬁ’l =A, - AWQWIQW Then the FMOLS estimator is
M= {XT: (ZzFMW/ - (0 A,T ))} {XT: w, Wt’} 71, where
B M=z — QWQH:AWt and 0/ = Z™M — [}FMWt (7)

are the estimated FMOLS residuals. [31] proposed the L, statisticas L, =

T L
trace <; WtWt’> ZR[QU’.LR,

t=1

and R, is defined as R Z ( W —

=1

critical values of the [31] proposed L, test are taken from [26] for the current study.
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Table 1. Abbreviations used for cointegration tests.

S. No Name of Test Abbreviation
1 LM test LM

2 Leybourne and McCabe’s LBI test LBI

3 Shin’s C test Sc

4 McCabe—Leybourne -Shin test Ls

5 Hausman H; test H1

6 Hausman H, test H2

7 Hansen’s L, test Lc

8 Xiao Fluctuation test F

https://doi.org/10.1371/journal.pone.0259994.t001

2.1.7. Xiao Fluctuation test of Cointegration (F). On the basis of fluctuations of
the estimated residuals 0,, [32] proposed a test using FMOLS estimation. It is given as

1 i ~FM 1 . ~FM
;Z”r —;th

t=1 t=1

i
T QT

V-

where 0™ are the estimated FMOLS residuals

and are obtained using Eq (7). Similarly, Q,., is obtained using Eq (6). The critical values of F-
are taken from [32] in the current study.
The abbreviations used in the current study for all eight tests are listed in Table 1.

2.2. Artificial Data Generation (ADG)

The set of equations used to generate a cointegrated system under null of cointegration and
alternative of no cointegration are a modified version of the model used by [33]. The [33]
model has been modified to include deterministic component also. For time series z; and w; of
length T, the set of equations are:

Zr = '//t?’, Tw o, w=w,_ + :u:Va Uy =0,y — 7:“11 + ,uf

where p1, = (12, ) provided that g, ~ N (0, I), I being an identity matrix of same order as y;.
Under null hypothesis of cointegration and alternative hypothesis of no cointegration Hy: y =
1vs Hy: 0 <y < 1. The current study takes into account ten different point alternate hypothe-
ses, i.e. ¥ = (0, 0.1, 0.2,——, 0.9). v, is the included deterministic component in ADG and it con-
sists of two deterministic parts; one is the intercept and the other is linear time trend. i.e.

11 - - 1)
v, = l Lo T] . The ¢ is the respective coefficient vector of y,. Three different

and plausible cases of deterministic component have been considered in the current study and
these are:

i. The absence of both Intercept and Linear Time Trend (denoted as D’LT°): p=[0 0]
ii. The presence of only the Intercept (denoted as D'LTY): p=[1 0]
iii. The presence of both the Intercept and Linear Time Trend (denoted as D'LTY: p=[1 1]

The current study is considering ten point alternate hypothesis from the alternate space
and from the null space, one point null hypothesis. Moreover, the performances of tests at four
different time lengths (T = 30, 60, 120 and 240) covering the small time lengths to large time
lengths are assessed. In addition to these, three different and plausible cases of deterministic
parts are explored. This all sums up that 132 different ADG processes have been explored to
evaluate the performance of tests.
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2.3. Estimation of empirical &

The current study assesses the performance of test based on two ¢'s: one uses the asymptotic
critical values and the other uses the simulated critical values. Nonetheless, their estimation
procedure is same as:

i. Generation of the time series following the ADG for null hypothesis.
ii. Estimation of the test statistic of each test.

iii. Taking decision about the rejection of null or not: (based on asymptotic or simulated

critical value)

iv. The repetition of the steps i, ii and iii for M time and counting of number of rejections of
null.

v. Estimation of the « as the proportion of rejections of null out of total M repeatitions.

2.4. Estimation of simulated critical value

The current study uses the frequently used significance level of 0.05 for whole of its empirical
analysis. Estimation of simulated critical values have been carried out by following the below

mentioned steps:
i. Generation of data under the point null hypothesis.
ii. Calculation of each test’s test statistic.
iii. Repetition of the steps i and ii for fixed number of times say M.
iv. Recording of all of M test statistics in an array say S.

v. Calculation of the simulated critical value as: 2.5™ and 97.5™ percentiles of S, for two
tailed tests, 95™ percentile of S, for right tailed tests and 5 percentile of S, for left tailed
tests.

2.5. Estimation of 8

Considering the frequently used significance level of 0.05, the below mentioned steps have
been followed to estimate the Probability of Type II Error S.

i. Generation of data following a point alternative hypothesis.
ii. Estimation of the test statistic.
iii. Deciding about the rejection of null or not (based on simulated critical value).

iv. Repetition of the steps i, ii and iii for a fixed number of times say M and counting of

number of rejections.

v. Calculation of fi.e. f =1 -m where m = Number of Rejections/M

3. Results and discussion

The empirical probability of Type I Error i.e. & is obtained using M = 30,000 for each test
except the Ls test, as it uses the numerical optimization algorithms to find the maximum likeli-
hood estimates, which take huge amount of time. So, for Ls: M = 5,000 is considered suitable.
These s are given in Table 2. It is obvious from Table 2 that not a single test has empirical
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Table 2. Probabilities of type I error "a" using asymptotic critical values.

Tests DLT® D'LT® D'LT!

Time Length T Time Length T Time Length T

30 60 120 240 30 60 120 240 30 60 120 240
LM 0.2271 0.2256 0.2194 0.2232 0.0589 0.0534 0.0575 0.0533 0.0002 0.0007 0.0004 0.0002
H1 0.0076 0.0080 0.0065 0.0049 0.0023 0.0046 0.0051 0.0061 0.0033 0.0114 0.0148 0.0170
H2 0.0111 0.0075 0.0064 0.0056 0.0055 0.0060 0.0063 0.0064 0.0193 0.0161 0.0166 0.0177
Sc 0.0048 0.0186 0.0238 0.0252 0.0638 0.0537 0.0498 0.0528 0.2034 0.0573 0.0521 0.0501
LBI 0.3407 0.2840 0.2464 0.2384 0.2134 0.1299 0.0797 0.0594 0.1068 0.0375 0.0055 0.0005
F 0.0030 0.0220 0.0180 0.0180 0.1870 0.1740 0.1800 0.1870 0.4130 0.4370 0.4430 0.4090
Lc 0.5324 0.4352 0.2984 0.1552 0.5580 0.4074 0.3342 0.1772 0.5898 0.4208 0.3414 0.2188
Ls 0.6580 0.6090 0.5860 0.5400 0.5890 0.4120 0.3350 0.2980 0.3640 0.1170 0.0650 0.0630

https://doi.org/10.1371/journal.pone.0259994.t002

around the considered significance level of 0.05 for all three specifications of deterministic
part and four sample sizes. For instance, LM has a around 0.05 for all four sample sizes only
when deterministic part is D'LT’. The values of empirical a around the specified significance
level 0.05 have been marked as BOLD in Table 2. It is observed that from out of total 96 differ-
ent cases, only for 15 cases the empirical ¢ is around 0.05. This over rejection problem is due
to the use of asymptotic critical values. As we have finite sample sizes, therefore nearly all of
the tests exhibit the over rejection problem. The same was also stated by [34].

To control empirical o around 0.05, simulated critical values for all tests at all four time
lengths using all of the three cases of deterministic component have been found and then by
using these simulated critical values, again empirical « is calculated and these s are displayed
in Table 3. It is evident from Table 3 that all tests have empirical @ around 0.05 now. It is very
important to control empirical o around 0.05 in a statistical hypothesis testing, because a large
o will reduce BETA, the probability of Type II Error. So, as compared to the considered nomi-
nal significance level, a decrease in empirical o leads to an increase in BETA and an increase in
empirical o leads to a decrease in BETA resulting in a meaningless conclusion.

As the use of simulated critical values led to controlled empirical @ around 0.05, the signifi-
cance level considered in this paper. So, these simulated critical values are used to estimate the
probabilities of Type II Error i.e. 8. These f's for the three cases of deterministic component
(D°LT?, D'LT’ and D'LT") are displayed in Tables 4-6 respectively. The test having the mini-
mum S is marked as "A” and declared as best performer in this study. Similarly, the tests hav-
ing 2" minimum and 3" minimum are marked as "B" and "C" and nominated as better

", n

Table 3. Probabilities of type I error "a" using simulated critical values.

Tests D°LT’ D'LT’ D'LT'

Time Length T Time Length T Time Length T

30 60 120 240 30 60 120 240 30 60 120 240
LM 0.0476 0.0499 0.0510 0.0478 0.0514 0.0538 0.0482 0.0479 0.0454 0.0467 0.0468 0.0487
H1 0.0523 0.0502 0.0491 0.0443 0.0506 0.0481 0.0502 0.0501 0.0480 0.0507 0.0511 0.0505
H2 0.0509 0.0558 0.0484 0.0485 0.0518 0.0513 0.0442 0.0490 0.0561 0.0512 0.0472 0.0480
Sc 0.0509 0.0529 0.0519 0.0473 0.0485 0.0548 0.0521 0.0501 0.0542 0.0498 0.0485 0.0481
LBI 0.0489 0.0505 0.0498 0.0511 0.0490 0.0513 0.0497 0.0513 0.0416 0.0517 0.0452 0.0473
F 0.0467 0.0441 0.0525 0.0472 0.0390 0.0517 0.0542 0.0482 0.0536 0.0542 0.0524 0.0459
Lc 0.0442 0.0478 0.0492 0.0500 0.0484 0.0492 0.0496 0.0490 0.0478 0.0500 0.0534 0.0540
Ls 0.0370 0.0430 0.0450 0.0640 0.0470 0.0460 0.0630 0.0380 0.0380 0.0530 0.0570 0.0570

https://doi.org/10.1371/journal.pone.0259994.t1003
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Table 4. Probabilities of type II error "g" for D°LT’.

T =30

¥ LM H1 H2 Sc LBI Lc Ls
0.9 0.760* 0.939 0.935 0.888 € 0.919 0.887 ® 0.947 0.940
0.8 0.619 4 0.914 0.901 0.835° 0.906 0.860 © 0.926 0.922
0.7 0.520 4 0.876 0.856 0.815° 0.898 0.846 € 0.923 0.918
0.6 0.4334 0.838 0.807 € 0.792 B 0.889 0.840 0.908 0.915
0.5 0.383 4 0.791 0.751 8 0.783 € 0.885 0.838 0.901 0.909
0.4 0.341 4 0.768 € 0.706 ® 0.778 0.884 0.837 0.902 0.901
0.3 0.304 2 0.721 ¢ 0.658 & 0.771 0.882 0.837 0.901 0.895
0.2 0.284 4 0.701 € 0.626 © 0.775 0.880 0.836 0.900 0.881
0.1 0.2554 0.675 € 0.598 & 0.768 0.878 0.835 0.900 0.875
0.0 0.250 & 0.658 € 0.576 © 0.768 0.878 0.834 0.899 0.872

T =60
0.9 0.613 4 0.915 0.916 0.716 ° 0.774 € 0.814 0.856 0.887
0.8 0.4124 0.843 0.832 0.627 8 0.724 € 0.757 0.785 0.876
0.7 02714 0.747 0.741 0.589 P 0.696 € 0.749 0.740 0.870
0.6 02104 0.666 0.641°¢ 0.561 P 0.686 0.737 0.719 0.850
0.5 0.167 4 0.581 0.560 ® 0.564 € 0.683 0.726 0.697 0.842
0.4 0.1414 0.531°¢ 0.494 8 0.571 0.682 0.724 0.695 0.834
0.3 0.116* 0.490 © 0.438 8 0.554 0.681 0.719 0.693 0.820
0.2 0.105* 0.449 © 0.396 © 0.559 0.676 0.718 0.691 0.819
0.1 0.098 4 0.423 € 0.360 & 0.561 0.676 0.715 0.690 0.811
0.0 0.093 4 0.398 € 0.338 8 0.560 0.672 0.711 0.687 0.807

T=120
0.9 0.380 4 0.896 0.884 0.510 8 0.586 € 0.690 0.636 0.890
0.8 0.165 0.765 0.746 0.396 ° 0.532 0.636 0.522°€ 0.889
0.7 0.085 0.642 0.609 03528 0.513 0.633 0.472€ 0.888
0.6 0.053 4 0.524 0.495 0.324° 0.501 0.629 0.466 © 0.879
0.5 0.0334 0.453 0.421°¢ 0.330® 0.507 0.619 0.457 0.876
0.4 0.028 A 0.374 0.352 € 0.325° 0.500 0.617 0.463 0.873
0.3 0.0254 0.349 0.301° 0.325°€ 0.494 0.615 0.451 0.869
0.2 0.0224 0.327 0.269 8 0.320 € 0.497 0.614 0.430 0.849
0.1 0.0194 0.296 © 0.243 8 0.323 0.489 0.612 0.425 0.778
0.0 0.016 2 0.285 € 0.227 8 0.311 0.500 0.609 0.421 0.683

T =240
0.9 0.1624 0.838 0.832 0.284 8 0.376 0.591 0.358 € 0.870
0.8 0.0424 0.644 0.636 0.170 & 0.302 0.553 0.285 € 0.864
0.7 0.014 4 0.498 0.471 0.142 8 0.292 0.538 0.252€ 0.862
0.6 0.010* 0.392 0.367 0.140 & 0.287 0.536 0.248 € 0.853
0.5 0.005* ‘0.329 0.303 0.139 8 0.277 0.535 0.234°€ 0.839
0.4 0.003 4 0.275 0.248 0.132° 0.272 0.535 0.234€ 0.834
0.3 0.003 # 0.241 0.210 ¢ 0.1328 0.279 0.531 0.232 0.829
0.2 0.003 A 0.223 0.188 € 0.134° 0.278 0.529 0.231 0.762
0.1 0.002 4 0.210 0.161 € 0.1328 0.280 0.524 0.231 0.697
0.0 0.002 4 0.199 0.146 € 0.131 8 0.270 0.521 0.224 0.514

A B and © denote the Best, Better and good performer respectively.

https:/doi.org/10.1371/journal.pone.0259994.t004
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Table 5. Probabilities of type II error "g" for D'LT’.

T =30

y LM H1 H2 Sc LBI Lc Ls
0.9 0.880" 0.945 ¢ 0.949 0.936 ° 0.954 0.957 0.945 © 0.950
0.8 0.737 4 0.933 0.936 0.906 ® 0.948 0.953 0.945 0.909 ©
0.7 0.596 * 0.914 0.910 0.887 B 0.947 0.951 0.945 0.907 €
0.6 0.467 A 0.892 0.882 0.854 P 0.944 0.951 0.944 0.858 €
0.5 0.383 % 0.871 0.839 ¢ 0.835 58 0.943 0.953 0.944 0.845
0.4 0313 % 0.842 0.809 8 0.826 € 0.942 0.952 0.943 0.837
0.3 0.267 0.825 0.764 8 0.820 € 0.943 0.951 0.941 0.829
0.2 02314 0.791 € 0.737 8 0.811 0.942 0.950 0.940 0.823
0.1 0.195% 0.786 € 0.696 & 0.804 0.940 0.955 0.938 0.815
0.0 0.187 2 0.763 € 0.669 & 0.804 0.939 0.952 0.938 0.807

T =60
0.9 0.739 % 0.943 0.929 0.822°8 0.887 0.949 0.935 0.861°€
0.8 0.4614 0.900 0.890 0.692° 0.831 0.945 0.915 0.745 €
0.7 02824 0.831 0.818 0.609 B 0.804 0.940 0.904 0.681°€
0.6 0.174 4 0.753 0.734 0.576 B 0.788 0.937 0.890 0.667 €
0.5 0.1174 0.699 0.652 0.542 B 0.784 0.938 0.885 0.650 ©
0.4 0.086 * 0.633 0.568 € 0.534 8 0.787 0.941 0.880 0.647
0.3 0.069 * 0.589 05118 0.526 € 0.778 0.940 0.880 0.641
0.2 0.055 % 0.542 0.456 & 0.530 € 0.777 0.937 0.876 0.621
0.1 0.047 2 0.514 € 0.405 8 0.523 0.776 0.942 0.873 0.619
0.0 0.040 * 0.488 € 0.389 & 0.513 0.775 0.943 0.870 0.610

T =120
0.9 0.461 % 0.924 0.924 0.584 8 0.652 0.936 0.870 0.607 €
0.8 0.168 0.835 0.833 03738 0.528 € 0.924 0.788 0.576
0.7 0.069 * 0.732 0.714 0.303 8 0.498 € 0.920 0.762 0.575
0.6 0.0324 0.625 0.608 0.262 B 0.485 € 0.916 0.742 0.573
0.5 0.0144 0.543 0.512 0.243 B 0.476 ¢ 0.920 0.728 0.536
0.4 0.0114 0.473 0.428 € 0.242 B 0.472 0.917 0.723 0.527
0.3 0.007 A 0.434 0.380 € 0.228 B 0.475 0.914 0.721 0.518
0.2 0.005 4 0.389 0.336 € 0.227 0.473 0.911 0.714 0.518
0.1 0.005 * 0.364 0.297 € 02258 0.472 0.914 0.712 0.513
0.0 0.004 2 0.353 0.273 € 02218 0.471 0.914 0.710 0.511

T =240
0.9 0.156 * 0.883 0.886 02548 0.337°€ 0.905 0.674 0.553
0.8 0.0242 0.738 0.716 0.114 8 0.228 € 0.880 0.552 0.544
0.7 0.005 2 0.591 0.579 0.083 8 0.196 € 0.865 0.515 0.540
0.6 0.002 2 0.477 0.451 0.069 & 0.194 € 0.862 0.497 0.533
0.5 0.001 4 0.402 0.359 0.066 ° 0.192 ¢ 0.860 0.484 0.517
0.4 0.000 * 0.345 0.301 0.061 B 0.189 ¢ 0.849 0.481 0.516
0.3 0.000 * 0.292 0.263 0.062 8 0.190 © 0.859 0.474 0.509
0.2 0.000 A 0.278 0.228 0.061 B 0.192 € 0.855 0.471 0.453
0.1 0.000 * 0.260 0.204 0.061 8 0.189 € 0.859 0.470 0.428
0.0 0.000 0.241 0.184 0.059 8 0.186 € 0.853 0.469 0.416

A B and © denote the Best, Better and good performer respectively.

https://doi.org/10.1371/journal.pone.0259994.t005
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Table 6. Probabilities of type II error "g" for D'LT".

T =30

¥ LM H1 H2 Sc LBI Lc Ls
0.9 0.926* 0.948 € 0.942° 0.950 0.953 0.946 0.950 0.962
0.8 0.864 4 0.943 0.938° 0.941 € 0.953 0.950 0.955 0.945
0.7 0.733 % 0.935¢ 0.932° 0.939 0.949 0.953 0.947 0.967
0.6 0.606 * 0.926° 0.929 0.930 0.949 0.959 0.945 0.968
0.5 0.485 0.921°¢ 0.919 8 0.929 0.943 0.960 0.952 0.968
0.4 0.377 % 0.920 © 09138 0.918 0.941 0.963 0.944 0.962
0.3 0.299 & 0.908 € 0.906 & 0.909 0.940 0.963 0.944 0.956
0.2 0.246 * 0.908 © 0.892 8 0.908 € 0.939 0.966 0.952 0.958
0.1 02024 0.905 0.886 % 0.899 € 0.935 0.967 0.946 0.951
0.0 0.161 % 0.904 0.878 8 0.903 € 0.934 0.968 0.948 0.963

T =60
0.9 0.855 0.949 0.949 0.908 & 0.951 0.952 0.951 0.923 €
0.8 0.612* 0.933 0.932 0.803 ° 0.954 0.955 0.956 0.852°€
0.7 03814 0.918 0.913 0.707 B 0.943 0.954 0.957 0.829 €
0.6 0.2294 0.894 0.892 0.640 B 0.947 0.958 0.954 0.800 ©
0.5 0.140 4 0.863 0.852 0.602 B 0.949 0.959 0.956 0.769 ©
0.4 0.083 0.833 0.813 05758 0.949 0.962 0.953 0.765 ©
0.3 0.052 % 0.814 0.775 0.570 8 0.950 0.961 0.956 0.722 ¢
0.2 0.041 2 0.783 0.732 0.556 8 0.950 0.962 0.955 0.713 €
0.1 0.029 0.759 0.696 € 0.553 8 0.950 0.959 0.956 0.696 €
0.0 0.0222 0.735 0.657 © 0.554 8 0.950 0.965 0.957 0.692

T=120
0.9 0.605 2 0.941 0.942 0.724¢ 0.826 0.951 0.945 0.700 &
0.8 02272 0.916 0.916 0.454 8 0.691 0.946 0.941 0.532°€
0.7 0.079 2 0.877 0.865 03138 0.644 0.947 0.929 0.507 €
0.6 0.027 4 0.829 0.813 0.263 B 0.622 0.945 0.926 0.486 ©
0.5 0.0124 0.774 0.751 0.227 B 0.604 0.946 0.924 0.465 ©
0.4 0.005 4 0.728 0.685 0.217 B 0.597 0.945 0.921 0.452 €
0.3 0.002* 0.679 0.638 0.205 B 0.593 0.943 0.919 0.417 €
0.2 0.002 0.634 0.575 0.199 8 0.587 0.945 0.913 0.410 €
0.1 0.001 0.611 0.536 0.203 8 0.582 0.945 0.911 0.404 €
0.0 0.001 2 0.579 0.503 0.198 8 0.589 0.943 0.909 0.402 €

T =240
0.9 0.231% 0.934 0.938 0.340 8 0.425 € 0.940 0.898 0.435
0.8 0.024* 0.880 0.883 0.115 8 0.248 € 0.930 0.840 0.416
0.7 0.004 2 0.806 0.812 0.062 8 0.197 € 0.927 0.824 0.412
0.6 0.001 2 0.732 0.714 0.050 0.183 € 0.923 0.804 0.408
0.5 0.000 * 0.650 0.631 0.039° 0.170 € 0.924 0.803 0.401
0.4 0.000 4 0.585 0.555 0.034 B 0.170 € 0.927 0.805 0.385
0.3 0.000 * 0.532 0.493 0.036® 0.166 © 0.920 0.806 0.381
0.2 0.000 * 0.500 0.443 0.030 B 0.162 € 0.924 0.800 0.377
0.1 0.000 * 0.463 0.400 0.030 8 0.160 © 0.930 0.793 0.369
0.0 0.000 * 0.442 0.369 0.030 8 0.160 € 0.923 0.803 0.343

A B and © denote the Best, Better and good performer respectively.

https:/doi.org/10.1371/journal.pone.0259994.t006
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performer and good performer respectively in this study. These nominations are done for each
alternative hypothesis i.e. y.

It is evident from Table 4 that for the first case of deterministic part i.e. D’LT’, the LM test
is the best performer at all ten y’s considered for all four sample sizes. At T = 30, for some 7',
Sc is better and for some y’s, H2 is better performer. Similarly, at the same sample size three
tests i.e. H1, H2 and F are good performers at different y’s. However, a deep insight of Table 4
reveals that excluding LM, the rest of seven tests have §'s way larger than 0.5. Moreover, the
LM test has also f's larger than 0.5 for s from 0.9 up to 0.7. At a moderate sample size of 60,
['s tend to improve generally as now f's are lesser as compared to the ones for T = 30. Now,
for majority of ¢’s, H2 is better and H1 is good performer. Again, these two tests (H1 and H2)
have f's larger than 0.5 for s from 0.9 to 0.4. The LM test has f's larger than 0.5 for only y =
0.9, for rest of ¥'s, f's tends to decrease very sharply. When a moderately large sample size of
120 is considered, then f's are generally lesser than those for T'= 30 and T = 60. Now Sc is a
better performer for majority of s and H2 is also better performer for some ¥’s. Lc, Sc, H2
and H1 are good performers at various ¥’s. However, LM improves its performance enor-
mously as now it has all §'s lesser than 0.1 except for two ¥’si.e. ¢ = 0.9, 0.8. For the large time
length of 240, all tests tend to improve their performance as compared to previous three time
lengths i.e. T'= 30, 60, 120. At T = 240, LM is the best performer and it has s lesser than 0.05
for all s except ¥ = 0.9. Sc is better and Lc and H2 are good performers.

For the second case of deterministic component i.e. D'LT’, again LM has the least #'s at all
y's for all T. Table 5 depicts that at T = 30, the smallest sample size considered in the study, LM
is the best, Sc and H2 are better and Sc, H1 and Ls are good performers. However, all these
tests have ff's way greater than 0.5 except LM at some ¥’s. At T = 60, the same performance of
T = 30 is repeated, however, now all tests have s lesser than those for T = 30. Especially LM
has all #'s lesser than 0.5 except y = 0.9. At a moderately large T = 120, all the tests have
improved their performance by having lesser §'s as compared to T = 30 and 60. For T = 120,
LM remains the best, however, Sc becomes better and LBI and H2 becomes good performers.
At this T = 120 LM has all f's lesser than 0.05 for all y’s except y = 0.9, 0.8, 0.7. Similarly, Sc has
all B's lesser than 0.5 for all ¥'s except y = 0.9. At the largest T = 240, almost same performance
of T'= 120 is repeated with only one addition that now LBI is the sole good performer. At
T = 240 these three tests LM, Sc and LBI have 's lesser than 0.4.

For the final case of deterministic part i.e. D'LT" considered in this study, again LM is the
sole best performer at all s for all T. However, a detailed inspection of Table 6 reveals that at
smallest T = 30, all eight tests have s way larger than 0.5 except LM at some ¥’s. H2 is better
and H1 is good performer at T = 30. At T = 60, again same is the case that all tests have §'s
larger than 0.5 except LM at ¥ = 0.9 and 0.8. However, now Sc is better, and Ls is good per-
former. When a moderately large T = 120 is considered then in general all tests and especially
three tests i.e. LM, Sc and Ls improve their performance as these tests have §'s lesser than 0.5
for most of y’s. Now LM has s lesser than 0.1 for all s except y = 0.9 and 0.8. The better and
good performers are Sc and Ls respectively at T = 120. At largest sample size of T = 240 consid-
ered in this study, LM, Sc and LBI are best, better and good performers respectively. However,
now LM has f's lesser than 0.05 for all ¢'s except y = 0.9. Similarly, Sc has f's lesser than 0.05
for all ¢'s except y = 0.9, 0.8 and 0.7.

4. Conclusions and recommendations

This study is aimed to evaluate the performance of null of cointegration tests on basis of proba-
bilities of Type I and II Errors using Monte Carlo Simulations. In light of discussion in Section
3 it is concluded that use of asymptotic critical values for these eight tests considered in this
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study, led to distortion in probabilities of Type I Error. At almost all of specifications of deter-
ministic part and sample sizes, these eight tests had probabilities of Type I Error way greater or
way smaller than the nominal significance level considered. This means that these eight tests
faced problems of over rejection as well as under rejection. In statistical and econometric anal-
ysis these two problems of over rejection and under rejection have worse implications, leading
to useless conclusions and recommendations. As stated by [34], the claims about the robust-
ness of type I error probabilities are false if the asymptotic critical values are used.

To solve these problems of over rejection and under rejection, simulated critical values
were estimated and then again probabilities of Type I Error were calculated. The use of simu-
lated critical values led to the control of probabilities of Type I Error around nominal signifi-
cance level. For further evaluation of performance on basis of probabilities of Type II Error,
these simulated critical values were used to ensure that the probabilities of Type I Error are
around nominal significance level of 0.05 for all eight tests.

The LM test was the sole best performer at all alternative hypotheses for all specifications of
deterministic part and sample sizes on basis of probability of Type II Error. It had probabilities
of Type II Error way lesser than its competitors. However, at small time lengths of 30 and 60,
even it was the best performer, it had probabilities of Type II Error larger than 0.5. The LM
test is a better performer as it uses the contemporaneous variance estimator and the rest used
different form of long run variances. Therefore the performances of the rest of the tests also
depend upon the selection of type of long run variance and their weighting function. However,
the LM test is free of these decisions. Moreover, its underlying assumptions and theory meets
with the data generating process used in the current study. From the rest of tests, two tests had
better and good performance over all and these tests are Sc and H2 developed. At large sample
sizes of 120 and 240, LM test had the extra ordinary least probabilities of Type II Error, even
lesser than 0.05. The rest of five tests excluding LM, Sc and H2, performed badly even worst
with one exception that LBI performed better for D'LT’ and D'LT" at time length of 240.

In the light of conclusions, it is recommended that use of asymptotic critical values may be
avoided. Furthermore, the use of simulated critical values is highly recommended. In modern
age, the use of simulated critical values is easily possible due to the availability of fast comput-
ers. While testing for possible cointegration using null of cointegration tests, the LM test may
be given priority as compared to the others. For large time lengths of 240 or more, when the
presence of only intercept is assumed then LBI test may also be used.

After conducting the current study, few gaps in the literature have been observed which can
be pursued in the future starting with the development of a new test of null cointegration on
basis of vector autoregressive model as there is no such kind of test available in the literature.
Moreover, it can also be assessed that how these current tests are performing when the data are
generated using a multivariate system having more than one cointegrating vector.
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