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Abstract

This paper focuses on the application of deep learning (DL) in the diagnosis of coronavirus

disease (COVID-19). The novelty of this work is in the introduction of optimized Inception-

ResNetV2 for COVID-19 (CO-IRv2) method. A part of the CO-IRv2 scheme is derived from

the concepts of InceptionNet and ResNet with hyperparameter tuning, while the remaining

part is a new architecture consisting of a global average pooling layer, batch normalization,

dense layers, and dropout layers. The proposed CO-IRv2 is applied to a new dataset of

2481 computed tomography (CT) images formed by collecting two independent datasets.

Data resizing and normalization are performed, and the evaluation is run up to 25 epochs.

Various performance metrics, including precision, recall, accuracy, F1-score, area under

the receiver operating characteristics (AUC) curve are used as performance metrics. The

effectiveness of three optimizers known as Adam, Nadam and RMSProp are evaluated in

classifying suspected COVID-19 patients and normal people. Results show that for CO-

IRv2 and for CT images, the obtained accuracies of Adam, Nadam and RMSProp optimiz-

ers are 94.97%, 96.18% and 96.18%, respectively. Furthermore, it is shown here that for

the case of CT images, CO-IRv2 with Nadam optimizer has better performance than exist-

ing DL algorithms in the diagnosis of COVID-19 patients. Finally, CO-IRv2 is applied to an

X-ray dataset of 1662 images resulting in a classification accuracy of 99.40%.

1. Introduction

In late 2019, China first reported novel coronavirus disease (COVID-19) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. In March 2020, the World Health

Organization (WHO) declared COVID-19 as a pandemic. Some common symptoms related

to COVID-19 include cough, fever, dyspnea, and sore throat [2–4]. The respiratory droplets

and the interaction between human-to-human are the leading causes of the spread of this

infection [5]. The incubation time of COVID-19 is significantly longer, causing difficulty in

the control of this pandemic. Moreover, some COVID-19 patients are asymptomatic, which

causes the spreading of the infection [6]. Due to these causes, the early recognition, diagnosis,

and control of infectious diseases like COVID-19 are considered hard.

Efforts have been made to find an efficient method for diagnosing COVID-19. RT-PCR test

is an authorized method for detecting COVID-19 using a nasopharyngeal or oral swab [7].
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The RT-PCR test is time-consuming and complex. Besides, RT-PCR test has some limitations,

which result in insufficient sensitivity and a higher false-negative rate [8, 9]. Several patients

who are incorrectly detected as negative are likely to interact with a massive number of people.

Hence, a superior diagnosis technique with a low false-negative rate is required to control the

risk of COVID-19. Nevertheless, radiology imaging, i.e., X-rays [10], ultrasound, magnetic res-

onance imaging (MRI), and computed tomography (CT) image scanning are also applied to

diagnose various diseases, including COVID-19 [10–18]. Sometimes underlying pathology

may hide viral infection, such as in patients with pulmonary fibrosis. The diagnosis of

COVID-19 is considerably hard. However, sometimes X-rays can provide a false-negative rate.

In contrast, chest CT scan images provide detail view useful for the rapid diagnosis of COVD-

19. This also helps in the timely isolation of infected patients and thus managing COVID-19

[2, 19–21].

Concisely, the early and accurate diagnosis and treatment of COVID-19 suspects can play a

significant role in treating patients. This is important for the COVID-19 control, prognosis of

patients, and the security of public health. Chest CT can detect small areas of ground-glass

opacity (GGO) for its high resolution. In the early phases of COVID-19-pneumonia, pulmo-

nary outcomes in lung CT images may be present with peripheral, subpleural, and minor

GGOs [22], which may take much longer than large-involved and isolated GGOs or/and pat-

terns of integration. Moreover, radiologists’ visual fatigue will increase the possible risks of

missing a diagnosis for several minor lesions. Hence, it is essential to develop an artificial intel-

ligence (AI) system for the computer-aided diagnosis of COVID-19.

As a subset of AI, deep learning (DL) has been applied to automatically detect respiratory

diseases and illnesses [23–28]. However, lesions need to be distinguished for most DL-based

approaches for the diagnosis of CT segments. Harmful lesions of COVID-19 cost much effort

for radiologists, while COVID-19 spreads rapidly and is not adaptable for radiologists. One of

the most accessible labels to diagnose COVID-19 is the patient-level label, where patients are

labeled negative or positive. An appropriate DL-based scheme can be crucial for the diagnosis

of COVID-19. Hence, this work explores a DL model for the automatic diagnosis of COVID-

19.

The main contributions of this paper are summarized as follows:

• A new approach termed as Optimized InceptionResNetV2 for COVID-19 (CO-IRv2) is pro-

posed in this work. Hyperparameter tuning is conducted for the optimization of CO-IRv2.

• A dataset of 2481 CT images is formed by combining two different databases.

• The proposed CO-IRv2 is applied to the new dataset of 2481 CT images and an existing data-

set of X-ray images. The effectiveness of several optimizers in CO-IRv2 is evaluated in classi-

fying normal people and suspected COVID-19 patients.

This paper is structured as follows. The background of these studies is introduced in Section

2. Moreover, in Section 3, dataset descriptions are briefly presented. Furthermore, methodol-

ogy and experimental discussions are provided in Section 4 and Section 5, respectively. Finally,

the concluding remarks are provided in Section 6.

2. Literature review

A number of research work proposed various DL models for detecting or diagnosis of

COVID-19. These studies are summarized in Table 1 and are described in the following.

Wu et al. [29] proposed a framework of coronavirus screening based on ResNet50, a modi-

fied form of CNN. The dataset was collected from two hospitals where the images of COVID-
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19 and other cases of pneumonia were 368 and 127 images, respectively. All images were

resized to a size of 256×256 by using image augmentation. They achieved a specificity of

61.5%, a recall of 81.1%, an accuracy of 76% and an area under the receiver operating charac-

teristics curve (AUC) of 81.9% after preprocessing. The authors of [29] created a validation,

training, and testing set using just slices of the maximal lung area in three perspectives. Addi-

tional CT slices in various perspectives were also provided as input to the suggested model to

increase its performance. Other clinical data, such as body mass index and severity of COVID-

19 infection, were not available for subgroup analysis. Nonetheless, this study’s age and gender

subgroup analyses enabled an initial assessment of the model. Despite the importance of this

work, more powerful AI algorithms need to be created to facilitate and accurately diagnose

COVID-19. The model in [29] could not minimize misdiagnosis and thus affected clinical

outcomes.

The researchers of [30] classified different types of diseases like Influenza-A viral pneumo-

nia and COVID-19 pneumonia from CT images using CNN variants such as ResNet18. They

used 618 CT images from three different datasets provided by different hospitals. Their pro-

posed model provided 80.8% precision, 81.5% recall, 86.7% accuracy and 81.1% F1-score [30].

As reported in [30], the symptoms of COVID-19 could overlap with those of other pneumonia,

including eosinophilic pneumonia, organizing pneumonia and influenza-A viral pneumonia

(IAVP). The study in [30] compared the CT manifestations of IAVP and COVID-19. One

Table 1. Summary of literature reviews for CT images using DL.

Ref. Methods No. of

images

Number of

classes

Performances Limitations

[30] ResNet18 618 3 Recall:81.50%, Accuracy:86.70%,

F1-Score:81.10%, Precision = 80.80%

The limited number of samples

[29] ResNet50 495 2 Recall:81.10%, Accuracy:76%, AUC:81.90%,

Specificity:61.50%

Using just slices of the lung area may lead to

misdiagnosis

[31] Modified ResNet 50 V2 63,849 2 Accuracy: 98.49%, recall: 96.83% Considered only CT images

[32] VGG-19 812 2 Accuracy:94.50% Only used RMSProp optimizer for few CT

images

[33] U-Net CNN 540 2 Specificity: 91.10%, Recall: 90.70%, and

AUC:95.90%

Lung segmentation had no temporal

information, data from only a single hospital

[34] 2D CNN 1065 2 Recall: 87%, specificity:88% and accuracy:

89.50%

Training dataset was marginal

[35] U-Net++ 44 2 - Selection bias and small sample size

[36] 2D and 3D Deep learning

models, U-Net Model

157 2 Recall:98.20%, AUC: 99.60%, and

Specificity:92.20%

The study used a limited number of CT scan

images

[37] 2D U-Net 1,230 2 F1 score: 97.32% Only considered CT images, and a small dataset

[38] DRENet 1,485 2 Accuracy: 94%, Precision: 96%, recall: 93%,

F1-Score: 94%

The study used a limited number of CT scan

images

[39] EDL_COVID 7500 3 Accuracy: 99.05%, F1-score: 98.59%, recall:

99.05%,

Considered only CT images

[40] InceptionV3 746 2 Accuracy: 82%, precision: 82.50%, recall:

81.40%, F1-score: 81.50%

Only considered CT images, and a small dataset

[42] CRNet 746 2 AUC:94%, F1-Score:85%, Accuracy:86% Low number of training CT images

[43] Multi-layer perceptron with

Encoder Decoder

1044 2 Specificity:79%, AUC:93%, Recall:94%,

Accuracy:86%

Only considered CT images, and dataset of

patients is small in number

[46] Multi-task learning and single-

task learning

408 2 AUC:86%±2%, Specificity:88%±1.50%,

Recall:77%±3%, Accuracy:86%±2%

Only considered CT images, and a small dataset

[47] Elastic Net 1381 2 AUC:94%, Recall:79%, Accuracy:90%,

Specificity:91%

Considered only CT images

https://doi.org/10.1371/journal.pone.0259179.t001
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limitation of the work was the use of limited number of samples. Moreover, the work [30] did

not address the complicated clinical condition and further multicenter clinical trials.

The dataset of the work of modified ResNet50v2 [31] included 48,260 CT scanning images

of 282 normal people and 15,589 images of 95 COVID-19 patients. The initial stage in the

image processing technique was to evaluate the view of the lung and discard any CT images

that were not properly visible in the lung. This significantly lowered processing time and false

detections. The authors then created a novel architecture to categorize the ResNet50v2 model

over a range of image resolutions, ensuring that the model did not lose data from small objects.

The system evaluated the patient’s condition using a predefined threshold. The authors tested

their system in different methods using ResNet50v2, Xception, and modified ResNet50v2 [31].

In [32], a self-built model named CTnet-10 was developed with an accuracy of 82.1% for

the diagnosis of COVID-19. Additionally, the authors experimented with other models,

including VGG-16, VGG-19, ResNet-50, DenseNet169, and InceptionV3. With an accuracy of

94.52%, the VGG-19 outperformed all other DL models considered in the study. The work

[32] only used RMSProp optimizer for few CT images. U-Net CNN architecture was proposed

to detect COVID-19 from 540 images [33], where the U-Net was applied for lung segmenta-

tion. The results of the segmentation were provided as the 3D-CNN input for the prediction

and possibility of COVID-19. Their models provided 91.1% specificity, 90.7% recall, and

95.9% AUC [33]. One limitation was that the lung segmentation did not include temporal

information and was trained using imprecise ground-truth masks. Another limitation was that

the research data were derived from a single hospital, and no cross-center validations were

conducted.

Moreover, the work [34] proposed a 2D CNN model for scanning viral pneumonia and

COVID-19 from 1065 CT images. The authors of [34] also modified the inception DL algo-

rithm to establish the model, followed by external and internal validation, where external vali-

dation showed 83% specificity with 79.3% accuracy. On the other hand, internal validation

obtained 87% recall, 88% specificity, and 89.5% accuracy [34]. Several factors, including low

signal to noise and complex data integration affected the efficacy of the DL used in [34].

Because of the relatively large amount of CT scan parts, especially those irrelevant for diagnos-

ing pneumonia, classification was a difficult task.

The authors of [35] considered CT images and built a U-Net++ segmentation model to

detect COVID-19. They invented the VB-Net method for extracting lung regions and infected

lungs. They provided accurate medical research quantification data, including a quantitative

assessment of progression and disease prediction. The study obtained successful performance

by including the human loop method into the development of a segmentation network based

on the VB-Net. The drawbacks of this study were its retrospective nature, selection bias

(absence of severe COVID-19 patients), small sample size, and evaluation bias in the radiolo-

gist-defined CT score. Another study considered 2D and 3D U-Net models for COVID-19

detection [36]. In addition, the authors of [37] suggested a 2D DL architecture with a U-Net

backbone to detect lung areas. The authors conducted two-division tasks: the first was a seg-

mented abnormality in the chest CT scan specific to COVID-19 infection, and the second was

a segmented CT lung space. Together with the volumetric assessment, the two segmentation

tasks enabled a chest CT scan prediction to give statistical information on COVID-19 anoma-

lies. The authors got 84.7% of mean intersection over union (M-IoU) and an F1 score of

97.32%. For semantic segmentation, their research utilized lung CT image sets from Kaggle

and GitHub.

The work of [38] automatically extracted radiographic features indicating developing pneu-

monia from a radiograph, most notably the GGO. They developed a model of Deep Pneumo-

nia to assist doctors in recognizing and diagnosing COVID-19 pneumonia. Their strategy was
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divided into three phases. First, they isolated the damaged lung areas and used lung segmenta-

tion filter banks to eliminate any noise. The second step utilized the deep temporal regression

network (DTRN) to extract top characteristics from CT images and to provide picture-level

predictions. Image-level predictions were aggregated in the last stage to generate a patient-

level diagnosis. Their model was based on 88 COVID-19 patients and 100 patients with bacte-

rial pneumonia from 777 image datasets. They achieved an AUC of 0.95 for DRE-Net, which is

much higher than the AUCs reported for other models such as ResNet, VGG16, and Dense-

Net. The study’s drawback was the use of a small number of CT scan images to detect COVID-

19.

The authors of [39] developed a DL ensemble model for identifying COVID-19 CT images.

A total of 2933 COVID-19 lung CT pictures were gathered from public sources, past publica-

tions, and major media stories. The images were preprocessed in order to get 2500 images of

exceptional quality. A hospital obtained 2500 CT scans of a lung tumor and 2500 normal lung

images. Transfer learning was used to establish the model parameters, and three deep convolu-

tional network models were pre-trained: GoogleNet, ResNet, and AlexNet. All the images were

extracted using these models. Softmax was used to classify the layers in a completely linked

manner. A relative majority vote was used for classification of the images.

In one study, a total of 15 pre-trained CNN architectures were used: ResNet-50, ResNext50,

SeResnet 50, DenseNet121, EfficientNets(B0-B5), Xception, NasNetMobile, NasNetLarge,

InceptionV3, and Inception ResNetv2 [40]. Utilizing the optimum mix of deep transfer learn-

ing output, the work then created a group method based on a majority vote to further improve

the classification performance. The authors of [40] analyzed a publicly available dataset of CT

scans that included 349 CT scans categorized as COVID-19 positive, and 397 CT scans having

COVID-19 negative samples [40].

Furthermore, the authors of [41] established a DL method named CovidCTNet to diagnose

COVID-19 infection from CT images. This work applied U-Net model for developing

BCDU-Net architecture. This algorithm could distinguish CAP, COVID-19, and control lungs

from CT images. They used 89145 images with 32230 CT images of COVID-19 confirmed

patients, 25699 images of CAP, and 32216 images of other disorders or healthy lungs. For the

evaluation, the holdout method was used with 90% of data samples used for training, and 10%

for testing. Their proposed method provided a recall of 87.5%, an AUC of 95%, a specificity of

94%, and an accuracy of 91.66% [41]. A novel DL method CRNet was proposed for COVID-

19 detection from 746 CT images, where the images from three open-access datasets were

divided into 60% training, 25% testing, and 15% validation [42]. The method achieved a value

of 94% AUC, 85% F1-score, and 86% accuracy [42].

In [43], a DL scheme containing a multi-layer perceptron, two decoders, and an encoder

was applied to 1044 images [43]. The number of COVID-19, healthy individuals, lung cancer

patients and different types of pathology were 449, 100, 98 and 397, respectively. The data was

split into 80% training, 10% testing and 10% validation. This system obtained the highest

AUC, recall, specificity and accuracy of 93%, 94%, 79% and 86%, respectively [43]. Aside from

the numerous advantages of using CT images to identify and isolate early COVID-19 patients,

DL methods based on CT images can also aid physicians in combating this disease [44]. This is

because DL can be used not only to segment and classify images in the field of healthcare, but

also to predict treatment outcomes [44]. Another effective technique is to utilize unsupervised

learning algorithms to identify the picture and identify lesions when only a limited dataset is

accessible [45]. These marginally better tactics could help fight against the coronavirus

COVID-19, where just a few databases are usually available, and clinicians cannot provide a

big volume of labeled data.
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Zhu et al. [46] proposed DL methods where they used multi-task learning and single-task

learning. They used 408 real CT images from two different sources. They achieved 85.91%

accuracy for their proposed best model [46]. However, the focus of that study was to predict

whether the patient would develop severe symptoms based on mild symptoms. That would

result in a classification imbalance because only a small number of patients would progress to

severe conditions. First, the imbalanced categorization of the dataset was biased, with 86 severe

instances compared to 322 non-severe instances. That complicated the process of developing

good classification models [46]. Moreover, another DL model, Elastic Net [47] segmented

1224 images for training and testing, where the total images were 1381, including 1200 non-

COVID-19 images and 181 COVID-19 images. The combination of 3D and 2D CNN was

used for segmentation purposes. Next, the dataset was evaluated by Elastic Net. This model

obtained an AUC of 88.2%, while the testing data had 641 patients. The highest AUC, recall,

accuracy and specificity were 94%, 79%, 90% and 91%, respectively [47].

Narin et al. obtained 96.10% accuracy when they applied ResNet50 model to 3141 X-ray

images where 341 are of COVID-19 patients, and the remaining are of normal people [48].

One study [49] considered a dataset of 224 COVID-19 X-ray images and obtained a classifica-

tion accuracy of 98.75% using pre-trained DL methods. Another study used ResNet50 along

with a support vector machine to 381 X-ray images resulting in an accuracy of 98.66% [50]. A

DL model achieved 98.08% accuracy when applied to detect COVID-19 patients from an X-

ray dataset where 127 cases are for COVID-19 patients [16].

The above studies reveal that the lack of large COVID-19 datasets is challenging to validate

different DL models. Some of the existing models described above were only tested for CT

images, so their effectiveness in the case of X-ray images was not reported. Some others only

focused on X-ray images without considering CT images at all. Furthermore, most of these

works split image samples using the holdout method without considering the cross-validation

method. Hence, this paper generates a new dataset of 2481 CT images by combining two dif-

ferent databases. This paper proposes a new DL algorithm CO-IRv2, and its performance is

evaluated for CT images and X-ray images. Furthermore, this paper considers the holdout

method as well as cross-validation methods for splitting the training and testing images.

3. Description of database

Our experimental dataset was retrieved from two different open access sources [51, 52]. The

dataset of [51] had 829 CT images. On the other hand, the dataset of [52] had 2482 CT images

where normal and COVID-19 patients were 1230 and 1252, respectively. After collecting the

CT images, we formed a database where we retrieved the 829 images from the dataset reported

in [51], and the rest of the images were retrieved from the dataset available in [52]. The total

CT images for our experiments were 2481, where the images of normal and COVID-19

patients were 1229 and 1252, respectively. The resultant dataset is now made available in [53].

Fig 1 shows samples of our generated dataset [53], Fig 1(A) is for non-COVID and Fig 1(B) is

for COVID-19 cases. Next, we split our database into training and testing. The details of the

training and testing samples are shown in Table 2. This work also considers a dataset of X-ray

images [54] containing 1662 images, of which 1583 images are of normal people and 79 are of

COVID-19 patients.

4. Methodology

The experimentation had several stages. Data resizing and normalization were performed to

facilitate generalization and avoid overfitting. The dataset was divided into two parts: training

and testing. The proposed CO-IRv2 model was trained using training data. The evaluation was
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run up to 25 epochs. The proposed model got the desired accuracy within 25 epochs. Next, we

performed hyperparameters’ fine-tuning on the proposed model. The CO-IRv2 model avoided

underfitting by using several dense layers described in Section 4.2. Moreover, CO-IRv2

avoided overfitting of the model by using regularization techniques: data augmentation

described in Section 4.1, and dropout discussed in Section 4.2. Afterwards, the system was

evaluated with respect to precision, recall, F1-score, confusion matrix, receiver operating

Fig 1. Sample of the (a) non-COVID-19 and (b) COVID-19 CT scan dataset [53].

https://doi.org/10.1371/journal.pone.0259179.g001

Table 2. The number of CT images per class applied in training and testing stages.

Split Normal COVID-19

Training 971 1013

Testing 258 239

Total 1229 1252

https://doi.org/10.1371/journal.pone.0259179.t002
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characteristics curve (ROC) curves, and accuracy. A basic system of our proposed work is

depicted in Fig 2.

4.1 Data Preprocessing

Several steps, including normalization and data augmentation, were taken to tune the hyper-

parameters of CO-IRv2. Normalization of the data is a critical step to guarantee numerical sta-

bility. Normalization accelerates the training of a model and increases the likelihood of steady

gradient descent. The samples of the CT images were of different sizes. Hence, we resized the

images to 224×224 pixels with RGB color. The pixel values of the input images were normal-

ized to a value between 0 and 1. The data sets include grayscale photos that have been rescaled

by multiplying 1/255 by the pixel values. Next, we applied data augmentation [51, 52] that

increases the sample size as models need a wide range of data for successful training. However,

in many cases, the number of CT images in a dataset is less, since collecting medical data is dif-

ficult. Data augmentation increases the number and the variability of images while maintain-

ing class labels. In this work, the CT images in the dataset were extended by applying the

Fig 2. Basic summary of our proposed work.

https://doi.org/10.1371/journal.pone.0259179.g002
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following methods: (1) the images were rotated by angles of 180 degrees clockwise, (2) the

images were scaled by 15%, (3) the images were horizontally rotated and (4) Gaussian noise

with a mean zero and variance 0.25 were added. Besides applying flipping, resizing, and rota-

tion, we applied random horizontal flips to improve the simplification of the architecture for

each probable location of CT images. Finally, a number of images were produced by using a

180-degree rotation. In data augmentation, random horizontal flip helped in the identification

of COVID-19 from chest symptoms and random resized crop helped in deeper recognition of

pixels’ relationship by varying image intensity. The mentioned augmentation and develop-

ment strategies were applied to promote the generalizations of the proposed model. It should

be noted that all these methods were used for training samples. Finally, there was a bigger

training set of 2481 images, 5 times more than the initial training images.

4.2 Proposed CO-IRv2

This section discusses the proposed CO-IRv2 algorithm. A part of the CO-IRv2 scheme is

derived from the concepts of Inception and ResNet [55] with hyperparameter tuning, while

the remaining part is a new architecture consisting of a global average pooling layer, batch nor-

malization, dense and dropout layers.

Fig 3 shows the CO-IRv2 architecture where the upper part (within the rectangular box) is

derived from InceptionNet and ResNet, while the lower part is a new arrangement of multiple

layers. In the upper part, there are the stem, Inception [56], and reduction modules. The Incep-

tion model is substantially tunable, which means some changes like changing the number of

filters and layers have to be performed without impacting the quality of the fully connected lay-

ers. By carefully tuning the sizes of the layers, the training speed can be optimized. For our pro-

posed CO-IRv2 model, uniform selections are performed for the Inception modules for all

grid sizes. In CO-IRv2, batch-normalizations are applied distinctly on top of the conventional

layers, instead of above the combinations of InceptionNet and ResNet. CO-IRv2 is based on

Inception architecture having residual connections instead of filter concatenation operation.

The Inception module selects all three filter sizes at each layer instead of choosing one for each

layer. The use of multiple filters enables the selection of the best features resulting in an excel-

lent performance. The addition of ResNet and Inception allows the model to have excellent

accuracy than standalone Inception and ResNet models. In CO-IRv2, the residual connectors

are used to combine different convolution filters. The residual connectors cause a reduction in

the computation time during the training phase. Specifically, the residual blocks are utilized to

permit that the Inception modules can increase their quantity. Hence, the depth of the network

can also be increased. The extremely deep networks of CNN is the training stage, where the

computation time is reduced by the residual networks [55, 56]. When more than 1,000 filters

are deployed in the network, the network reduces the residue to solve the training problem

[56].

The stem, Inception and reduction modules consist of convolution layers, pooling layers

and Rectified-Linear-Unit (ReLU) activation functions. Convolution layers are applied to gen-

erate features from images. A convolution kernel operates on the input images by sliding

across them. This is done with a set of movement parameters known as a stride. The size of the

output of convolution operation depends on the size of the kernel and that of the slide. Opti-

mization is done on the bias and the weights of the kernels. The activation layers enhance the

nonlinearity of the output obtained from the convolution layers. The activation function is a

decision-making function that aids in the learning of complex patterns. The use of the right

activation function can speed up the learning process. ReLU is an activation function having a

fast calculation speed. Pooling layers are used to reduce the feature map. Pooling is a form of
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Fig 3. Sample diagram of the proposed CO-IRv2.

https://doi.org/10.1371/journal.pone.0259179.g003

PLOS ONE CO-IRv2 for COVID-19 detection from chest CT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0259179 October 28, 2021 10 / 24

https://doi.org/10.1371/journal.pone.0259179.g003
https://doi.org/10.1371/journal.pone.0259179


local operation that processes similar data in the vicinity of the receptive field. Pooling layers

also reduce the upper layers in terms of the number of parameters and size in space. These

pooling layers help the CO-IRv2 model to remain invariant to the effects of translation, distor-

tion and transformation. The stem, Inception and reduction elements are further described

with illustrations later in this section.

Next, we describe the lower part of the CO-IRv2 architecture, as shown in Fig 3. Firstly,

there is a global average pooling layer where a pooling operation gp(.) generates feature map

Qk
l from input feature-map Pl

k as follows.

Qk
l ¼ gpðP

l
kÞ ð1Þ

The next operation is the batch normalization that addresses the issues of internal covari-

ance shift inside feature maps. It smoothes the gradient flow and works as a regulatory compo-

nent, so assisting in the network’s generalization. The normalized feature map Rk
l for a mini-

batch can be represented as follows.

Rk
l ¼

Pk
l � mffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
B þ ε

p ð2Þ

where μ is the mean and s2
B represents the variance of a feature-map, and the term ε is consid-

ered to address the divide by zero issue. After that there are multiple dense layers that are asso-

ciated with a leaky ReLU and a dropout layer. These dense layers contribute to improving

classification accuracy. A minor negative side is allowed by a leaky ReLU. To keep a regulated

negative component, leaky ReLU activation with a value of 0.2 is used for each dense layer.

The dropout process sets the output of each hidden neuron to zero with a probability of half.

The neurons that are dropped out in this fashion do not participate in forward or backpropa-

gation. Consequently, the neural network samples a different design each time an input is sup-

plied, yet all of these structures have the same weights. Dropout layers are used for

regularization by randomly dropping out or ignoring some layer outputs or units. Dropout

layers can reduce the effect of over-fitting. This is done by reducing the number of parameters

of the model. The dropout layer increases the robustness of the CO-IRv2 framework. Fig 3

shows one dropout layer in CO-IRv2 configured at rate 0.5, while the other with a rate of 0.4.

Softmax layers are used to transform the input values into probabilities so that the sum of the

values becomes unity. The softmax function is most typically employed as an activation func-

tion in a neural network model. Softmax is used as the activation function for multi-class clas-

sification problems that need class membership on more than two class labels. In this way,

softmax enables multi-class classification. Softmax is a mathematical function that converts an

integer vector into a probability vector. This is done by ensuring the probability of each value

is proportional to the relative scale of the vector.

Fig 4 describes the details of the stem in CO-IRv2. It can be seen that the initial blocks

within the stem compute three 3×3 convolutional operations on the given input. Next, there

are three inception blocks. The first one has two paths, one for 3×3 convolutional operations

and the other for max pooling. The two paths are concatenated and passed to the next incep-

tion block. The second inception block also has two paths; one path has 1×1 and 3×3 convolu-

tional operations, while the other has 1×1, 7×1, 1×7 and 3×3 convolutional operations. The

output of the two paths is concatenated. Similar to the first block, the third inception block has

two paths, one for 3×3 convolutional operations and the other for max pooling. The final out-

put is the concatenation operation of the two paths within the third inception block.

Fig 5(A) and 5(B) depict the detailed architecture of Inception-A, and Reduction A., respec-

tively in CO-IRv2. In the Inception-A module, there are three paths of 1×1 and 3×3
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Fig 4. Stem diagram of CO-IRv2.

https://doi.org/10.1371/journal.pone.0259179.g004
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convolution operations. The illustrations of Inception-Res-Net B, Reduction B, Inception-Res-

Net C modules are similar to those reported in [56]. The Inception-ResNet-B and Inception-

ResNet-C have two paths of convolution operations with different convolution filter sizes.

Each inception block is connected to a filter layer, a form of 1 × 1 convolution operation. This

filter layer obtains transformation in dimensions for matching with the input. This compen-

sates for the reduction in dimensions at the inception stage. Inception-A module shown in Fig

5(A) is created for 35×35 grid blocks of the traditional Inception-v4 network. Conversely,

Inception-B module has 17×17 grid modules and Inception-C has 8×8 grid blocks. There are

also Reduction-A and Reduction-B layers. The Reduction-A block has one path for max-pool-

ing and two paths for convolution operation. The Reduction-B block consists of three convolu-

tion paths and one max-pooling path. The Reduction-A module shown in Fig 5(B) reduces

35×35 to 17×17 modules. Moreover, the Reduction-B module reduces 17×17 modules to 8×8

grid.

A number of optimizers namely Adam, Nadam and RMSprop are used for CO-IRv2. Adam

is a method for calculating adaptive learning rates. It keeps an exponentially decaying average

of past squared gradients as well as an exponentially decaying average of past gradients like

momentum. Nadam is a combination of Adam and Nesterov accelerated gradient (NAG). The

NAG term is incorporated in Adam by changing the momentum term achieved by first mov-

ing in the direction of the previous momentum vector and then moving in the direction of the

current gradient. RMSprop is a gradient-based optimization strategy suitable for neural net-

work training. Table 3 presents the parameters of optimizers such as Adam, Nadam and

RMSProp with learning rates. CO-IRv2 has 56,444,642 parameters for building the model

where the number of non-trainable parameters is 54,340,832 and the number of trainable

parameters is 2,103,810.

Fig 5. Illustration of CO-IRv2 (a) Inception-A module (b) Reduction-A module.

https://doi.org/10.1371/journal.pone.0259179.g005
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5. Experimental results and discussion

In this section, the experimental results of CO-IRv2 are first described for the case of CT

images and then for X-ray images.

5.1 Results for CT images

This section discusses the experimentation of CO-IRv2 applied to CT images. Google Colla-

boratory was used for experimental purposes. This is a cloud service based on Jupyter note-

book for distributing knowledge and applying DL. It deals with a fixed GPU with free-of-

charge and fully optimized runtime for DL or ML. In the experiments, Tensorflow, Matplotlib,

Sklearn and Numpy were also applied as libraries. In the following, the performance metrics

are described and then the results are presented.

Firstly, several performance metrics, including confusion matrix, precision, recall,

accuracy, F1-score, ROC curve [11–13, 57–59] are defined in the context of CO-IRv2

model. The result of a suspected patient is negative if the lung is not infected from corona-

virus and is positive when the coronavirus has infected the lungs. The outcome of this test

for all COVID-19 patients may not or may match the actual cases of the patients. As an ele-

ment of the confusion matrix, the true positive (TP) denotes the positive COVID-19

patients correctly identified. Another term called false positive indicates incorrectly iden-

tified COVID-19 patients who may or may not have other lung diseases. At the same time,

true negative (TN) means correctly detected COVID-19 negative patients. False-negative

represents the incorrectly identified non-infected patients. Classification accuracy is the

measure of the correctness of identifying a normal case as normal and an abnormal cases

as abnormal. Accuracy, A, is given as.

A ¼
TP þ TN

TP þ TN þ FP þ FN
ð3Þ

Recall is the number of correctly classified patients to the number of suspected patients.

Recall or sensitivity, R, is given by.

R ¼
TP

TP þ FN
ð4Þ

Specificity, S, refers to the prediction accuracy of normal cases expressed as

S ¼
TN

TN þ FP
ð5Þ

Table 3. Optimizers with various parameters for training and testing of CO-IRv2.

Optimizers Learning Rate Other Parameters

Adam 0.002 beta_1 = 0.9,

beta_2 = 0.999,

epsilon = 1e-07,

Nadam 0.001 beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-07,

RMSProp 0.001 rho = 0.9,

momentum = 0.1,

epsilon = 1e-07

https://doi.org/10.1371/journal.pone.0259179.t003
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Precision, P, is the ratio of accurately classified positive cases to the overall predicted posi-

tive cases given by.

P ¼
TP

TP þ FP
ð6Þ

F1-score, F1, is the harmonic mean of precision, P, and recall, R, calculated as follows.

F1 ¼
2� P � R
P þ R

ð7Þ

Next, results are provided for the case where holdout method is used to separate training

and testing images. Results are for the case of 25 epochs. Fig 6 shows the values of the confu-

sion matrix of CO-IRv2 for Adam, Nadam and RMSProp. It can be seen from Fig 6 that the

values achieved for TP, TN, FN, FP are 250, 222, 17, 8, respectively, for Adam optimizer. More-

over, for the case of Nadam optimizer, TP, TN, FN, FP have values of 246, 232, 7, 12, respec-

tively. Furthermore, the values achieved for TP, TN, FN, FP are 236, 242, 17, 2, respectively,

for RMSProp optimizer in CO-IRv2. The obtained accuracies of Adam, Nadam and RMSProp

optimizers are 94.97%, 96.18% and 96.18%, respectively. This is shown in Table 4. For Nadam

and RMSProp optimizers, our proposed model obtains the highest accuracy where the accu-

racy of normal and COVID-19 is 96.18% individually. Table 4 shows that Nadam provides a

recall value of 97% normal and 95% COVID-19, whereas RMSProp has a recall value of 93%

normal and 99% COVID-19.

The efficiency of CO-IRv2 is also apparent from the AUC-ROC curves for CO-IRv2 and

those of existing InceptionNetV3 model. The ROC curves in Fig 7 depict the performance of

InceptionNetV3 for different optimizers, while Fig 8 presents that of CO-IRv2. Fig 7 shows

that in the case of InceptionNetV3, the AUC values for Adam, Nadam and RMSProp are 91%,

93% and 93%, respectively. From Fig 8 it can be seen that for the case of CO-IRv2, the AUC

values of Adam, Nadam and RMSProp CO-IRv2 are 93%, 95% and 93%, respectively. Hence,

for each optimizer, CO-IRv2 has higher AUC values than InceptionNetV3. Furthermore, it

can be seen that the Nadam optimizer is more efficient than other optimizers when CO-IRv2

is applied to diagnose the infection of COVID-19. Fig 9 compares different optimizers for

CO-IRv2 model for each class. Fig 9 presents that for CO-IRv2, the classification accuracy is

higher for RMSProp and Nadam compared to Adam optimizer.

Next, heatmap is used for evaluating the performance of CO-IRv2. It visualizes the opera-

tion of the proposed algorithm. Fig 10 visualizes ground truth and heatmap of COVID-19 CT

images when CO-IRv2 is used. The ground truth achieved from the heatmap indicates the

actual results of the detection of COVID-19 infection.

In the experiments, the performance of CO-IRv2 was also evaluated using the cross-valida-

tion method to separate the training and testing images in the dataset. For this, five-fold cross-

validation was chosen. Since Nadam optimizer exhibited the best results for the holdout

method for CT images, we used Nadam for cross-validation. The total images were separated

into five groups marked as groups 1–5. For the first fold, the images from group 1 were used

for testing, while the images from groups 2–5 were used for training. With this consideration,

the classification accuracy and other metrics were calculated for the first fold. Next, group 4

was used for testing, while the images from groups 1–3 and group 5 were used for training.

This arrangement enabled the calculations for the second fold. Similarly, the third fold, fourth

fold, and fifth fold metrics were calculated considering group 3, group 4, and group 5 for test-

ing, respectively, with the remaining ones used as training images. The metrics obtained for

folds 1–5 were averaged to obtain the final results. The obtained values for precision, recall,
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Fig 6. Confusion matrix of CO-IRv2 for (a) Adam, (b) Nadam and (c) RMSProp.

https://doi.org/10.1371/journal.pone.0259179.g006
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specificity, F1-score and accuracy were 97.85%, 91.20%, 97.96%, 94.41% and 94.55%,

respectively.

5.2 Comparison of CO-IRv2 with existing methods for CT images

This section provided comparative results of the proposed CO-IRv2 with the existing methods

for the case of CT images. Table 5 shows comparative results of CO-IRv2 with the existing

InceptionNetV3 model for Adam, Nadam and RMSProp optimizers. Table 5 also indicates

that compared to InceptionNetV3, our proposed CO-IRv2 model achieves higher values of

sensitivity, precision, recall, F1-score and accuracy. The execution time of CO-IRv2 is compa-

rable to that of InceptionNetV3 for each of the optimizers. Table 6 compares the execution

time for CO-IRv2 with several existing models. CO-IRv2, VGG-19, CTnet-10, and Inception

V3 models were trained and evaluated using a Tesla K80 Graphical Processing Unit (GPU)

supplied by Google Colab, while DenseNet-169 model was run using an eighth-generation

Intel i5 CPU. On the other hand, MobileNet, VGG16, DenseNet121, DenseNet169, NasNet

Large, Xception and InceptionResNetV2 were run using the Google Collaboratory with Tesla

K80 GPU Card in conjunction with an Intel i7-core @3.6 GHz processor, 16 GB RAM and

64-bit Windows 10 operating system. From Table 6, it can be seen that CTnet-10 has a low

execution time of 130.90 seconds, while running on Tesla K80 GPU. On the other hand, Mobi-

leNet has a low execution time of 374 seconds while running on a Tesla K80 GPU Intel i7-core

@3.6 GHz processor and 16 GB RAM. The proposed CO-IRv2 has an execution time of 707

seconds.

Table 7 briefly compares CO-IRv2 model with the state-of-art methods in terms of recall,

precision, recall, F1-score and accuracy. Our proposed CO-IRv2 model achieves the highest

accuracy and recall when compared with the existing models in Table 7. The accuracy

obtained by CO-IRv2 outperforms all referred models taken into consideration. The

Table 4. Classification of COVID-19 and normal patients for different optimizers using CO-IRv2.

Optimizer Class Sensitivity/Recall Precision F1-Score Accuracy

Adam Normal 94% 97% 95% 94.97%

COVID-19 97% 93% 95% 94.97%

Nadam Normal 97% 95% 96% 96.18%

COVID-19 95% 97% 96% 96.18%

RMSProp Normal 93% 99% 96% 96.18%

COVID-19 99% 93% 96% 96.18%

https://doi.org/10.1371/journal.pone.0259179.t004

Fig 7. ROC plot of InceptionNetV3 for the optimizer of (a) Adam, (b) Nadam and (c) RMSProp.

https://doi.org/10.1371/journal.pone.0259179.g007
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accuracies described by Ref. [30, 42, 43, 46] are around 86% for CT images. The ElasticNet

[47] and UNet [41] models have accuracy values of 90% and 91.66%, respectively. However,

the accuracy of CO-IRv2 is 96.18%. Hence, CO-IRv2 has the potential to be considered as an

efficient system for binary classification of lung CT images.

5.3 Results for X-ray images

This section provides brief results of CO-IRv2 applied to a dataset of X-ray images [54]. The

dataset contains 1662 images of which 1583 images are of normal people and 79 are of

COVID-19 patients. Using the holdout concept, 80% of the total images are used for training

and the remaining 20% for testing. This means 1329 images are for the training, of which 1261

and 68 are for normal and COVID-19 patients, respectively. On the other hand, 333 images

are used for testing where 11 are of COVID-19 patients, and the remaining 322 are of normal

people. Table 8 shows the performance results for CO-IRv2 with different optimizers for the

case of X-ray image dataset. The performance is evaluated using a Tesla K80 GPU supplied by

Google Colab. It can be seen from Table 8 that the best results are obtained by Adam optimizer

Fig 8. ROC plot of CO-IRv2 for the optimizer of (a) Adam, (b) Nadam and (c) RMSProp.

https://doi.org/10.1371/journal.pone.0259179.g008

Fig 9. Comparison of different optimizers for CO-IRv2 model for each classes.

https://doi.org/10.1371/journal.pone.0259179.g009
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in terms of accuracy, precision, recall, F1-score and specificity. CO-IRv2 with Adam optimizer

achieves classification accuracy of 99.40% and a recall value of 99.38% for an execution time of

430 seconds. The classification accuracy value of Adam is better than Nadam and RMSProp.

However, Nadam and RMSProp optimizers have slightly lower execution times than Adam.

The results obtained for CO-IRv2 are comparable to the results reported in the literature of X-

ray images. For example, the studies in [16, 48–50] consider different X-ray datasets and report

accuracy values of 96.10%, 98.75%, 98.66% and 98.08%, respectively. On the other hand,

CO-IRv2 with Adam optimizer can obtain an accuracy of 99.40% for the case of X-ray images.

5.4 The implication of the results

It is shown in this paper that CO-IRv2 can be successfully applied to the images of CT scans

and X-ray for COVID-19 screening. Processes involving Image testing and clinical testing are

different. A clinical test can be unpleasant compared to imaging trials, which do not require a

lengthy procedure. Clinical testing has slightly higher accuracy when doctors analyze the

reports themselves, and in the field of image testing, a computer does this until detailed

instructions are given. Image analysis is less expensive than clinical analysis. However, CT

scan radiation can be a concern particularly for pregnant women and those with metal

Fig 10. Ground truth and heatmap of COVID-19 CT images when CO-IRv2 is used.

https://doi.org/10.1371/journal.pone.0259179.g010

Table 5. Comparison of CO-IRv2 with existing InceptionNetV3 model.

Model Optimizer Precision Recall F1-Score Specificity Accuracy Execution Time (sec)

InceptionNetV3 Adam 90.76% 87.10% 88.89% 91.20% 89.16% 730

Nadam 93.70% 90.28% 91.96% 94.00% 92.15% 598

RMSProp 94.96% 89.33% 92.06% 95.08% 92.15% 712

CO-IRv2 Adam 96.90% 93.63% 95.24% 96.52% 94.97% 717

Nadam 95.35% 97.23% 96.28% 95.08% 96.18% 707

RMSProp 99.16% 93.28% 96.13% 99.18% 96.18% 749

https://doi.org/10.1371/journal.pone.0259179.t005
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implants. CO-IRv2 approach classifies CT scans as COVID-19 negative or positive. We may

extend our CO-IRv2 model further to detect positive COVID-19 CT scan images, depending

on the extent of COVID-19 dissemination in the pulmonary area. Our method is well orga-

nized and can be used by doctors to screen large numbers of individuals. It is likely to be com-

parable with the accuracy and speed of the current RT-PCR method in COVID-19 diagnosis.

The CO-IRv2 approach can categorize CT scan images of COVID-19 patients, allowing doc-

tors to obtain data efficiently and timely.

6 Conclusions and future work

This paper introduces and describes a new scheme termed as CO-IRv2. This new CO-IRv2

scheme has two major blocks. One is the combination of the idea of InceptionNet and ResNet,

while the other is a combination of a global average pooling layer, batch normalization, dense

layers, and dropout layers. This CO-IRv2 is suitable for diagnosing and evaluating each class

(normal vs. COVID-19) by applying different optimizers such as Adam, Nadam and

RMSProp. The proposed model is applied to a new dataset of CT images which is formed here

as the combination of two databases. A number of data preprocessing techniques, including

data segmentation, augmentation, rescaling and data normalization are applied to the new

dataset. For CO-IRv2, hyperparameters fine-tuning are applied for optimization. For the case

Table 6. Computational time of various models for CT scans of COVID-19 patients.

Models Machine Used Execution time (sec) Reporting Ref.

DenseNet-169 eighth generation Intel i5 CPU 448.73 [32]

VGG-19 Tesla K80 GPU 514 [32]

CTnet-10 130.90

MobileNet Tesla K80 GPU Intel i7-core @3.6 GHz processor and 16 GB RAM 374 [60]

VGG16 618 [60]

DenseNet121 989 [60]

NasNet Large 2170 [60]

Xception 795 [60]

InceptionResNetV2 1369 [60]

InceptionNetV3 (Nadam) Tesla K80 GPU 598 This paper

CO-IRv2 (Nadam) Tesla K80 GPU 707 This paper

https://doi.org/10.1371/journal.pone.0259179.t006

Table 7. Comparison of the proposed method with a number of existing literature.

References Methods AUC Precision Specificity Recall F1-Score Accuracy

[33] U-Net CNN 95.90% - 91.10% 90.70% - -

[34] 2D CNN - - 88% 87% - 89.50%

[29] ResNet50 81.90% - 61.50% 81.10% - 76%

[30] ResNet18 - 80.80% - 81.50% 81.10% 86.70%

[41] BCDU-Net (UNet) - - 94% 87.50% - 91.66%

[42] CRNet 94% - - - 85% 86%

[43] Multi-layer perceptron with Encoder Decoder 93% - 79% 94% - 86%

[46] Multi-task learning and single-task learning 86%±2% - 88%±1.50% 77%±3% - 86%±2%

[47] Elastic Net 94% - 91% 79% - 90%

Proposed CO-IRv2 Adam 93% 96.90% 96.52% 93.63% 95.24% 94.97%

Nadam 95% 95.35% 95.08% 97.23% 96.28% 96.18%

RMSProp 93% 99.16% 99.18% 93.28% 96.13% 96.18%

https://doi.org/10.1371/journal.pone.0259179.t007
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of CT images, CO-IRv2 achieves the highest 96.18% accuracy, 97.23% recall, 95% AUC and

96.28% F1-score for Nadam optimizer. The proposed CO-IRv2 is also applied to an X-ray

dataset of 1662 images. It is found that CO-IRv2 with Adam optimizer achieves classification

accuracy of 99.40% and a recall value of 99.38%.

The proposed CO-IRv2 model can be executed in the medical field to classify chest X-ray

and CT images to find out the COVID-19 patients. This can be utilized as a pre-assessment

method for shortening the workload of physicians and doctors, diagnosing and treating dis-

eases at initial stages. This method can be used to determine the condition of the patients

before applying treatment quickly. Although CO-IRv2 can predict COVID-19 patients, the

effectiveness of the method depends on the datasets. If a dataset contains incomplete labels or

the images have significant distortions and noise, the disease prediction may be inaccurate.

Like other DL methods, CO-IRv2 requires large-sized reliable data for training so that the pre-

diction can be reliable. There is a limited number of large and balanced datasets. Moreover,

there is no benchmark dataset for COVID-19, so it is challenging to compare CO-IRv2 with

others in a precise way. Nevertheless, in the future, the effectiveness of CO-IRv2 should be

evaluated for large datasets of COVID-19.
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