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Abstract

Vehicular ad-hoc networks (VANETs) address a steadily expanding demand, particularly for

public emergency applications. Real-time localization of destination vehicles is important for

determining the route to deliver messages. Existing location administration services in

VANETs are classified as flooding-based, flat-based, and geographic-based location ser-

vices. Existing localization techniques suffer from network disconnection and overloading

because of 5G VANET topology changes. 5G VANETs have low delay and support time-

sensitive applications. A traffic light-inspired location service (TLILS) is proposed to manage

localization inspired by traffic lights. The proposed optimized localization service uses road-

side units (RSUs) as location servers. RSUs with the maximum traffic weight metrics were

chosen. Traffic weight metrics are based on speed of vehicles, connection time and density

of neighboring vehicles. The proposed TLILS outperforms both Name-ID Hybrid Routing

(NIHR) and Zoom-Out Geographic Location Service (ZGLS) for packet delivery ratio (PDR)

and delay. TLILSs guarantee the highest PDR (0.96) and the shortest end-to-end delay

(0.001 s) over NIHR and ZGLS.

1. Introduction

Owing to their continually increasing demand, particularly for public emergency applications,

VANETs are an interesting area of investigation. Information is sent to the driver to prevent

accidents, reduce traffic jams, and for entertainment purposes [1]. An intelligent warning mes-

sage was employed in a study to reduce the number of vehicles, quick acceleration. Intelligent

warning messages are sent via the VANETs. [2]. Reinforcement learning assists vehicles in

determining the best route on their own [3].

Stable location services are important because of their continually increasing demand, par-

ticularly for public emergency applications. With tiny 5G cells and data centers, especially in

dense urban scenarios, services can be quicker and more responsive. Vehicles can communi-

cate with each other and roadside units using VANETs. In wireless ad-hoc networks

(WANETs) and mobile ad-hoc networks (MANETs), nodes move without a paved roadway in

all directions, whereas in VANETs, nodes are vehicles that are constrained to the paved road-

way in VANETs [4]. Because the topology varies in VANETs, the position, speed of vehicles,

and road type should be considered to provide location information [5].
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Scalable location services are important for covering all types of roads, including primary

roads and subways. Big traffic data processing as a VANET challenge was handled using fog

computing [6]. Unlike earlier ad-hoc networks such as WANET and MANET, VANETs pro-

vide infrastructure-based communication [7]. VANETs have many types of communication:

vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and infrastructure-to-infrastructure

(I2I). V2V communication enhances driving by disseminating using the dissemination of

information to vehicles in their vicinity. Road-side units are utilized in our proposed location

service to cover four directions at the intersections. All types of communication in VANETs

were exploited.

In this study, traffic-light-inspired location service was used to help define the location of

vehicles inspired by traffic lights. Stability was supported using a stable roadside unit neighbor-

ing the traffic lightbox. Scalability was supported using roadside units covering four directions

at the intersections. Traffic lights serve both types of roads, the main road which that has four

directions, and the subway which contains four directions. Each direction had a traffic light-

box. The red wait time for the green light status was smaller in the primary roads. This means

that green status time in the primary road is more than that in the secondary road.

A few location servers are used in our location administration service to minimize the delay

and overhead. Our well-distributed location service in the four road directions enables loca-

tion information distribution, precise results of vehicle locations, and small overheads. Loca-

tion administration services located at intersections are robust because of vehicles’ low speeds

and stops. We tested our traffic-light-inspired location administration service by varying the

number of vehicles and their speeds. The results show that this is an economic place and sce-

nario. The reminder of this paper is structured as follows: Section 2 presents the related work,

and Section 3 shows the proposed TLILS. The results of the TLILS are verified and presented

in section 4. Section 5 concludes with future work and conclusions.

2. Related works

Vehicle dissemination in VANETs has two types: group-based and position-based. Messages

are distributed to a collection of vehicles at various locations using group-based dissemination

protocols [8]. An article introduced a new classification system for information dissemination

protocols based on the application types. This work presented the first integrated dissemina-

tion for location- and group-based VANET applications [9].

The security of vehicular network messages is an urgent issue because it allows the use of s-

called m-government and internet of things [10]. Despite security threats, uniform coding

standards, avoiding conflict collision, security, privacy protection, and trust management were

implemented to address these concerns [11]. For VANET, an authentication method in which

the sender and receiver of the message are validated was proposed. The sender digitally signed

the message with a public/private key, and the message was decrypted by the recipient. The

sender and receiver of the message were validated [12]. Batch verification was used to support

the security of traffic data. The RSU simultaneously verified the validity of the signatures from

multiple vehicles [13]. To reduce latency, unmanned aerial vehicles assist in the identification

and routing of harmful vehicles [14].

Using vehicular cloud computing and body area networks, driver sickness and sleepiness

behind the wheel were detected [15]. Authentication of emergency vehicle protocols was effi-

cient against attacks such as impersonation, device theft, and reputation attacks [16]. Batch

authentication and key exchange schemes were proposed for the 6G VANET to provide high-

level security by avoiding communication with malicious vehicle users. To ensure privacy,

message alteration is prohibited during transmission [17]. A cache decision algorithm enables
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the decisions to use a secure cloud connection or for fast and low secure fog connections [18].

These studies lack the optimal placement of the location servers.

Vehicles in the destination location only aid in transmission to the target area in position-

based dissemination protocols. Positioning services are an urgent step for both types of dis-

semination protocols. Flooding-based, flat-based, and geographic-based services have been

classified as existing location administration services in VANETs.

In flooding-based location services, several location updates messages concerning the num-

ber of hops is large [19]. In addition, NIHR relayed on limited flooding and did not rely on a

location service required by other protocols proposed for VANETs [20]. It is unsuitable for

vehicle-to-vehicle communication in dense cities. Node density increases because of flooding.

It is suitable for frequent disconnecting networks.

Existing location services rely on vehicles for localization, reducing stability and causing

disconnections. In the cache-based protocol, receivers of cache locations of nodes passing

intersections act as location servers known as guideposts [21]. Flooding in this protocol

increased the query and update overhead, particularly in areas with a high density of vehicles

at intersections.

Zoom Out Geographic Location Service (ZGLS) was a protocol proposed for implementing

a flat quorum-based location administration service for VANETs. To track destinations, a

group of vehicles known as location servers was used [22]. In ZGLS, when the vehicle is on its

way to location-based services, a nearby roadside unit informs the source about them. As a

result, localization is intended for service providers rather than for vehicles. It did not address

whether there is no nearby facility supplier in the road segments in roadside units.

Recent studies have focused only on V2V communication [23]. For location services, vehi-

cles were used as moving location servers. Moving vehicles cause network disconnections. Sta-

ble location service management is required. A collaborative vehicle location management

service for enhanced hybrid reactive and proactive multicast in VANETs was presented [24].

RSUs are exploited in cashing and location dissemination, as well as multicast message trans-

mission. This service overcomes the problem of multiple location server changes, provides

load distribution.

Previous Location service VANETs have problems. Vehicles are location servers that are not

stable. The stable roadside unit rule is used for communication and sending messages text only,

not for localization. Roadside units are numerous and distributed along with different locations

which decrease efficiency and increases costs. Base stations are many and distributed which

increases costs. Many network disconnections occur because of high-speed vehicles. To control

traffic lights, internet of things-enabled light intensity was proposed to reduce light consump-

tion by intelligently switching ON/OFF lightning and to inform faulty lamps. No communica-

tion between the vehicle and the traffic light was supported [25]. The proposed geographic-

based location service for 5G VANETs inspired by traffic lights supports a stable and static

localization near each traffic light. 5G enables faster management. Forwarding to each far vehi-

cle from the traffic lights in the branches and subways. Therefore, the scalability is supported.

3. Traffic light-inspired location service

In this section, we present the localization problem, 5- traffic-based location service, and

TLILS search.

3.1. Optimized 5G traffic-based TLILS choice

The optimized location server choice has many optimization parameters such as speed, time,

and density:
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3.1.1. Speed. The optimized location services are stable. RSUs utilized as location servers

are stable and the source vehicle is preferred to be stopping or at low speed for increasing

connectivity.

3.1.2. Time. The source connection time is preferred to be suitable for search message

transmission, acknowledgment, and reply. The optimized location server is the RSU with the

highest source’s connection time.

3.1.3. Density. Many source vehicles and forward vehicles are preferred to increase con-

nectivity. For location service optimization, the RSU with the largest number of neighbors is

chosen.

Given a road network N (I, B) and a set of RSU sites L (1, 2. . ., N), solve the following prob-

lem. The number of cars passing through intersection I at a given time is denoted by N. The

average speed of cars going through intersection I is denoted by the letter S. The source con-

nection time T is the average of the periods during which the source continues to send beacons

to RSU I. The traffic weight metric WI, which indicates how well intersection I functions as

TLILS, is denoted as follows:

WI ¼
N

S� T
ð3:1:1Þ

RSU and the neighbor are compared, and the optimized weight is the chosen as the maxi-

mum traffic weight metrics:

TLILS ¼ maxfWI; WIþþg ð3:1:2Þ

The flowchart in Fig 1 shows the traffic-based location-server placement algorithm. Once

on beacon arrived from neighbour vehicle to RSU, the beacon information is stored in RSU

table. The traffic weight in Eq 3.1.1 is computed for each RSU at the intersection. The RSU

weight is compared to the neighbor RSU and the maximum RSU is chosen ad TLILS.

TLILS is stable as the vehicles are slow at intersections as shown in Figs 2 and 3. It is also

scalable because all cars passing through the four directions are localized. Vehicle and roadside

units exploit forwarding to each far vehicle on both primary roads and subways. Information

dissemination is supported using roadside units that localize vehicles in four directions.

In Fig 2, 5G is combined with VANET. Software-defined networking (SDN) is enabled for

base stations. The SDN-based VANET system helps to decrease transmission delay. In Fg.3, Tl

is placed at the intersection where there is a road or more in two directions. If one road only at

the intersection has two directions, three TLs are built as in I2. If the two roads at the intersec-

tion have two directions, four TLs are built as in I1. One-way roads have no traffic lights as in

I3. There is no need for a traffic light in I3 because the secondary road is on way. Pedestrians

passing through the main road will increase accidents when the traffic light at intersection I2 is

green as the vehicles accelerate. Pedestrians passing through the secondary roads will increase

accidents because vehicles must be informed early before stops. However, there is a pedestrian

pass 100 m after the secondary road.

As TLILS prefers to be located at TL stops, TLILS mimics traffic lights. One RSU at the

intersections is utilized such as TLILS1 and TLILS 2 and other RSUs are the relays. The middle

relay is utilized to broaden the coverage region of interest. When TLILS 1 and 2 are compared

using traffic weights, TLILS 2 is chosen. The overhead should be reduced by using the load dis-

tribution at the intersection. The overhead decreases at a high number of vehicles as a search

query for location and messages are sent in the same transmission. Using 8, or 16 TLILSs

which increases the overhead particularly at high speeds of vehicles because of the large errors
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in routes. TLILS uses roadside units to help forward message dissemination and positions

directly to the destination vehicle which reduces the overhead.

Table 1 displays the selection of rows from the location information table cached in the pri-

mary TLILS (PTLILS). The table contains the information recording time (seconds) for the

recorded vehicle number, as well as the location of the source vehicle of the beacon message at

x, y, and z coordinates, speed, road number, and road type. The notations used in Algorithm 1

are presented in Table 3.

Table 1 shows an example row from a TLILS passing location table.

Table 2 shows the selection of rows from the location information table cached in the sec-

ondary TLILS. TLILS [0] is chosen because of Algorithm 1.

The notations used in Algorithm 1 are presented in Table 3.

Fig 1. The execution procedure for the optimized 5G traffic-based location service.

https://doi.org/10.1371/journal.pone.0259060.g001
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In Algorithm 1, the decision-making technique is discussed for choosing the location

server. In step 2, a new beacon is sent from the neighbor vehicle and the RSU replies in step 3

with an acknowledgment. The beacon contains the beacon time and speed of the vehicle, loca-

tion, and road type of the vehicle. In step 4, the connection time is computed. From steps 5 to

Fig 2. Optimized 5G traffic-based location server placement.

https://doi.org/10.1371/journal.pone.0259060.g002

Fig 3. 3D design of location service for VANETs inspired by traffic lights.

https://doi.org/10.1371/journal.pone.0259060.g003

Table 1. Example row from TLILS passing location table [1].

Time (seconds) Vehicle number Location (x, y, z) speed (m/s) Road type

15 N1 1500,1500,0 10 primary

16 N2 1500,1600,0 15 primary

17 N1 1500,1500,0 0 primary

https://doi.org/10.1371/journal.pone.0259060.t001
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20, for each RSU and each neighboring vehicle, if the vehicles stayed connected for some sec-

onds, or if the neighbor vehicle stopped, the average speed is calculated in steps 8 and 15. In

step 17, the weight metric WI, which indicates how well intersection I functions as TLILS, is

computed. In step 18, the maximum weight is chosen. Otherwise, another RSU was tested for

the optimization.
Algorithm 1: Optimized 5-G Traffic-Based Location Server Placement
1: Start
2: A New beacon arrives (recording time, speed, location, road type)
to RSU
3: RSU replies with ACK
4: CD = Recording end time—Recording start time
5: For l = 1,2, . . .L
6: For n = 0,1, . . .N
7: If CD> = 2 OR sn = 0
8: Sum+ = sn
9: CDs+ = CD
10: Return sum
11: End if
12: n++
13: return n
14: End for
15: If n> = 3
16: average s = sum/n
17: If average s< = 30
18 T = CDs/n
19: WI = N/ average s �T
20: TLILS = max {RSU[l], RSU[l++]}
21: Else
22: l++
23: End if
24: End if
25: End for
26: End

Table 2. Example row from TLILS passing location table [2].

Time (seconds) Vehicle number Location (x, y, z) speed (m/s) Road type

15 N3 1500,1500,0 40 secondary

16 N4 1600,1600,0 50 secondary

https://doi.org/10.1371/journal.pone.0259060.t002

Table 3. Notations used in Algorithm 1 and their description.

Notation Description

ACK Acknowledgment

CD Connection duration

TLILS Traffic Light-Inspired Location Service

L Number of RSUs

N Number of vehicles recorded

S Speed

Sum Summation of speeds

CDs Summation of connection duration

https://doi.org/10.1371/journal.pone.0259060.t003

PLOS ONE An optimized location service for 5G VANETs inspired by traffic lights

PLOS ONE | https://doi.org/10.1371/journal.pone.0259060 November 18, 2021 7 / 17

https://doi.org/10.1371/journal.pone.0259060.t002
https://doi.org/10.1371/journal.pone.0259060.t003
https://doi.org/10.1371/journal.pone.0259060


3.2. TLILS search

After the TLILS choice, the search query message is sent using the 5G-VANET connection.

The functioning steps of the positioning vehicles in TLILSS are presented in Algorithm 2.

From steps 2 to 23, the positioning of recently connected TLILSs uses location administration

to find vehicles in TLILSs. The notations used in Algorithm 2 are listed in Table 4.
Algorithm 2 Destination Position Search in TLILSS:
1: Start
2: For d = 0,1, . . .D
3: If (d is in SR) then
4: Transmit message straightly to d and d respond with an A
5: Else if (d is NOT in SR OR No A) then
6: For l = 0,1, . . .4 do
7: Send a search question to TLILS [l] about d and S.
8: If (n is found now) then
9: Transmit S using TLILS[l] and relay.
10: d++
11: Else if (d is found before) then
12: l++
13: d++
14: Else
15: l++
16: End for
17: End if
18: End if
19: d++
20: End for
21: Repeat using delivery a seek query about d and S using neighbor
vehicles to TLILSs in the next intersection.
22: Remove S
23: End

When a destination passes beside the source vehicle, the source examines the id for destina-

tions. If a beacon is sent from the destination vehicle to the source vehicle, it means the desti-

nation is within the source’s wireless communication range, and in step 4, the message is

directly transmitted from the source vehicle to the target vehicle. When the messages are

received by the destination vehicle, it sends an acknowledgment message to the source, and

the destination id is updated. In step 7, if the source vehicle does not receive an acknowledg-

ment message after a reasonable amount of time, a seek inquiry is sent to the final TLIS.

As the destination vehicle is currently recorded in step 9, the message is sent directly to the

current recipient of the destination vehicle. An acknowledgment is sent from the destination

vehicle in step 9. The working step of the positioning of the non-recorded or earlier-recorded

destination vehicle using the next TLILSS at the intersection is shown in step 12. The query is

sent to the neighbor TLILS. If the destination vehicle is not found, in step 21, the algorithm is

repeated using delivery a seek query about d and the message using neighboring vehicles to

TLILSs in the next intersection.

Table 4. Notations used in Algorithm 2 and its description.

Notation Description

SR Source vehicle region

D Number of destinations in the group member table

TLILS Traffic Light-Inspired Location Service

A An acknowledgment Message

S The message

https://doi.org/10.1371/journal.pone.0259060.t004
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4. Simulation model

In this section, the proposed simulation parameters, metrics, and the two scenarios are pro-

posed. The network design was drawn using icograms. The presented simulation uses an

objective modular network tested in C++ (OMNET++) for 5G VANET simulations [23].

OMNET++ uses the simulation of urban mobility (SUMO) which generates vehicles and road

maps. The simulation parameters are described in the next section.

4.1. Simulation parameters

In Table 5, the TLILS tested on SUMO has 15 intersections. TLILS was tested using eight

TLISs placed at 15 intersections. The TLILS was also tested using four TLISs. In addition, 16,

and 32 TLISs were more than the number of intersections tested.

4.2. Simulation’s metrics

Simulation metrics are such as packet delivery, packet loss, delay, and overhead.

4.2.1. Packet delivery ratio. PDR is the ratio of the succeeding packets received by the

destination vehicle to the total number of packets sent by the source vehicle. PDR is calculated

using Eq 4.2.1 [26]:

PDR ¼
R
S

ð4:2:1Þ

R is the received packets is the number of packets successfully received by the destination

vehicle, and S is the total number of packets sent by the source vehicle.

4.2.2. Packet loss ratio. The packet loss ratio is the number of lost packets divided by the

total number of packets sent [27]. All packets have the most time before they must be executed,

and if they do not execute, packet loss is minimized [28, 29]. The PLR is calculated using the

following equation [26]:

PLR ¼
S � Rð Þ

S
ð4:2:2Þ

S denotes the number of packets sent by the source vehicle, and R denotes the number of

packets received by the destination vehicle.

4.2.3. End-to-end delay. The time it takes for a packet to travel from a source vehicle to a

destination vehicle via a vehicular network is referred to as the delivery delay. This delay time

is caused by routing process delays, including routing discovery, routing transmission, re-

transmission, interface delay, and MAC delay [30]. PLR lengthens the end-to-end delay owing

to the re-transmission of failed packets, leading to an increase in the end-to-end delay [30].

Table 5. Parameters for simulation to find the traffic light-inspired location service for VANETs.

Simulation parameter Value

vehicles on the road 20, 50, 100, 150, and 200

Vehicles’ speed in meters per second (meters/second) 10

Range of wireless transmission (meters) 200

Dimensions of the playground (meters) 2499 ×2499

Time limits for simulations (seconds) 5590

Intervals between beacons (seconds) 1

Total number of TLILSs 4, 8, 16, and 32

The number of crossroads 15

https://doi.org/10.1371/journal.pone.0259060.t005
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The end-to-end delay is calculated by subtracting the source transmission time from the arrival

time to the destination. In Equation 4.4, the average delay for all packets was calculated [26]:

Average end � to � end delay ¼ ð
Xn

p¼1
TR � TSð ÞÞ=n ð4:2:3Þ

4.2.4. Overhead. Text messages are combined with many types of overhead. The authenti-

cation overhead caused by the authentication method in 5G VANETs is identified in the analy-

sis [31]. Normal routing overhead, authentication overhead, and control overhead were also

added to the text messages. The following equation is used to compute the overhead of all

nodes:

Overhead ¼
Xm

v¼1

Cv ð4:2:4Þ

Cv denotes the number of additional bytes transmitted by vehicle (v), and m denotes the

number of cars.

4.3. Simulation scenarios

The average rates were calculated for each case. In Scenario 1, the effect of increasing vehicle

speeds on the dissemination performance utilizing TLILS, NIHR, and ZGLS was investigated.

With an average speed of 10 m/s, we tested the impact of a varied number of cars on TLILS

performance. The impact of adjusting the amount of TLILSs in Scenario 2 utilizing 4, 8, 16,

and 32 TLILSs was tested at 15 intersections.

5. Experimental results

A comparison between TLILSs using eight TLISs placed at 15 intersections. TLILS is placed at

the intersection which is inspired by traffic lights. Four TLISs, which are lower than the num-

ber of intersections, were used in the test. There are 16 to 32 TLISs tested, which is more than

the number of intersections. A comparison of the results of ZGLS, NIHR, and TLILS is shown

in Scenario 1 to test stability.

5.1. Comparison between TLILS, BBR, and ZGLS

Scenario 1 depicts the influence of a variable number of cars on TLILS, ZGLS, and NIHR per-

formance. There were 20, 40, 80, 200, 400, and 800 vehicles in the simulation, at an average

speed of 10 m/s and 8TLILSs.

Because TLISs provide stability, they have the highest PDR (98 percent). This is because the

location servers are stable. TLILS beats NIHR because NIHR broadcasts the message to every

neighbor to forward it to the destination which increases packet overhead. PDR increases as

the maximum density increases from 20 to 800 cars as shown in Fig 4. The PDR in NIHR is

less than 0.90 because the location service used to determine the position of the destinations is

unstable. Because the PDR in ZGLS is less than 0.8, it relies on moving cars as location servers,

which reduces stability.

TLILS has the shortest delay as shown in Fig 5 (smaller than 2 ms). This is because TLISs

find positions using forwarding messages to destinations and exploiting optimized weighted

RSUs as location servers. In NIHR, the end-to-end delay is more than two seconds, especially

in a high number of vehicles because vehicles use flooding in all directions. Because of the stor-

age time and space of earlier information, the end-to-end delay in ZGLS is lower than two sec-

onds in many vehicles, as shown in Fig 5. This is quite low because ZGLS employs a flat
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quorum-based location administration service, and a nearby roadside unit notifies the source

of its existence.

Because TLISs provide stability, they have the lowest PLR (0.02 percent). This is because the

location servers are stable. TLILS beats NIHR because NIHR broadcasts the message to every

neighbor to forward it to the destination which increases packet overhead. PLR decreases as

the minimum density decreases from 20 to 800 cars as shown in Fig 6. The PDR in NIHR is

larger than 0.1 because the location service used to determine the position of the destinations

is unstable.

TLILS has the smallest overhead as shown in Fig 7 (smaller than 100 bytes). This is because

TLISs is exploiting optimized weighted RSUs as location servers. In NIHR, the overhead is

more than 100 bytes, especially in a high number of vehicles because vehicles use flooding in

all directions. Because of the storage time and space of earlier information, the overhead in

ZGLS is more than 100 bytes in many vehicles, as shown in Fig 7. This is quite low because

ZGLS employs a flat quorum-based location administration service, and a nearby roadside

unit notifies the source of its existence.

Fig 4. Information dissemination packet delivery ratio using the TLILS, ZGLS, and NIHR.

https://doi.org/10.1371/journal.pone.0259060.g004

Fig 5. Information dissemination delay of the TLILS, ZGLS, and NIHR.

https://doi.org/10.1371/journal.pone.0259060.g005
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The message dissemination in TLILS employing 4, 8, 16, and 32 TLILSs was tested in sce-

nario 2 by altering the number of cars. The number of related cars in 5G VANETs has changed

over time. In this simulation scenario, there were 20, 50,100,150, and 200 vehicles. The out-

comes of this situation are depicted in Figs 8–11.

In the simulation, the beacon interval was one beacon per second. The average results of

the ten simulation experiments are represented by each point. 25 vehicles represent the least

number of vehicles. The low density was represented by 100 vehicles. A total of 150 vehicles

were used to symbolize a high density. A total of 200 vehicles had the highest density.

The PDR is shown in Fig 8 by adjusting the number of TLILSs in a varied number of cars

at a speed of 10 m/s. Using TLILS resulted in the largest PDR across all vehicles counts. When

utilizing eight TLILSs, the PDR was 0.98. This is because eight TLILS is the optimized location

server choice for many parameters such as speed. However, when using 4, 16, or 32 TLILSs,

the PDR is lower. When using four TLILSs, localization fails in response to the vehicle of inter-

est when it is beyond the wireless broadcast range.

According to the simulation data, TLILS with eight TLILSs has the shortest PLR, which is

less than 0.1 for all vehicle counts as shown in Fig 9. This is due to the use of numerous TLILSs

Fig 6. Information dissemination packet loss ratio using the TLILS, ZGLS, and NIHR.

https://doi.org/10.1371/journal.pone.0259060.g006

Fig 7. Information dissemination overhead of the TLILS, ZGLS, and NIHR.

https://doi.org/10.1371/journal.pone.0259060.g007
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for the position management service, which helps distribute the burden of position manage-

ment data. TLILS with 4, 16, and 32 had a low PLR (less than 0.1). eight TLILS ensures the

maximum traffic weight metric in the proposed location service.

By increasing the vehicle density to 200 vehicles, PLR decreased slightly in the TL-inspired

location service. The more vehicles the more 5G VANET connections, but also the more over-

head and packet collisions. The end-to-end delay time is caused by routing delays, including

routing discovery, routing transmission, re-transmission, interface delay, and MAC delay. For

all numbers of vehicles, using eight TLILSs supports the smallest delay (smaller than two milli-

seconds) as shown in Fig 10. This is since eight TLILS is the best location server option in

terms of time.

The longer the delay time, the more the possibility of the packet is not transmitted. This is

because of quick location server changes as in Fig 10. The location service is scalable because

Fig 8. Packets delivery ratio of information dissemination with the TLILS with 10 m/s speed.

https://doi.org/10.1371/journal.pone.0259060.g008

Fig 9. Packets loss ratio of information dissemination with the TLILS with 10 m/s speed.

https://doi.org/10.1371/journal.pone.0259060.g009
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TLILS provides the smallest delay in a large density of vehicles. The small delay can be

explained by the load distribution on multiple TLILSs at the intersections. TLILS also reduces

the end-to-end delay by decreasing PLR. Because they do not support all road directions, using

four TLILSs increases packet overhead. RLR increases the end-to-end delay in ZGLS. eight

TLILS is the best location server option in terms of time. eight TLILS ensures the maximum

traffic weight metric in the proposed location service.

Fig 11 depicts an overhead in multiple numbers of vehicles at a speed of 10 m/s. Results

show that TLILS using 16 and 32 TLILSs in intersections gives the lowest overhead over all

other numbers of TLILSs in all densities in intersections (smaller than 100 bytes). At intersec-

tions, load distribution across many TLILSs saves overhead.

The overhead decreases at a high number of vehicles as a search query for location and mes-

sages are sent in the same transmission. TLILS uses roadside units to help to forward in mes-

sage dissemination and positions directly to the destination vehicle which reduces overhead.

Fig 10. End-to-end delay of information dissemination with the TLILS with 10 m/s speed.

https://doi.org/10.1371/journal.pone.0259060.g010

Fig 11. Overhead of information dissemination with the TLILS with 10 m/s speed.

https://doi.org/10.1371/journal.pone.0259060.g011
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eight TLILS is the best location server option in terms of density. eight TLILS ensures the max-

imum traffic weight metric in the proposed location service. In TLILS, using four TLILSs is

lower than the number of road directions. Using 8, or 16 TLILSs is high increases overhead,

particularly in high speeds of vehicles because of the large errors in routes.

6. Conclusion

Localization service in 5G VANETs faces several challenges. Localization service must be sta-

ble, scalable, varying at application types, helping forward information dissemination, and

positions. Proposed TLILS used in this paper to use four RSUs at a junction in all directions

to locate destination vehicles TLILS stores beacons from its neighbors to provide a location

administration service. TLILS surpasses BBR and ZGLS for PDR and end-to-end latency,

according to the findings. The findings of the three situations demonstrate that one TLILSs in

one intersection with relays in slow traffic is making a precise determination of the location. It

also shows that the ideal number of TLILSs is half of the total number of intersections on the

map. In the future, a traffic light can be exploited more in VANETs. Traffic light may help in

RSUs, and vehicles jobs.
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