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Abstract

Increasing domestic rapeseed production is an important national goal in China. Research-

ers often use tools such as crop models to determine optimum management practices for

new varieties to increased production. The CROPGRO-Canola model has not been used to

simulate rapeseed in China. The overall goal of this work was to identify key inputs to the

CROPGRO-Canola model for calibration with limited datasets in the Yangtze River basin.

First, we conducted a global sensitivity analysis to identify key genetic and soil inputs that

have a large effect on simulated days to flowering, days to maturity, yield, above-ground bio-

mass, and maximum leaf area index. The extended Fourier amplitude test method (EFAST)

sensitivity analysis was performed for a single year at 8 locations in the Yangtze River basin

(spatial analysis) and for seven years at a location in Wuhan, China (temporal analysis).

The EFAST software was run for 4520 combinations of input parameters for each site and

year, resulting in a sensitivity index for each input parameter. Parameters were ranked

using the top-down concordance method to determine relative sensitivity. Results indicated

that the model outputs of days to flowering, days to maturity, yield, above-ground biomass,

and maximum leaf area index were most sensitive to parameters that affect the duration of

critical growth periods, such as emergence to flowering, and temperature response to these

stages, as well as parameters that affect total biomass at harvest. The five model outputs

were also sensitive to several soil parameters, including drained upper and lower limit

(SDUL and SLLL) and drainage rate (SLDR). The sensitivity of parameters was generally

spatially and temporally stable. The results of the sensitivity analysis were used to calibrate

and evaluate the model for a single rapeseed experiment in Wuhan, China. The model was

calibrated using two seasons and evaluated using three seasons of data. Excellent nRMSE

values were obtained for days to flowering (�1.71%), days to maturity (� 1.48%), yield (�

9.96%), and above-ground biomass (� 9.63%). The results of this work can be used to

guide researchers on model calibration and evaluation across the Yangtze River basin in

China.
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Introduction

Rapeseed (Brassica napus) is the largest domestic source of vegetable oil in China, which

accounts for 47% of the global supply [1]. Despite the current rise in domestic production of

edible oil, a large percentage is still imported from other countries [2]. China is the largest

global producer of rapeseed, with an annual production of approximately 16 MT and an aver-

age yield of approximately 1950 kg ha-1 in 2015 [3]. Rapeseed yield is primarily affected by

nitrogen fertilizer, plant density and planting date [4, 5]. There are numerous studies on rape-

seed response to different management practices [6, 7] and response mechanisms under abi-

otic stress [8]. However, there are few studies using crop models to optimize management

strategies for rapeseed. Research on how to increase production under new management prac-

tices and genetics is needed to increase domestic production.

Crop growth models have been widely used around the world to study optimal field man-

agement practices, interactions between genetics and the environment, and develop strategies

to mitigate the impact of climate change, leading to increased food production. Several widely

used crop models simulate canola growth such as APSIM-Canola [9], DAISY-Rape [10],

DSSAT-Rape [11], and EPIC-Rape [12]. WOFOST-GTC was developed to simulate the yield

and oil quality of winter rapeseed [13]. HUME-OSR was developed and evaluated for winter

rapeseed in Germany [14]. The APSIM-canola model has been evaluated in Australia, China,

Germany, and America [9, 15, 16]. APSIM-canola was modified and used to simulate canola

phenology and yield in China. The model accurately simulated canola phenology across differ-

ent environments after correction and the influence of model uncertainty was reduced [17]. In

a subsequent study, APSIM-Canola was used to investigate the impact of genotype, environ-

mental and management practices on canola yield in different climatic regions of China.

Results showed that in the upper and middle Yangtze River Basin regions where rainfall was

sufficient, the simulated yield potential of winter canola was more than 4.8 t ha-1. However, in

the northern region with limited rainfall, the yield potential was only 1.1 t ha-1 [18]. The model

was also used to study the optimum water-use efficiency of canola production in Australia

[19–21]. Tian et al. [22] coupled the APSIM-canola model with the AEZ model to simulate the

potential production of canola in the Yangtze River Basin. The study simulated the impact of

climate change on canola (winter rapeseed) in the Yangtze River Basin and showed that rape

production in the Yangtze River Basin would increase in the 2050s. The average potential pro-

ductivity of rapeseed in the upper, middle and lower reaches of the Yangtze River Basin was

0.939, 1.639 and 0.639 million tons respectively.

The CROPGRO-Canola model included in DSSAT 4.7 integrates the effect of weather, soil,

management and genetic factors on the daily development and growth of canola and rapeseed

[23–25]. Daily growth potential is computed based on photosynthetically active radiation

(PAR) intercepted by the crop canopy. Growth is modified based on temperature and water

and nitrogen stress factors [26]. Model input data includes daily weather (max/min tempera-

ture, rainfall, solar radiation), soil properties, cultivar coefficients and management practices.

The model has been tested for canola in Italy [27], Canada [28] and Pakistan [29]. However,

the model has not been tested for rapeseed in China.

A sensitivity analysis (SA) is often used to aid in the calibration and evaluation of a model

in a new region. Global sensitivity analysis identifies important model inputs that should be

measured or calibrated and facilitates calibration and evaluation of models [30]. In addition,

global sensitivity analysis can be used to effectively evaluate the temporal and spatial stability

of model inputs. There are several global sensitivity methods including Morris [31], regression

[32], Sobol [33], and the extended Fourier amplitude test method (EFAST) [34]. The EFAST

method incorporates advantages from both the Sobol and the Fourier amplitude test (FAST
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methods) [34] and is based on the idea of variance decomposition. In this approach, a sensitiv-

ity index (SI) of each parameter is obtained through probability density function conversion,

Fourier transformation, and variance decomposition. This method offers the advantages of

high calculation accuracy and requires only a few samples to study the influence of multiple

parameters on the model output results [35, 36].

The overall goal of this work was to conduct a spatial and temporal sensitivity analysis of

the CROPGRO-Canola model for rapeseed in the Yangtze River Valley and to use the sensitiv-

ity analysis to guide model calibration and evaluation of a simple rapeseed experiment. The

specific objectives were to:

1. use the EFAST method to evaluate the spatial and temporal sensitivity of important model

inputs on key model outputs;

2. use the top-down concordance coefficient index to evaluate the consistency of the sensitiv-

ity results across different years and locations;

3. conduct calibration and evaluation of the model for a simple rapeseed experiment.

Materials and methods

Site data for spatial and temporal sensitivity analysis

A sensitivity analysis to evaluate the spatial sensitivity of input parameters was performed

using a combination of rapeseed experiments from eight sites in the Yangtze River basin,

including data from 2011 to 2018 (Table 1). Management information for each experiment

was used as model inputs. The site in Wuhan consisted of seven years of data and was used to

evaluate the temporal sensitivity of input parameters, while the remainder of the experiments

consisted of one season of data and were used to evaluate the spatial sensitivity of input param-

eters. These sites represented a range in rainfall (221–959 mm), mean temperature (10.4–

17.4˚C) and solar radiation (1708–2954 MJ m-2 d-1). The management practices for each site

are shown in Table 2.

The CROPGRO-Canola model

Daily weather data needed to run the CROPGRO-Canola model were taken from the National

Meteorological Science Data Center database (http://data.cma.cn/), which included daily max-

imum and minimum temperature, precipitation, and sunshine hours. Daily solar radiation

needed by the model was computed using the Angstrom equation,

Rs ¼ aþ b
n
N
Ra

� �
ð1Þ

where Rs is total solar radiation in MJ m-2, Ra is Astronomical radiation in MJ m-2, n is mea-

sured solar sunshine hours in h, N is theoretical sunshine hours in h and a and b are coeffi-

cients (a = 0.2, b = 0.5) [37].

The soil information came from the China soil data set in the Harmonized World Soil Data-

base (HWSD). The variety Huayouza 62, one of the main winter rapeseed varieties in the

Yangtze River Basin, was used as the default variety. The genetic coefficients for this variety

were set as default in the model, and then adjust after sensitivity analysis to match experimen-

tal data for the case study.

Three types of model input parameters, genotype and ecotype coefficients, and soil parame-

ters, were selected for the sensitivity analysis. Model outputs selected for the sensitivity analysis

included days to flowering and days to maturity, yield, above-ground biomass at harvest and
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maximum leaf area index. Parameter abbreviations, definitions and value ranges are shown in

Table 3. The range for genotype parameters was taken from recommendations from the Glue

cultivar coefficient optimizer tool in DSSAT. The range for ecotype parameters was ±30% of

the value for the cultivar selected for this study. The range of soil parameters was based on

expected ranges from the literature [38]. Other management practice inputs needed for the

model runs were taken from the experiments conducted at each site.

EFAST sensitivity analysis method

The EFAST method employs variance decomposition to perform a quantitative global sensitiv-

ity analysis of the objective function. Consequently, it uses variance to relate changes in model

Table 1. Site information and meteorological summary of the rapeseed growing season.

Site Latitude Longitude Altitude Tm Rain Radiation Experimental period

(Province) (˚) (˚) (m) (˚C) (mm) (MJ m-2 d-1)

Luxi 24.32 103.46 1704.3 15.0 240.2 2954.3 2018

(Yunnan)

Chongqing 29.35 106.28 259.1 14.4 411.7 1718.4 2018

Hanzhong 33.04 107.02 509.5 10.4 221.2 1976.7 2018

(Shanxi)

Zhuzhou 27.52 113.10 74.6 12.5 958.7 1791.6 2018

(Hunan)

Wuhu 31.09 118.35 17.1 11.1 572.8 2090.2 2018

(Anhui)

Gaoyou 32.48 119.27 5.4 10.5 354.8 2365.0 2018

(Jiangsu)

Hangzhou 30.14 120.10 41.7 12.4 839.9 2040.5 2018

(Zhejiang)

Wuhan 30.47 114.35 23.6 17.4 530.6 2162.4 2011–2018

(Hubei)

https://doi.org/10.1371/journal.pone.0259929.t001

Table 2. Management practices at eight sites.

Site (Province) Soil type Planting date Row spacing (cm) Population (plants m-2) N rate (kg ha-1)

Luxi Red soil 09/20/2018 25 45 174

(Yunnan)

Chongqing Red soil 09/28/2018 25 45 174

Hanzhong Paddy soil 09/26/2018 25 45 174

(Shanxi)

Zhuzhou Yellow brown soil 09/28/2018 25 45 174

(Hunan)

Wuhu Paddy soil 10/01/2018 25 45 174

(Anhui)

Gaoyou Paddy soil 10/03/2018 25 45 174

(Jiangsu)

Hangzhou Red soil 10/05/2018 25 45 174

(Zhejiang)

Wuhan Yellow brown soil 09/28/2018 25 45 174

(Hubei)

https://doi.org/10.1371/journal.pone.0259929.t002
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Table 3. Selected parameters and output variables in CROPGRO-Canola model.

Codes Definitions Range

Canola Ecotype Parameters

PL-EM Time between planting and emergence/ thermal days 2.52–4.68

EM-V1 Time required from emergence to first true leaf/ thermal days 4.2–7.8

JU-R0 Time required for floral induction, equal to the minimum number of days for floral

induction under optimal temperature and daylengths/ thermal days

3.5–6.5

PM09 Proportion of time between first seed and physiological maturity that the last seed can be

formed

0.25–0.46

LNGSH Time required for growth of individual shells/ thermal days 7–13

R7-R8 Time between physiological and harvest maturity / thermal days 8.4–15.6

TRIFL Rate of appearance of leaves on the mainstem 0.22–0.42

RWDTH Relative width of this ecotype in comparison to the standard width per node (YVSWH)

defined in the species file

0.7–1.3

RHGHT Relative height of this ecotype in comparison to the standard height per node (YVSHT)

defined in the species file

0.63–1.17

R1PPO Increase in daylength sensitivity after flower appearance/ h 0.35–0.66

OPTBI Minimum daily temperature above which there is no effect on slowing normal

development toward flowering/˚C

14–26

SLOBI Slope of relationship reducing progress toward flowering if TMIN for the day is less than

OPTBI

0.02–0.05

Canola Genotype Parameters

CSDL Critical short daylength below which reproductive development progresses with no

daylength effect/ h

14~24

EM-FL Time between plant emergence and flower appearance/ photothermal days 20~45

FL-SH Time between first flower and first pod/ photothermal days 10~16

FL-SD Time between first flower and first seed/ photothermal days 15~35

SD-PM Time between first seed and physiological maturity/ photothermal days 20~40

FL-LF Time between first flower and end of leaf expansion/ photothermal days 1~10

SLAVR Specific leaf area of cultivar under standard growth conditions/ (cm2g-1) 200~275

SIZLF Maximum size of full leaf/ cm2 90~110

SFDUR Seed filling duration for pod cohort at standard growth conditions/photothermal days 18~22

SDPDV Average seed per pod under standard growing conditions 15~25

PODUR Time required for cultivar to reach final pod load under optimal conditions/ photothermal

days

8~12

Soil Parameters

SLLL Lower limit/(cm3cm-3) 0.055~0.123

SDUL Upper limit/(cm3cm-3) 0.123~0.348

SSAT Upper limit, saturated/(cm3cm-3) 0.348~0.547

SRGF Root growth factor 0.7~1.0

SSKS Saturated hydraulic conductivity/(cm h-1) 0.06~21.00

SBDM Bulk density/(g cm-3) 1.0~1.4

SLOC Organic carbon content/% 0.348~5.00

SALB Albedo 0.09~0.17

SLU1 Evaporation limit/mm 2~12

SLDR Drainage rate 0.01~0.85

SLRO Runoff curve number 61~94

SLNF Mineralization factor 0~1

Output Variable

ADAP Anthesis day

MDAP Maturity day

(Continued)
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outputs to changes in model inputs. Previous studies have adopted this method to reflect the

importance of the parameter and the degree of contribution to model result [38–40]. Total var-

iance of the model was calculated by:

VðYÞ ¼
Xm

i¼1
Vi þ

X

1�i�j�m
Vij þ

X

1�i�j�m
V1;2;...;m ð2Þ

Where Vi was the variance of input parameter Xi, and Vij~V1, 2,. . ., m was the variance of

the interaction among each parameter.

Model output variance, Vi, caused by a change in parameter Xi was calculated by:

Vi ¼ V½EðY=XiÞ� ð3Þ

The model output variance caused by the interaction of parameters Xi and Xj, was obtained

using:

Vij ¼ V½EðY=Xi;XjÞ� � Vi � Vj ð4Þ

The first-order sensitivity index, Si, of parameter Xi reflected the contribution of parameter

Xi to the total variance of model output parameters, as by:

Si ¼ Vi=VðYÞ ð5Þ

The interaction of parameter Xi on the total variance of the model results and the interac-

tion with other parameters was expressed by STi:

STi ¼ ½VðYÞ � V� i�=VðYÞ ð6Þ

Where V-i is the total variance of all parameters except parameter Xi.

The values Si and STi are constants, ranging between 0–1, with large values indicating

greater influence of the input parameter on the output parameter. Larger values indicate that

the model output is very sensitive to the input parameter being evaluated.

Spatial and temporal sensitivity analysis

We used the EFAST method to evaluate the impact of 35 input parameters on 5 output

parameters including days to anthesis and maturity, yield, above-ground biomass, and

maximum leaf area index to assess model sensitivity for the sites shown in Table 1. The 35

input parameters (Table 3) included 12 ecotypes, 11 genotypes and 12 soil parameters.

The spatial sensitivity analysis was run for one year (2018) using weather, soil and man-

agement information from 7 sites that represent a primary rapeseed production region in

China (Table 1). Next, we ran the analysis for 7 years at one site (Wuhan) to assess the

temporal sensitivity of model parameters using model input data collected from a long-

term experiment.

We calculated the global sensitivity index using the SimLab (ver.2.2.1) Software, based on

4520 groups of random parameters in the set of parameters generated using a Monte Carlo

sampling distribution. An R program was used for batch processing of the CROPGRO model

Table 3. (Continued)

Codes Definitions Range

HWAM Yield at harvest

CWAM Aboveground biomass at maturity

LAIX Maximum leaf area index

https://doi.org/10.1371/journal.pone.0259929.t003
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results. Finally, we computed the first order and total sensitivity indices of the outputs to each

set of input parameters using the SimLab Software.

The top-down concordance coefficient (TDCC) [41] method was used to evaluate the rank-

ing of the sensitivity index of each parameter to determine the spatial and temporal consis-

tency of sensitivity analysis results in this study. First, we defined the savage score of each

parameter as follows:

Sij ¼
Xn

i¼rij

1=i ð7Þ

where, Sij is the savage score of parameters Xi in replicates Rj; rij is the ranking of Xi in repli-

cates Rj; and n is the number of parameters.

For all the different replicates, the TDCC was calculated using the following formula:

TDCC ¼

Xn

i¼1

Xm

j¼1

Sij

 !2

� m2n

m2 n �
Xn

i¼1

1=i

 ! ð8Þ

where, m is the number of sensitivity analysis replicates.

The corresponding p-values of TDCC were calculated using the T statistics (approximating

a x2-distribution with n-1degrees of freedom) as follows:

T ¼ m � ðn � 1Þ � TDCC ð9Þ

A small TDCC value (closer to 1 with a p-value less than 0.05) indicated that the results of

each replicate were significantly consistent, and vice versa [42].

Calibration and evaluation of the model based on sensitivity analysis

results

A 5-year experiment collected from the literature [43–45] was used to calibrate and evaluate

the CROPGRO-Canola model for winter rapeseed based on the sensitivity analysis results. The

experiments for the calibration (2014, 2015) and evaluation (2016, 2017, and 2018) using the

Huayouza 62 variety were conducted at a research site at Huazhong Agricultural University,

Hubei Province. The datasets (Table 4) included management strategy, phenology, yield, and

above-ground biomass of each experiment.

We used two years of data to calibrate (2014, 2015) and three years to evaluate the model

(2016, 2017, and 2018). The most sensitive input parameters found in the sensitivity analysis

were used for model calibration. Calibration was performed using a “trial and error” method

to adjust input parameters to minimize the error between simulated and measured flowering

Table 4. Datasets for calibration (1–2) and evaluation (3–5) of CROPGRO-Canola model.

Data

set

Sowing date Fertilizer (kg ha-

1)

Population (plants m-

2)

Anthesis date Maturity date Measured yield (kg ha-

1)

Measured above-ground biomass (kg

ha-1)

1[43] 2014/9/25 N240, P66, K124 45 2015/2/22 2015/4/28 2648 13293

2[44] 2015/9/24 N199, P49, K93 45 2016/2/20 2016/4/22 2676 9757

3[44] 2016/9/27 N199, P49, K93 45 2017/2/14 2017/4/25 2641 9394

4[45] 2017/9/25 N139, P40, K75 45 2018/3/2 2018/4/30 2929 12467

5[45] 2018/9/27 N139, P40, K75 45 2019/3/4 2019/5/1 2765 12328

https://doi.org/10.1371/journal.pone.0259929.t004
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date, maturity date, yield and above-ground biomass at harvest. Calibrated parameters were

then used to evaluate the model performance in 2016, 2017, and 2018. The soil information

came from the China soil data set in the Harmonized World Soil Database (HWSD) (Table 5).

Results

Temporal sensitivity analysis

The sensitivity analysis (Fig 1) showed that simulated days to flowering at the Wuhan site

(2011 to 2018) were most sensitive to five primary input parameters. These included (i)

EM-FL, described as photo-thermal days (PTD) between plant emergence and flower appear-

ance, (ii) OPTBI, or minimum daily temperature above which there is no effect on slowing

normal development toward flowering, (iii) RWDTH, canopy width of this ecotype in com-

parison to the standard width per node (YVSWH), (iv) SLAVR, which is specific leaf area of

the cultivar under standard growth conditions, and (v) SLOBI which is the slope of the rela-

tionship reducing progress toward flowering if TMIN for the day is less than OPTBI. The aver-

age sensitivity indices were 0.50 for EM-FL, 0.31 for OPTBI, 0.24 for RWDTH, 0.21 for

SLAVR, and 0.18 for SLOBI.

Days to maturity were most sensitive to the EM-FL parameter, with an average sensitivity

index of 0.77. Days to maturity were also sensitive to OPTBI, SLOBI, PODUR (PTD required

for a cultivar to reach final pod load under optimal conditions), EM-V1 (PTD required from

emergence to first true leaf), and FL-SH (PTD between first flower and first pod). The average

sensitivity indices were 0.306 for OPTBI, 0.300 for SLOBI, 0.255 for PODUR, 0.246 for

EM-V1, and 0.235 for FL-SH. In addition, days to maturity were also sensitive to RWDTH,

LNGSH (PTD required for growth of individual shells), and SLAVR with sensitivity indices of

0.19, 0.18, and 0.16, respectively. Conversely, soil parameters had little effect on phenology

across the multi-year simulation (Figs 1 and 2) because development is primarily driven by

daylength and temperature.

Fig 2 shows the sensitivity indices of 35 input variables on yield, above-ground biomass and

LAI. The yield was most sensitive to TRIFL (rate of appearance of leaves on the mainstem),

with a sensitivity index of 0.61, followed by SLOBI (SI = 0.49), OPTBI (SI = 0.34) and EM-FL

(SI = 0.31). Some parameters had smaller sensitivity indices, including SLAVR, CSDL (critical

short-day length below which reproductive development progresses with no daylength effect),

SLR0 (runoff curve number), SSAT (Upper limit, saturated), LNGSH, SDUL (upper limit),

EM-V1. Their sensitivity indices ranged from 0.10 to 0.15. The yield was sensitive to soil

Table 5. Physical and chemical properties of the soil.

Soil

depth

(cm)

Clay

content (%)

Silt content

(%)

Permanent wilting

point (cm3 cm-3)

Field capacity

(cm3 cm-3)

Saturated hydraulic

conductivity (cm3 cm-3)

Root growth

factor, soil only

(0–1)

pH Organic carbon

content (%)

Bulk density

(g cm-3)

5 21 50 0.153 0.34 0.447 1 7.8 1.12 1.22

15 21 50 0.153 0.34 0.447 1 7.8 1.12 1.22

30 21 50 0.153 0.34 0.447 0.7 7.8 1.12 1.22

60 21 45 0.144 0.314 0.414 0.2 7.9 0.82 1.31

80 21 45 0.144 0.314 0.414 0.05 7.9 0.82 1.31

100 21 45 0.144 0.314 0.414 0.03 7.9 0.82 1.31

120 21 45 0.144 0.314 0.414 0.03 7.9 0.82 1.31

150 21 45 0.144 0.314 0.414 0.03 7.9 0.82 1.31

180 21 45 0.144 0.314 0.414 0.03 7.9 0.82 1.31

200 21 45 0.144 0.314 0.414 0.03 7.9 0.82 1.31

https://doi.org/10.1371/journal.pone.0259929.t005
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parameters that influenced water holding capacity and seasonal water stress (SLRO, SSAT,

SDUL).

TRIFL had the greatest impact on aboveground biomass, with a sensitivity index of 0.59,

followed by SLOBI (SI = 0.31) and OPTBI (SI = 0.21). Aboveground biomass was moderately

sensitive to EM-FL, SLLL, R1PPO (increase in daylength sensitivity after flower appearance),

SLAVR, and SDUL. Their sensitivity indices ranged from 0.10–0.20. Other parameters

(SLOBI, TRIFL, OPTBI, EM-FL, SD-PM, SLLL, FL-SH, SCEC, SLAVR, SLR0, PL-EM,

EM-V1, SRGF) also affected aboveground biomass in 2011 (Fig 2), possibly because Wuhan

received less total rainfall (407.5 mm) between October 2011 and May 2012. These findings

indicate that soil factors can have a significant impact on rapeseed growth.

LAI was most sensitive to TRIFL, which had a sensitivity index of 0.70, followed by EM-FL

(SI = 0.28), SLAVR (SI = 0.24), and SLLL (SI = 0.16). The parameters PM09 (proportion of

time between first seed and physiological maturity that the last seed can be formed), EM-V1,

SDUL, R1PPO, and SLOBI had relatively low sensitivity indices, ranging from 0.10–0.15.

Spatial sensitivity analysis

Profiles of the sensitivity of days to flowering to model input parameters using weather and

soil information at eight locations are shown in Fig 3. Days to flowering were most sensitive to

EM-FL (SI = 0.55), OPTBI (SI = 0.35), SLOBI (SI = 0.19), and SLAVR (SI = 0.18). Days to

maturity were most sensitive to EM-FL, LNGSH, SLOBI, OPTBI, and RWDTH. Parameters

that strongly impact days to flowering often exhibited a greater impact on days to maturity,

Fig 1. Temporal sensitivity indices for days to flowering and maturity (2011–2018). Note. I: ecotype parameters; II:

genotype parameters; III: soil parameters.

https://doi.org/10.1371/journal.pone.0259929.g001
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although some only affected the duration of time between flowering and maturity. Flowering

and maturity date were not sensitive to soil parameters. This was expected since soil parame-

ters (SLLL, SDUL, SSKS) impact water holding capacity and drought stress, and drought stress

does not impact development to a large degree in the crop model.

Fig 2. Temporal sensitivity indices for yield, aboveground biomass and LAI (2011–2018). Note. I: ecotype

parameters; II: genotype parameters; III: soil parameters.

https://doi.org/10.1371/journal.pone.0259929.g002

Fig 3. Spatial sensitivity indices of phenology to model input parameters. Note. I: ecotype parameters; II: genotype

parameters; III: soil parameters.

https://doi.org/10.1371/journal.pone.0259929.g003

PLOS ONE Sensitivity analysis of the CROPGRO-Canola model in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0259929 November 18, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0259929.g002
https://doi.org/10.1371/journal.pone.0259929.g003
https://doi.org/10.1371/journal.pone.0259929


The sensitivity of yield to input parameters varied spatially (Fig 4). Parameters that had the

largest sensitivity indices for yield included TRIFL (SI = 0.6), SLOBI (SI = 0.55), OPTBI

(SI = 0.42), EM-FL (SI = 0.33), and LNGSH (SI = 0.20). The input parameters SLR0, SLAVR,

SLDR, PL-EM (time between planting and emergence) and other parameters also impacted

yield differently at the different locations. Parameters that had the most impact on above-

ground biomass included TRIFL (SI = 0.57), EM-FL (SI = 0.26), OPTBI (SI = 0.20), and

SLOBI (SI = 0.20. Above-ground biomass was also sensitive to other parameters including

SLAVR, SLDR, and SLLL, with SI ranging between 0.1–0.2. The main parameters affecting

LAI were associated with the growth of leaves such as TRIFL (SI = 0.63), EM-FL (SI = 0.32)

and SLAVR (SI = 0.22). Soil parameters including SDUL, SLLL and SLDR had less effect on

maximum LAI and the sensitivity indices ranged between 0.1 and 0.2.

Consistency analysis of each sensitivity test

A summary of consistency indices and significance of the sensitivity analysis over multiple years

and sites is shown in Table 6. Both temporal and spatial tests showed which input parameters had

the largest effect on development and growth, indicated by the top-down concordance coefficient

and probability level. These findings indicate that there is both spatial and temporal consistency

in parameters that have the largest influence on growth and development. This means that the

parameters are important for calibration, independent of location or year. Key parameters which

Fig 4. Spatial sensitivity indices of yield, aboveground biomass and LAI to input parameters. Note. I: ecotype

parameters; II: genotype parameters; III: soil parameters.

https://doi.org/10.1371/journal.pone.0259929.g004

Table 6. Top-Down Concordance Coefficients (TDCC) and related p-values obtained from each sensitivity analysis experiment.

Temporal stability Spatial stability Total

TDCC p-value TDCC p-value TDCC p-value

ADAP 0.870 <0.001 0.827 <0.001 0.817 <0.001

MDAP 0.821 <0.001 0.784 <0.001 0.767 <0.001

HWAM 0.744 <0.001 0.792 <0.001 0.738 <0.001

CWAM 0.839 <0.001 0.811 <0.001 0.790 <0.001

LAI 0.843 <0.001 0.823 <0.001 0.813 <0.001

https://doi.org/10.1371/journal.pone.0259929.t006
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influenced days to flowering, days to maturity, yield, above-ground biomass, and the maximum

leaf area index most were consistent in this area under different meteorological conditions.

Calibration and evaluation of CROPGRO-Canola model in China

The model was calibrated for two seasons with limited growth and development data at

Wuhan, China (2014, 2015) based on the results from the sensitivity analysis. The parameters

that had the most influence on development and growth were calibrated using a “trial and

error” method to minimize the error between simulated and observed values. Other parame-

ters were fixed after slight adjustment. Results (Table 7) showed that flowering and maturity

dates of rapeseed could be effectively calibrated by adjusting EM-FL, OPTBI and SLOBI. In

addition, adjusting parameters such as TRIFL and SLAVR gave an excellent simulation of

rapeseed yield and above-ground biomass. Results of model calibration and evaluation based

on the sensitivity analysis and corresponding statistical indicators are shown in Fig 5 and

Table 8. In conclusion, the nRMSE of flowering day, maturity day, yield and above-ground

biomass for the calibration years were less than 1.71%, 1.48%, 9.96% and 9.63%, respectively.

The nRMSE for flowering day, maturity day, yield and above-ground biomass for the evalua-

tion years were 1.37%, 1.01%, 4.94% and 8.91%, respectively. The model efficiency (d-statistic)

values were all high, indicating a good model fit.

Discussion

We assessed the global sensitivity of parameters across different years and regions and found

that the most sensitive parameters associated with flowering and maturity dates were mostly

time-related parameters representing the life cycle of rapeseed growth and the impact of tem-

perature on growth and development. For example, EM-FL represents the time from seedling

to flowering of rapeseed, whereas OPTBI represents the lowest daily temperature that does not

affect flowering and development. On the other hand, soil parameters had little effect on rape-

seed phenology because stage durations are mainly determined by ecotype and genotype

parameters and temperature and daylength [25]. Previous sensitivity analysis studies focusing

on DSSAT-CROPGRO parameters have shown that the parameters associated with phenologi-

cal period were those related to time and accumulated temperature [46, 47].

Our results showed that yield, above-ground biomass, and leaf area index were very sensi-

tive to the rate of main stem leaf emergence (TRIFL). In the CROPGRO-Canola model, the

rate of main stem leaf appearance is governed by the phyllochron interval. Previous sensitivity

analysis studies for the DSSAT-CERES family of models have shown that the phyllochron

interval (PHINT) was one of the most sensitive crop parameters affecting winter wheat yield

[48]. In addition, Li et al. [49] conducted a sensitivity analysis using different parameter ranges

(±10% to ±50%) in the DSSAT-CERES model and found that above-ground biomass in winter

wheat was very sensitive to PHINT. Results of this study also showed that yield and above-

ground biomass was highly sensitive to some parameters associated with temperature, such as

Table 7. Calibrated cultivar coefficients for the most sensitive inputs.

Parameters Default value Calibrated value

EM-FL 29 39.45

OPTBI 20 7.5

SLOBI 0.035 0.064

SLAVR 250 319.2

TRIFL 0.32 0.23

https://doi.org/10.1371/journal.pone.0259929.t007
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Fig 5. Results of calibration and evaluation for phenology (A) (B), yield (C) and above-ground biomass (D).

https://doi.org/10.1371/journal.pone.0259929.g005
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SLOBI and OPTBI, while these parameters had little effect on development rate. These results

indicate that yield and above-ground biomass are affected by both length of the growth period

and genetic factors. Moreover, our results showed that soil parameters had some impact on

productivity indicators, such as yield and above-ground biomass, although the effect was not

as high as TRIFL. This was consistent with previous studies that used the EFAST method to

analyze sensitivity of soil parameters in the CERES-wheat model, and found that SDUL

(drained upper limit), and SLNF (soil mineralization coefficient) to be the most sensitive soil

parameters associated with wheat yield [48]. Sensitivity analyses on other crop models in

CROPGRO have also shown that parameters associated with soil moisture content have a sig-

nificant impact on crop yield [50].

In an actual calibration and evaluation case study, several other factors, such as grain filling

duration of rapeseed, the number of seeds per pod, and weight of one thousand pods may also

affect rapeseed productivity indicators. However, these parameters were not sensitive accord-

ing to the results of our global sensitivity analysis. In the model, there is a trade-off between

weight per seed and seed number, as well as pod size and pod number based on the daily car-

bon balance. Thus, the model biomass outputs were not sensitive to these parameters over the

expected range used in the sensitivity analysis.

Conclusion

The EFAST method was used to evaluate the sensitivity of the CROPGRO-Canola model bio-

mass outputs to genetic and soil inputs. The sensitivity analysis showed that important input

parameters were highly consistent spatially and temporally. The main parameters affecting

growth duration in rapeseed included EM-FL (time between plant emergence and flower

appearance), OPTBI (minimum daily temperature above which there is no effect on slowing

normal development toward flowering), SLOBI (slope of relationship reducing progress

toward flowering if TMIN for the day is less than OPTBI), RWDTH (relative width of this eco-

type in comparison to the standard width per node (YVSWH), and SLAVR (specific leaf area

of cultivar under standard growth conditions). The main parameters influencing yield and

above-ground biomass included TRIFL (rate of appearance of leaves on the mainstem),

OPTBI, SLOBI, SLAVR, and EMFL. The main parameters affecting maximum leaf area index

were TRIFL, SLAVR, and EMFL. The sensitivity analysis was used to calibrate and evaluate the

rapeseed model for a single location. The calibrated model gave good simulations of

Table 8. Statistical indicators for calibration and evaluation of the model.

Attribute Statistical indicators

N RMSE nRMSE (%) ME rME (%) d

Calibration years (2014, 2015)

Anthesis day, d 2 2.55 1.71 2.50 1.67 0.99

Maturity day, d 2 3.16 1.48 3.00 1.41 0.99

Seed yield, kg ha-1 2 256.19 9.96 236.50 9.20 0.72

Above-ground biomass, kg ha-1 2 1109.87 9.63 -1075.00 -9.33 0.99

Evaluation years (2016, 2017, and 2018)

Anthesis day, d 3 2.08 1.37 1.67 1.10 1.00

Maturity day, d 3 2.16 1.01 2.00 0.93 1.00

Seed yield, kg ha-1 3 137.37 4.94 67.33 2.42 0.87

Above-ground biomass, kg ha-1 3 1015.42 8.91 -315.33 -2.77 0.99

https://doi.org/10.1371/journal.pone.0259929.t008
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phenology, yield and canopy weight at maturity. Results of this study can be used to guide

broader CROPGRO-Canola model evaluations with limited data in the future.
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