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Abstract

Obligate coastline taxa generally occupy very limited areas, especially when there is a close

affinity with a specific coast type. Climate change can be a meaningful threat for them,

reducing suitable habitat or forcing migration events. Cistus ladanifer subsp. sulcatus is an

endemic plant of Portugal, known to occur only in the top of its south-western coast’s promi-

nent cliffs. In spite of being included in the annexes II and IV of the European Habitats Direc-

tive of Natura 2000 Network, this taxon is still understudied, especially regarding the effects

of climate change on its distribution. To overcome such gap, Maxent was used to model the

current distribution of C. ladanifer subsp. sulcatus and project its future distribution consider-

ing different General Circulation Models, periods (2050 and 2070) and Representation Con-

centration Pathways (4.5 and 8.5). The results suggested an extensive range contraction in

the future, and extinction is a possible scenario. The proximity to littoral cliffs is crucial for

this plant’s occurrence, but these formations are irregularly distributed along the coast, hin-

dering range expansions, further inhibited by a small dispersal capacity. Cistus ladanifer

subsp. sulcatus will probably remain confined to south-western Portugal in the future, where

it will continue to face relevant threats like human activity, reinforcing the need for its

conservation.

Introduction

The Mediterranean Basin has long been considered crucial for plant conservation [1] due to its

high levels of species richness and endemism, unsurprisingly giving it the label of biodiversity
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hotspot [2]. This region embodied several refugia during the climatic changes of the late Qua-

ternary [3–5], where different taxonomic groups were concentrated and had the chance to

accumulate an immense genetic diversity over time [6]. As climatic conditions grew milder,

the Mediterranean landscape started dominating the Iberian Peninsula, one of the most biodi-

verse areas across the hotspot [1], developing a wide range of habitats and heterogeneous com-

munities [7].

Scrublands have an active role in the Iberian ecosystems, in particular over post-fire land-

scapes, with Cistus species being frequently dominant. The western part of the Mediterranean

Basin harbours most of these species [8], including the rockrose Cistus ladanifer L., native

from Morocco, Algeria, South of France and Iberia [9]. This species exhibits high intraspecific

diversity with considerable population differentiation [10] and three recognized subspecies

(africanus, ladanifer and sulcatus) [8, 11], whose distributions converge in the Iberian Peninsu-

la’s extreme south, denoting the importance of this refuge area (alongside northern Africa) for

their evolutionary history [5, 9, 10].

Cistus ladanifer subsp. sulcatus (Demoly) P. Monts is endemic of the south-western coast of

Portugal, the so-called Vicentine coast, a region characterized by mild temperatures and

northerly winds carrying sea salt towards the land. This oceanic influence contributes to the

diverse phytosociological associations unique to this area, many of which including C. ladani-
fer subsp. sulcatus, particularly Genisto triacanthi-Cistetum palhinhae, in which it is dominant

[12]. Among the endemic taxa occurring in the Vicentine coast, this plant is the one with the

most representative distribution along cliff tops, and thus can be considered a good proxy for

the flora of this region. Lacking long-distance dispersal mechanisms [9], this plant will proba-

bly migrate towards new areas with very limited success. Hence, if its ecological niche becomes

jeopardised in its current narrow range due to climate change and anthropogenic land use

(e.g. increase of urban areas, croplands or tourism [13]), the extinction risk may be intensified

in the future.

With the emergence of a wide range of modelling techniques and the adequate spatial

data currently available, ecological niche models (ENMs) have been increasingly employed

to understand taxa’s current distributions and predict range changes over future condi-

tions [14]. ENMs are particularly important for microendemic taxa, though potentially

affected by the little data generally available for them [15]. This aspect can be exceeded by

designing robust modelling frameworks following the most recent advances in this field

[14] and including spatially explicit data arising from novel technologies known to improve

ENMs [16, 17] and ultimately biodiversity conservation [18, 19]. Remotely sensed digital

terrain models with high resolution are one example that may be relevant for specialist taxa

such as C. ladanifer subsp. sulcatus. The inclusion of cliff tops as an environmental variable

in the ENM has the potential to substantially improve it, resulting in better predictions for

this plant’s distribution.

The preservation of unique lineages circumscribed to highly restricted areas, as is the case

of C. ladanifer subsp. sulcatus [20], is an unquestionable priority. Carefully designed ENMs

can provide conservation stakeholders the information they need for adapting strategies

focused on this plant (and more generally on the flora of the Vicentine coast) to the long term.

Along these lines, the objectives of the present study were to (i) predict the current distribution

of C. ladanifer subsp. sulcatus, identifying the most influential environmental variables; (ii)

project its distribution for different future periods with several General Circulation Models

(GCMs) and assess range changes over time; and (iii) analyse the implications that may arise

from dispersal constraints inherent to this narrowly endemic plant’s biology, discussing conse-

quent conservation challenges.
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Material and methods

Taxon

Cistus ladanifer subsp. sulcatus is a woody shrub (up to 200 cm), morphologically similar to its

sister subspecies Cistus ladanifer subsp. ladanifer L., although with more discernible leaf form

and venation [11] and a distinct ecophysiological strategy [21]. Cistus ladanifer subsp. sulcatus
occurs in coastal limestone soils and faces extreme environmental conditions [13].

This plant was recently assessed as “Least Concern” for its extinction risk by the Portuguese

Red List of Vascular Flora, a category that was justified by the absence of threats that could

result in significant population declines shortly [22]. It is also listed in the annexes II and IV of

the European Habitats Directive of Natura 2000 Network. Even so, there is an ongoing degra-

dation of its habitat due to human activities [13].

Study area

The study area consisted in the Portuguese occidental southern region, embodying the known

distribution of C. ladanifer subsp. sulcatus (Fig 1). The study area’s northernmost limit was the

river Tagus’ mouth to account for future dispersal events towards this area. The eastern limit

took into consideration a minimal dispersion along the Mediterranean Algarve coast observed

in preliminary ENM projections. Besides, this is the most touristic region in the country, with

the coastal landscape being dominated by buildings, thus leaving little space for plant popula-

tions to flourish, a situation hardly changeable in future decades.

Presence data

The presence dataset was gathered by searching for “Cistus ladanifer” and “Cistus palhinhae”
(synonym of Cistus ladanifer subsp. sulcatus) in the databases of GBIF [27–29], and iNaturalist

[30]. All the corresponding 154 records were downloaded and cleaned, discarding those

included in the following categories: (i) occurring far away from the known range of C. ladani-
fer subsp. sulcatus [31]; (ii) lacking expert-based confirmation, thus with dubious taxonomic

identification of C. ladanifer subsp. sulcatus; or (iii) having an inaccuracy higher than 1 km,

the spatial resolution used in this study (otherwise they could be assigned to the wrong grid

cells [32]). The dataset was completed with 2 records from Quintela-Sabarı́s et al. [10] and 54

records provided by the Portuguese Society of Botany (http://www.spbotanica.pt/). This plant

was taken as present near Peniche (Central coast of Portugal [31];) but this record was dis-

carded for being uncertain (Miguel Porto, pers. comm.). All records were referenced to the

World Geodetic System 1984, the coordinate system used throughout this work.

This 102 occurrences’ dataset (Fig 1 and S1 Table) included, however, spatially clustered

data. This is a frequent drawback of opportunistic assemblages of presence records [14, 33,

34], which tend to be biased by geographical or environmental factors [35, 36] thus contribut-

ing to ENM overfitting [37, 38]. To overcome this issue, the package ‘spThin’ v0.2.0 [36] in R

v4.0.2 [39] was used to filter the dataset with a distance of 1.5 km, which was found to be a

good compromise between clustering reduction and the elimination of records. To guarantee

that the maximum number of records distancing at least 1.5 km from each other were kept,

spThin was run with 100 iterations, resulting in 38 non-clustered records, the final presence

data used to produce the models (Fig 1).

Environmental data

A set of 20 climatic and habitat-related variables was gathered and cropped using the study

area’s limits (S2 Table). The bioclimatic variables were downloaded from WorldClim v1.4 [40]
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with a resolution of 30 arc-seconds (approximately 1 km). The Cliff Feature Delineation Tool

and Baseline Builder [41], available for the same software, were employed to obtain an accurate

characterization of southern Portugal’s coastal cliffs, resorting to the high spatial resolution

Digital Terrain Model (2 x 2 m) created from airborne LiDAR data and provided by the Portu-

guese General Directorate of the Territory (https://www.dgterritorio.gov.pt/). Transects

spaced 5 meters apart were defined (Fig in S1 Appendix) and, along each, points were obtained

detailing information like their distance to the shoreline and altitude. The “Top” and “Toe”

points (Fig in S1 Appendix)–the cliff’s top and base, respectively–were used to compute the

Fig 1. Location of the study area and spatial representation of the presence dataset. The 38 post-thinning presence

points of C. ladanifer subsp. sulcatus, which were used to produce the ENM and its future projections, and the

remaining 64 presence points, over an elevation layer [23]. Protected areas [24] are displayed as follows: 1 –Sintra-

Cascais Natural Park; 2 –Costa da Caparica Fossil Cliff Protected Landscape; 3 –Arrábida Natural Park; 4 –Sado

Estuary Natural Reserve; 5 –Santo André and Sancha Lagoons Natural Reserve; 6 –Southwest Alentejo and Vicentine

Coast Natural Park. Other regions, mentioned in the text, are outlined. The top right inset displays the geographical

location of the study area on a European and North African frame [25]. This figure was assembled using ArcGIS

Desktop v10.8.1 [26].

https://doi.org/10.1371/journal.pone.0258976.g001
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slope. All the coastal regions with a slope value of at least 70% and whose “Top” point was

located at no less than 15 meters of altitude were considered cliffs. This process was completed

by visually inspecting the resulting “Top” cliff points in Google Earth [42] and editing them in

ArcGIS Pro v2.7.0 [43] (see S1 Appendix for further information). The final 30 arc-seconds

environmental variable resulted from the Euclidean distance in meters to the final set of “Top”

points, computed in ArcGIS Desktop v10.8.1 [26].

Four uncorrelated continuous variables that revealed some contribution to model C. lada-
nifer subsp. sulcatus’ distribution according to prior trials were selected (using the commonly

employed index of Pearson [44]: Pearson correlation < 0.75): Bio 9 –Mean Temperature of

Driest Quarter, Bio 12 –Annual Precipitation, Bio 15 –Precipitation Seasonality and Distance

to Cliffs (Table 1).

To project the model into the future, five GCMs (ACCESS1-0, BCC-CSM1-1, CCSM4,

MIROC-ESM and MRI-CGCM3) resulting from the Phase 5 of the Coupled Model Intercom-

parison Project (CMIP5) were used. They were available for the studied periods– 2050 (aver-

age for 2041–2060) and 2070 (average for 2061–2080)–and were characterized by a reasonable

variability for the study area when included in a pool of 13 GCMs in GCM compareR web

application [45], which could help transmitting a comprehensive perspective. Resorting to the

WorldClim database, the bioclimatic variables were downloaded with a 30 arc-seconds resolu-

tion for each GCM, period, and two representation concentration pathways (RCPs): 4.5 and

8.5, referring to a moderate and a more serious greenhouse gas scenario, respectively [46]. The

variable Distance to Cliffs was maintained as in the present since it will probably remain

unchanged in the future time-slice considered (Table 1). The inclusion of static variables in

ENM projections may be an advantageous strategy as demonstrated elsewhere [47]. Consider-

ing the five GCMs and the four combinations of future periods and RCPs, in total, 20 future

projections were produced (Fig 2).

Ecological niche modelling

The ENM was computed employing the widely-used software Maxent v3.4.1 [48]. Known for

generating robust presence-background models, even with low sample sizes, it frequently out-

performs other modelling techniques [49–52]. Firstly, the R package ‘ENMEval’ v0.3.1 [53]

was used to tune the model to the optimal level of complexity with different combinations of

Maxent’s feature classes (transformations of the predictor variables) and regularization multi-

pliers (which penalize over-complex models) [54, 55]. Selecting the ‘randomkfold’ partitioning

method with 10 kfolds and using the ‘maxent.jar’ algorithm, all combinations comprising the

feature classes Linear (L), Quadratic (Q), Hinge (H), Linear + Product (LP), LQ, LH, PQ, PH,

QH, LPQ, LPH, LQH and PQH and the sequence of regularization multipliers from 1 to 5

with an interval of 0.2 (thus 21 different values) were tested. The selected combination of

parameters was the one with the smallest value concerning the Akaike Information Criterion

for small samples (AICc): feature classes LQ and regularization multiplier 1. Given the narrow

study area and the small sample size, the cross-validation method with 10 replicates was

employed. Five thousand background points were randomly created over the study area

(50.7% of all 9860 grid cells contained a background point), thus representing adequately its

environmental spectrum [54]. A maximum number of 1000 iterations was used and the

remaining settings were left as default.

The ENM performance was assessed using the area under the receiver operating character-

istic curve (AUC) [56] and the true skill statistic (TSS) [57] for the testing data. They were cal-

culated for each cross-validation replication and the values were subsequently averaged. The

threshold employed both in TSS computation and for converting the suitability map into a
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Table 1. Values of the selected environmental variables.

Variables Present Future

Year RCP ACCESS1-0 BCC-CSM1-1 CCSM4 MIROC-ESM MRI-CGCM3

Bio 9: Mean Temperature of Driest Quarter (˚C) 21.69 ± 0.72 2050 4.5 23.85 ± 0.84 23.85 ± 0.78 23.34 ± 0.84 25.16 ± 0.85 23.05 ± 0.79

(19.9–25.3) (19.9–25.1) (19.5–24.9) (21.0–26.8) (19.1–24.3)

2050 8.5 24.3 ± 0.89 24.42 ± 0.8 23.68 ± 0.92 26.04 ± 0.83 23.43 ± 0.84

(20.3–25.8) (20.4–25.7) (19.5–25.2) (22.0–27.4) (19.5–24.8)

(17.8–22.8) 2070 4.5 24.43 ± 0.87 23.98 ± 0.78 23.3 ± 0.86 26.44 ± 0.82 23.66 ± 0.79

(20.5–25.9) (20.0–25.2) (19.2–24.7) (22.5–27.8) (19.7–24.9)

2070 8.5 24.84 ± 0.96 25.76 ± 0.84 24.24 ± 1.0 27.46 ± 0.86 24.14 ± 0.88

(20.6–26.6) (21.7–27.1) (20–25.9) (23.4–28.9) (20.1–25.6)

Bio 12: Annual Precipitation (mm) 60.01 ± 6.88 2050 4.5 48.77 ± 4.79 56.35 ± 6.36 49.94 ± 6.85 56.19 ± 6.23 64.68 ± 6.98

(37.5–68.0) (42.9–81.3) (36.1–74.8) (42.8–80.8) (49.8–93.7)

2050 8.5 46.15 ± 5.13 50.68 ± 6.61 46.88 ± 6.82 48.06 ± 5.58 69.68 ± 7.84

(35.0–66.9) (37.5–76.0) (33.5–70.4) (36.1–69.8) (53.3–101.3)

(45.8–87.3) 2070 4.5 49.65 ± 6.44 54.42 ± 6.59 48.24 ± 6.91 48.91 ± 6.04 61.90 ± 7.16

(35.6–72.8) (40.8–80.6) (34.6–72.8) (36.3–71.8) (46.8–89.5)

2070 8.5 42.91 ± 6.23 44.37 ± 5.69 45.41 ± 6.71 41.0 ± 5.6 63.97 ± 7.99

(30.4–64.6) (33.2–66.3) (32.3–67.9) (29.3–61.6) (47.7–94.1)

Bio 15: Precipitation Seasonality (%) 64.73 ± 2.55 2050 4.5 80.84 ± 4.08 72.33 ± 2.77 69.37 ± 2.6 69.59 ± 2.72 72.04 ± 2.04

(71.0–89.0) (67.0–80.0) (64.0–77.0) (64.0–78.0) (68.0–77.0)

2050 8.5 78.49 ± 3.39 70.63 ± 1.84 71.08 ± 2.48 66.92 ± 2.56 79.26 ± 2.38

(71.0–89.0) (67.0–77.0) (66.0–78.0) (61.0–75.0) (74.0–85.0)(60.0–72.0)

2070 4.5 74.29 ± 2.11 62.88 ± 1.95 69.93 ± 2.27 67.88 ± 2.87 71.78 ± 2.44

(70.0–82.0) (59.0–69.0) (65.0–77.0) (61.0–77.0) (67.0–80.0)

2070 8.5 96.35 ± 1.91 77.05 ± 1.59 73.66 ± 3.02 68.73 ± 2.0 85.56 ± 4.08

(91.0–105.0) (73.0–83.0) (68.0–82.0) (61.0–76.0) (78.0–97.0)

Distance to Cliffs (m) 17358.91 ± 11491.13 - - - - - - -

(0–48328.82)

Average ± standard deviation (minimum–maximum) values of the four environmental variables selected from the total set of twenty variables (see S2 Table) for the

study area. For the bioclimatic variables, both the values for present and future are displayed, for each general circulation model, period and Representative

Concentration Pathway (RCP). The variable Distance to Cliffs was only available for the current time.

https://doi.org/10.1371/journal.pone.0258976.t001

Fig 2. Methodological workflow for the projections of the Ecological Niche Model (ENM) into the future, for five General

Circulation Models (GCMs). For each GCM, four combinations (COMBs) of years (2050 and 2070) and Representation Concentration

Pathways (RCPs; 4.5 and 8.5) were produced.

https://doi.org/10.1371/journal.pone.0258976.g002
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geographical matrix of presences and absences, was the 10-percentile training presence thresh-

old. The presence and absence maps allow one to assess range changes over time, a process

that followed the comparison of two scenarios: with and without dispersal limitation. For the

former, we used the minimum convex polygon plus a buffer of 2 km. Since the furthest record

from the shore is located at approximately 5 km away, and to account for the buffer, the poly-

gon was cropped by a maximum shore distance of 7 kilometers (from here on, dispersal limita-

tion polygon). In this scenario, the polygon was considered the area beyond which C. ladanifer
subsp. sulcatus was unable to disperse. For both of them, ArcGIS Desktop was used to compare

the number and proportion of map cells that were predicted to be maintained, gained and lost

over time according to each GCM and RCP.

Land use analysis

In order to infer the land use that occupies the area where C. ladanifer subsp. sulcatus occurs at

present and will occur in the future, the binary maps resulting from the ENM were compared

with land use maps corresponding to the same periods. For the present, the CORINE Land

Cover [58] 2018 map was used. This map and the CORINE Land Cover 2006 map, both cate-

gorized in five classes (Water, Forest, Scrubland, Cropland, Urban areas) and converted to a

raster format in ArcGIS Desktop, were used to predict the land use for 2050 and 2070. This

was done through the Patch-generating Land Use Simulation model v1.25 [59] (see S2 Appen-

dix for further information). Discriminating the two periods (2050 and 2070), the proportion

of each land use category in the total area of occurrence according to each ENM prediction

was computed.

Results

Current potential distribution area

The current ecological niche of Cistus ladanifer subsp. sulcatus was concentrated in the coastal

areas of south-western Portugal and the Cape Saint Vincent was found to be its hotspot (Fig

3A). The ENM was characterized by a high predictive accuracy: Test AUC = 0.98, which is

close to the optimum AUC value of 1 [60]; Test TSS = 0.87, having a better performance than

the reference value for defining a good model (0.6 [61]).

The most relevant variable was the Distance to Cliffs, representing 81% of the average per-

centage contribution and ca. 92% of the average permutation importance (Table 2). Annual

Precipitation had an average contribution of 13%, a value that was lower than 3% for both the

Mean Temperature of Driest Quarter and the Precipitation Seasonality. However, at least one

ENM replicate disclosed a percentage contribution of approximately 8%. Permutation impor-

tance was consistently low across bioclimatic variables (Table 2). Corroborating the identical

visual pattern between occurrence records and cliffs (Fig 3), Maxent’s output unveiled a clear

habitat suitability decrease with increasing distances to cliffs (Fig 4). The variables Mean Tem-

perature of Driest Quarter and Annual Precipitation had similar patterns, though with less

pronounced curves. On the other hand, suitability tended to increase with the Precipitation

Seasonality.

Future evolution of the geographical range

Most projections into the future suggested that suitable areas for C. ladanifer subsp. sulcatus
will decrease in the future. Only the GCM BCC-SM1-1 had a projection (2070, RCP 4.5) show-

ing the opposite trend, even though suitable areas remained concentrated along the coastline

south of Cape Sines. In general, this was the most suitable area, followed by the Arrábida
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Natural Park in some cases (Fig 5). Equivalently to the present, the Cape Saint Vincent was

selected as the most suitable area and was the only region where the plant will be able to persist

according to the GCM MRI-GCGM3 projections. The only exception was verified for two sce-

narios of the GCM MIROC-ESM (2050, RCP 8.5; and 2070, RCP 4.5), where habitat suitability

was low in Cape Saint Vincent and tended to increase further north.

Overall, the number of cells with habitat suitability percentage values above 60% decreased

considerably over time (Fig 6). Starting with 145 cells in this category at present, in most cases,

they will be less than 50 in the future. The most preeminent deviation from this pattern was

BCC-CSM1-1, which for the RCP 4.5 has more than doubled the number of high suitability

cells by 2070, despite suffering an enormous reduction in 2050. The RCP 8.5 had the worst sce-

narios for the plant, with most GCMs not going beyond the 20 cells with a habitat suitability

above 60%, especially in 2070. The exception was MIROC-ESM, that, despite the reduction of

these cells compared to present, did not show dramatic losses (86 cells in 2050 and 53 cells in

2070; Fig 6).

Fig 3. Habitat suitability map and coastal cliffs in the study area. (A) Current habitat suitability map and the 38

presence records used to produce it; (B) Identified cliffed coasts, and the distance between them and each location of

the study area. This figure was assembled using ArcGIS Desktop v10.8.1 [26].

https://doi.org/10.1371/journal.pone.0258976.g003

Table 2. Average (minimum—maximum) percentage contribution and permutation importance of each environ-

mental variable to the ecological niche model.

Variable Percentage Contribution (%) Permutation Importance (%)

Distance to Cliffs 81.38 (79.63–83.05) 92.17 (91.03–93.35)

Bio 12: Annual Precipitation 13.13 (9.16–15.42) 6.12 (5.41–6.97)

Bio 9: Mean Temperature of Driest Quarter 2.76 (1.75–3.47) 0.67 (0.29–0.96)

Bio 15: Precipitation Seasonality 2.73 (0.73–7.85) 1.04 (0.73–1.28)

https://doi.org/10.1371/journal.pone.0258976.t002
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The 10-percentile threshold of 0.3521 was applied to obtain maps discriminating suitable

and unsuitable habitats, which were interpreted as presence-absence maps. Combining the

current map with the 20 future projections (Fig 7), two general patterns were observed: (i) hab-

itat loss was more prevalent in areas further from the coast; and (ii) habitat gain was much

rarer, but when it happened it was predominant in both the strip between the northern half of

C. ladanifer subsp. sulcatus distribution and Cape Sines and the Arrábida Natural Park. Most

GCMs showed congruent projections, with substantial habitat loss and moderate levels of hab-

itat maintenance, but there were remarkable exceptions. Despite following that general pat-

tern, BCC-CSM1-1 predicted no habitat loss for 2070 and RCP 4.5, but instead an increase of

75.7% in the suitable area (Fig 8 and S3 Table). The MIROC-ESM scenarios also obtained con-

trasting results: whereas habitat loss was higher than 70% for 2050 and RCP 4.5, there was a

slight habitat gain (5.7%) by 2070 according to the RCP 8.5. For the remaining scenarios

(2050, RCP 8.5 and 2070, RCP 4.5), MIROC-ESM was also distinctive since habitat loss was

more frequent in the southern part of the Vicentine coast rather than in latitudes further

north. The GCM MRI-CGCM3 disclosed the worst scenarios, with habitat losses ranging

between 84.3% and 100% in unconstrained scenarios (Fig 8 and S3 Table). The dispersal limi-

tation polygon circumscribed the currently suitable area by 37 cells (13% of the 278 currently

suitable cells), resulting in 241 cells. Compared with the opposite scenario, limiting the plant’s

dispersal led frequently to the contraction of cells’ net gain percentages, suggesting that habitat

gain was more common outside the dispersal limitation polygon. This limitation even con-

verted the abovementioned habitat gain of 5.7% for MIROC-ESM in the scenario 2070 + RCP

8.5 into a 16% habitat loss (Fig 8 and S3 Table).

Fig 4. Response curves for each environmental variable. Plots resulting from the models created using only the

corresponding variable. The grey colour represents cross-validation replications and the red colour represents the

average of those ten replications.

https://doi.org/10.1371/journal.pone.0258976.g004
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Land use analysis

Scrublands were the most common category encompassing both present and future distribu-

tion predictions (Table 3). Cropland and Urban areas were the categories that followed, with

the former being systematically the most relevant of the two except for all MRI-CGCM3 sce-

narios that did not predict the extinction in the future and for MIROC-ESM in 2050 and RCP

4.5. Water and Forest cells were practically insignificant in all scenarios and absent in 19 and 6

of them, respectively.

Discussion

Climate change impacts

When projecting future range changes, uncertainty is inevitable and may arise from different

sources, such as GCMs and RCPs [62, 63]. The current study unfolded contradicting results,

with some scenarios suggesting an increase of the suitable area for C. ladanifer subsp. sulcatus
but most pointing to its contraction. The MRI-CGCM3 stood out for predicting a worrying

loss of all or nearly all suitable habitat. It was the GCM with the highest levels of annual precip-

itation, being quite distinct from the other four, particularly concerning the RCP 8.5. Excessive

precipitation values in the future will likely have negative impacts on this subspecies, which is

in line with its succulent-like ecophysiological strategy [21], helpful considering the extreme

living conditions it faces, like strong winds and constant salt spray. Nonetheless, the results

suggested that precipitation was relevant, especially if taking place at the appropriate season,

which is not surprising given the highly marked rainy winters of the Mediterranean climate. If

there was not a disproportionate contribution of the variable Distance to Cliffs, Precipitation

Seasonality would probably be recognized as a much more influential variable, as it is common

in Mediterranean species [64].

Fig 5. Predicted habitat suitability for the different future scenarios. Results are displayed in a matrix with lines

corresponding to general circulation models and each column consisting of a future period and Representative

Concentration Pathway (RCP) combination. This figure was assembled using ArcGIS Desktop v10.8.1 [26].

https://doi.org/10.1371/journal.pone.0258976.g005

Fig 6. Extension of the most suitable area over time. Number of cells with suitability values above 60% over time (based on

Figs 3 and 5), for Representation Concentration Pathways (RCPs) 4.5 and 8.5.

https://doi.org/10.1371/journal.pone.0258976.g006
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Remarkably, for most GCMs, the projections considering the most severe greenhouse gas

scenario (RCP 8.5) were identical to the smoother RCP 4.5. They even achieved quite favour-

able results for MIROC-ESM and, in 2050, for BCC-CSM1-1. Similarly, the climatic conditions

in 2070 had no magnified impacts, resulting in predictions consistent with those of 2050. The

next decades could thus entail the major challenges for this plant, leading to a sharp decrease

in suitable areas. Higher temperatures and lower precipitation levels beyond 2050 appear

insufficient to exacerbate such an effect. This is likely due to the well-known drought resistance

mechanisms of C. ladanifer [65–67], resembling those making some taxa particularly resilient

to aridity [68]. Nevertheless, as the rate of this plant’s response to climatic alterations is not

known, if a substantial contraction is verified by 2050 (as predicted by BCC-CSM1-1 and MIR-

OC-ESM), it remains uncertain how fast it will regain the habitat that was lost. Habitat suit-

ability can fluctuate in such a way that all study area is considered unsuitable by 2050, but in

2070 some cells return to being suitable (MRI-CGCM3). This emphasizes the need for an eco-

logical debate over ENM results [69] which, in the present study, were obtained relying simply

on machine-learning computations. If the whole study area turns into unsuitable habitat and

Fig 7. Predicted changes in suitable habitat for the different scenarios. Results are displayed in a matrix with lines

corresponding to general circulation models and each column consisting of a future period and RCP (Representative

Concentration Pathway) combination. Protected areas [24] and the dispersal limitation polygon are also displayed.

This figure was assembled using ArcGIS Desktop v10.8.1 [26].

https://doi.org/10.1371/journal.pone.0258976.g007

Fig 8. Number of cells in each category of predicted change. The colours correspond to the categories of habitat

change as follows: Green–Habitat Maintained; Red–Habitat Lost; Blue–Habitat Gained. The bar plots on the left

correspond to the unrestricted scenario, where C. ladanifer subsp. sulcatus can disperse everywhere, contrarily to the

bar plots on the right, which consider the dispersal limitation polygon, represented in Fig 7, as the exclusive area where

it may be present, both currently and in the future. The top bar plots illustrate the projections for the Representative

Concentration Pathway (RCP) 4.5 while the bottom bar plots represent the RCP 8.5 projections.

https://doi.org/10.1371/journal.pone.0258976.g008
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the taxon becomes extinct by 2050, no matter the extent of suitable area in a distant future, it

will no longer be occupied.

Range limiting factors in the future

Climate will not play an exclusive role in whatever changes taking place. Meeting initial expec-

tations, cliffed coasts were demonstrated to be fundamental for this subspecies given the sharp

decrease in habitat suitability with increasing distances to these wave-eroded formations. If

this variable was not included, the ENM would likely predict the presence of C. ladanifer
subsp. sulcatus far inland, as verified for other coastal plants whose niche was modelled using

only bioclimatic variables [70, 71]. In a first approach, other non-climatic variables were con-

sidered, namely the Edaphic Composition of the study area, whose importance is well known

for this taxon [13] and in general for the Iberian flora [72, 73], but its contribution to the ENM

was minimal. Possibly, larger sample sizes or finer spatial resolutions could bring different

results. Land use could also be included as an ENM variable, but then results would no longer

be interpreted as the plant’s ecological niche due to the anthropogenic influence. Land use was

thus considered in a subsequent analysis, as discussed below.

If terrestrial taxa occurring exclusively along the shore have their fundamental niches highly

restricted, such circumstance is further heightened in those that are dependent on a specific

coast type. The results that were presented above suggest that the only area including suitable

habitats outside the Vicentine coast is the Arrábida Natural Park, although these coastal cliffs

are roughly 90 km away from the northernmost confirmed record of C. ladanifer subsp. sulca-
tus. In the literature, no information is currently available concerning this subspecies’ dispersal

ability, contrarily to C. ladanifer subsp. ladanifer. Regarding the latter, Bastida and Talavera

[74] showed that, on average, only 1.6% of seeds are dispersed over a minimal distance of 40

Table 3. Percentage of each land use category within the predicted area of occurrence according to each scenario.

Year RCP GCM Water Forest Scrubland Cropland Urban areas

Present - - 0.41 2.07 54.55 35.95 7.02

2050 4.5 ACCESS1-0 0 1.77 63.72 24.78 9.73

BCC-CSM1-1 0 1.35 67.57 16.22 14.86

CCSM4 0 1.95 59.74 29.87 8.44

MIROC-ESM 0 0 69.09 14.55 16.36

MRI-CGCM3 0 0 66.67 9.52 23.81

8.5 ACCESS1-0 0 0.96 62.50 25.96 10.58

BCC-CSM1-1 0 1.02 62.24 26.53 10.20

CCSM4 0 1.60 64.80 24.00 9.60

MIROC-ESM 0 1.94 47.74 44.52 5.81

MRI-CGCM3 0 0 0 0 0

2070 4.5 ACCESS1-0 0 1.01 61.62 27.27 10.10

BCC-CSM1-1 0.54 1.61 47.45 44.50 5.90

CCSM4 0 2.16 60.43 27.34 10.07

MIROC-ESM 0 0.81 50.00 42.74 6.45

MRI-CGCM3 0 0 66.67 14.29 19.05

8.5 ACCESS1-0 0 1.02 61.22 27.55 10.20

BCC-CSM1-1 0 0 61.54 30.77 7.69

CCSM4 0 0.90 63.06 26.13 9.91

MIROC-ESM 0 1.97 54.68 36.45 6.90

MRI-CGCM3 0 0 70.37 7.41 22.22

https://doi.org/10.1371/journal.pone.0258976.t003
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cm from the mother plant. Ants like Goniomma kugleri Espadaler [75] can increase dispersion

by a few meters (as documented for another Mediterranean plant-ant interaction [76]) and the

red deer (Cervus elaphus L.) is able to spread germinable seeds over much larger distances

[77]. With this ungulate absent from the current range of C. ladanifer subsp. sulcatus, G.

kugleri and other ants are likely to be the main dispersion vector.

Despite the absence of long distance dispersal mechanisms, C. ladanifer was able to cross

the Strait of Gibraltar [9] and a similar event could be hypothesized for the sulcatus subspecies.

However, that dispersal took hundreds of thousands of years and was only possible due to the

widespread availability and continuity of suitable habitat, assumptions unverified for C. lada-
nifer subsp. sulcatus. Consequently, it is unlikely that the Arrábida Natural Park will be reach-

able for this plant over the next decades. Among the areas determined as suitable along the

coasts of Alentejo and Algarve, those north to Vila Nova de Milfontes and east to Burgau lack

confirmed records, suggesting a limited range filling [78]. This evidence could be a conse-

quence of (i) biotic interactions like competition (which this plant tends to avoid [13]), (ii) abi-

otic factors not explored here, or (iii) extremely slow dispersal rates. In summary, there is a

clear tendency for this subspecies to remain confined to the south-western edge of Europe and

cope with climate change there.

The present work reinforces the need to examine species’ ecological attributes when design-

ing ENMs. This is specifically relevant for specialist and narrowly endemic taxa. Besides the

decisive relevance of littoral cliffs on C. ladanifer subsp. sulcatus’ distribution, accounting not

for dispersal limitations would lead to potentially misleading conclusions, which should be

avoided whenever possible in conservation research [79].

Conservation implications

The methodology used in the present study addressed solely the responses of C. ladanifer
subsp. sulcatus to environmental factors. Therefore, results should be acknowledged with cau-

tion as human pressure and other habitat disturbances may further constrain its niche.

Although the Southwest Alentejo and Vicentine Coast Natural Park is a protected area and

part of the Natura 2000 European Network, it includes several invasive species, like the ice

plant Carpobrotus edulis (L.) N. E. Br. or the capeweed Arctotheca calendula (L.) Levyns,

which, if not detected in an early stage [80], may pose relevant threats to native plants, espe-

cially microendemic taxa.

This Park is fairly unurbanized and revealed no considerable expansion of urban areas

between 2006 and 2018, a pattern that will likely be reproduced in the future (Fig in S2 Appen-

dix). The exception was Sagres, where C. ladanifer subsp. sulcatus is particularly abundant.

This region explains the percentage values around 20% for urban areas within the extremely

reduced predicted distribution concerning MRI-CGCM3 (Table 3). Even though urban cells

may include patches with suitable habitat for this plant, human presence could lead to menac-

ing activities such as the illegal use of vehicles and waste dumping in coastal heaths [13].

Therefore, in such eventualities, the worrying losses of habitat predicted by MRI-CGCM3

would be even greater. This could also occur in respect to cropland areas, which are common

in the northern part of the Vicentine coast. In most scenarios, MIROC-ESM suggested that

this will be the principal area where habitat will be maintained, but ecologically unsuitable

land uses have the potential of further constraining it. Throughout this area, where C. ladanifer
subsp. sulcatus populations tend to be more isolated, temporary crops and some scrublands

have been progressively converted into other agricultural uses such as nursery agriculture.

Even though croplands will likely decrease in the future across the study area, they will con-

tinue to dominate this region (Fig in S2 Appendix). Relevant human pressures also derive

PLOS ONE The role of cliffs in the niche of a microendemic plant

PLOS ONE | https://doi.org/10.1371/journal.pone.0258976 October 22, 2021 15 / 21

https://doi.org/10.1371/journal.pone.0258976


from tourism, which is particularly relevant during the high season and tends to be concen-

trated along the shore [81].

Impacts on this taxon will also affect the entire ecosystem it is included in. It is worth noting

that the endemic phytoassociation Genisto triacanthi-Cistetum palhinhae Rivas-Martı́nez,

Lousã, T.E. Dı́az, Fernández-González & J.C. Costa [12], just as other unique typologies of

southern Portugal, like the extremely threatened oak groves of Quercus faginea Lam. and Q.

canariensis Wiild. or the riparian forests where the relic species Rhododendron ponticum
(Boiss. & Reut.) Hand.-Mazz. occurs, are predicted to have their spatial representation reduced

over time [82]. The Alentejo coast, where future range changes could be considerable [82], is a

territory where we can find several endemic plants, including the “endangered” Plantago almo-
gravensis Franco and Herniaria algarvica Chaudhri, and the “vulnerable” Diplotaxis siifolia
(Welw. ex Samp.) Mart.-Laborde [83]. Even more restricted than C. ladanifer subsp. sulcatus,
and forming with it the maritime heaths of Cape Sines and its vicinities, are for example

Astragalus tragacantha L., Silene rothmaleri P. Silva, Triplachne nitens (Guss.) Link, Helianthe-
mummarifolium subsp. origanifolium (Lam.) G.López and Ulex erinaceus Welw. ex Webb.

Conclusions

Climate change is expected to reduce meaningfully the range of C. ladanifer subsp. sulcatus in

the future, although more moderate scenarios could occur. This study confirmed the tight

affinity between this plant and cliffed coasts, which are a pivotal condition for habitat suitabil-

ity. Confined by long sands in the north and by urban landscapes in the southeast, where the

Atlantic influence is replaced by a quiet Mediterranean Sea, no considerable expansion events

are anticipated. Along these lines, population trends for this unique lineage of C. ladanifer
should be followed up carefully in order to improve conservation policies aimed at protecting

this subspecies and taxa co-occurring in the Vicentine coast, one of the major hotspots of Ibe-

rian plant diversity and endemism.
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47. Stanton JC, Pearson RG, Horning N, Ersts P, Akçakaya HR. Combining static and dynamic variables in

species distribution models under climate change. Methods in Ecology and Evolution. 2012; 3: 349–

357. https://doi.org/10.1111/j.2041-210X.2011.00157.x

48. Phillips SJ, Dudı́k M, Schapire RE. Maxent software for modeling species niches and distributions (Ver-

sion 3.4.1). Available from: https://biodiversityinformatics.amnh.org/open_source/maxent/

49. Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteris-

tics on performance of different species distribution modeling methods. Ecography. 2006; 29: 773–785.

https://doi.org/10.1111/j.0906-7590.2006.04700.x

50. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, et al. Effects of sample size on the per-

formance of species distribution models. Diversity and Distributions. 2008; 14: 763–773. https://doi.org/

10.1111/j.1472-4642.2008.00482.x

51. Giovanelli JGR, de Siqueira MF, Haddad CFB, Alexandrino J. Modeling a spatially restricted distribution

in the Neotropics: How the size of calibration area affects the performance of five presence-only meth-

ods. Ecological Modelling. 2010; 221: 215–224. https://doi.org/10.1016/j.ecolmodel.2009.10.009

52. Thibaud E, Petitpierre B, Broennimann O, Davison AC, Guisan A. Measuring the relative effect of fac-

tors affecting species distribution model predictions. Methods in Ecology and Evolution. 2014; 5: 947–

955. https://doi.org/10.1111/2041-210X.12203

53. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al. ENMeval: An R pack-

age for conducting spatially independent evaluations and estimating optimal model complexity for Max-

ent ecological niche models. Methods in Ecology and Evolution. 2014; 5: 1198–1205. https://doi.org/10.

1111/2041-210X.12261

54. Merow C, Smith MJ, Silander JA. A practical guide to MaxEnt for modeling species’ distributions: what it

does, and why inputs and settings matter. Ecography. 2013; 36: 1058–1069. https://doi.org/10.1111/j.

1600-0587.2013.07872.x

55. Radosavljevic A, Anderson RP. Making better Maxent models of species distributions: complexity, over-

fitting and evaluation. Journal of Biogeography. 2014; 41: 629–643. https://doi.org/10.1111/jbi.12227

56. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988; 240: 1285–1293. https://doi.

org/10.1126/science.3287615 PMID: 3287615

57. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence,

kappa and the true skill statistic (TSS). Journal of Applied Ecology. 2006; 43: 1223–1232. https://doi.

org/10.1111/j.1365-2664.2006.01214.x

58. European Union. Copernicus Land Monitoring Service. 2021 [cited 27 Jun 2021]. Available from:

https://land.copernicus.eu/pan-european/corine-land-cover

PLOS ONE The role of cliffs in the niche of a microendemic plant

PLOS ONE | https://doi.org/10.1371/journal.pone.0258976 October 22, 2021 19 / 21

https://doi.org/10.1111/j.1365-2699.2009.02174.x
https://doi.org/10.1111/j.1365-2699.2009.02174.x
https://doi.org/10.1016/j.ecolmodel.2013.12.012
https://doi.org/10.1016/j.ecolmodel.2013.12.012
https://www.R-project.org/
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.5066/P9UKW7PO
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/2041-210X.13360
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1111/j.2041-210X.2011.00157.x
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://doi.org/10.1111/j.0906-7590.2006.04700.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1016/j.ecolmodel.2009.10.009
https://doi.org/10.1111/2041-210X.12203
https://doi.org/10.1111/2041-210X.12261
https://doi.org/10.1111/2041-210X.12261
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1111/jbi.12227
https://doi.org/10.1126/science.3287615
https://doi.org/10.1126/science.3287615
http://www.ncbi.nlm.nih.gov/pubmed/3287615
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://land.copernicus.eu/pan-european/corine-land-cover
https://doi.org/10.1371/journal.pone.0258976


59. Liang X, Guan Q, Clarke KC, Liu S, Wang B, Yao Y. Understanding the drivers of sustainable land

expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China.

Computers, Environment and Urban Systems. 2021; 85: 101569. https://doi.org/10.1016/j.

compenvurbsys.2020.101569

60. Phillips SJ, Dudı́k M, Schapire RE. A maximum entropy approach to species distribution modeling. Pro-

ceedings of the twenty-first international conference on Machine learning. Banff, Canada;

2004. pp. 655–662. https://doi.org/10.1145/1015330.1015412

61. Jones CC, Acker SA, Halpern CB. Combining local- and large-scale models to predict the distributions

of invasive plant species. Ecological Applications. 2010; 20: 311–326. https://doi.org/10.1890/08-2261.

1 PMID: 20405790

62. Zhang L, Liu S, Sun P, Wang T, Wang G, Zhang X, et al. Consensus forecasting of species distribu-

tions: The effects of niche model performance and niche properties. PLOS ONE. 2015; 10: e0120056.

https://doi.org/10.1371/journal.pone.0120056 PMID: 25786217
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