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Abstract

Studies have shown that areas with lower socioeconomic standings are often more vulnera-

ble to dengue and similar deadly diseases that can be spread through mosquitoes. This

study aims to detect water tanks installed on rooftops and swimming pools in digital images

to identify and classify areas based on the socioeconomic index, in order to assist public

health programs in the control of diseases linked to the Aedes aegypti mosquito. This study

covers four regions of Campinas, São Paulo, characterized by different socioeconomic con-

texts. With mosaics of images obtained by a 12.1 MP Canon PowerShot S100 (5.2 mm

focal length) carried by unmanned aerial vehicles, we developed deep learning algorithms in

the scope of computer vision for the detection of water tanks and swimming pools. An object

detection model, which was initially created for areas of Belo Horizonte, Minas Gerais, was

enhanced using the transfer learning technique, and allowed us to detect objects in Campi-

nas with fewer samples and more efficiency. With the detection of objects in digital images,

the proportions of objects per square kilometer for each region studied were estimated by

adopting a Chi-square distribution model. Thus, we found that regions with low socioeco-

nomic status had more exposed water tanks, while regions with high socioeconomic levels

had more exposed pools. Using deep learning approaches, we created a useful tool for Ae.

aegypti control programs to utilize and direct disease prevention efforts. Therefore, we con-

cluded that it is possible to detect objects directly related to the socioeconomic level of a

given region from digital images, which encourages the practicality of this approach for stud-

ies aimed towards public health.
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1. Introduction

1.1 Motivations to develop the study

Aedes aegypti is the main vector of dengue, Zika, and chikungunya, among other arboviruses

[1, 2]. In the past, this mosquito species has been responsible for major urban yellow fever epi-

demics in Brazil. Though Ae. aegypti was considered eradicated from the country in the 1950s,

the mosquito reemerged in the 1970s [3]. As a result, dengue epidemics have been occurring

in Brazil since the 1980s with increasing intensity and an increasing number of serious cases

and deaths [4]. Since 2015, epidemics of Zika (associated with cases of microcephaly) and chi-

kungunya have also been affecting the entire Brazilian territory. In addition to being a vector

of these diseases, the Ae. aegypti can transmit other arboviruses, such as the Mayaro virus [5],

and has the potential to reintroduce yellow fever in urban areas [2].

Several studies have shown a relationship between higher levels of Ae. aegypti infestation

and dengue risk in areas with lower socioeconomic levels [6–10]. Thus, identification of areas

at greatest risk of the presence of the vector and the occurrence of the diseases is one of the

measures adopted to optimize vector and disease control. Zambon et al. [11] and Carlucci

et al. [12] used Google Earth images to detect swimming pools in Mediterranean European cit-

ies and found an association between areas with higher socioeconomic levels and higher densi-

ties of swimming pools. This density could be used as a proxy for class segregation [12] or to

classify areas according to their socioeconomic levels. This is an example of a fast, up-to-date,

and partially or fully automated classification of areas according to socioeconomic levels that

could be useful to identify priority areas for the development of vector control. If a higher den-

sity of swimming pools could be a good indicator of areas with better socioeconomic levels,

then a higher density of water tanks installed on roofs, which are very common in less privi-

leged areas in Brazil [13], could be a good indicator for identifying areas with lower socioeco-

nomic levels. Niebergall et al. [14] and Ayush et al. [15] used remote sensing images to detect

water tanks and other targeted objects to investigate vulnerability and predict poverty in urban

areas; thus, both swimming pools and water tanks could be used for the socioeconomic charac-

terization of areas.

Another way to improve vector and disease control is the detection of key breeding sites for

vector infestation; depending on their conditions water tanks and swimming pools could be

characterized as key breeding sites. The main issue with water tanks is the inadequate use of

tank screens, allowing vector access and breeding. This is more prominent in poorer areas. As

for swimming pools, they could become significant breeding grounds for mosquitoes when

they are not properly treated [16]. Several studies have already highlighted that the use of geo-

graphic information systems (GIS), spatial analysis tools, and remote sensing could be benefi-

cial in improving arbovirus surveillance and control [16–21]. Additionally, the use of remote

sensing and artificial intelligence (AI) are promising approaches, especially for the purpose of

identifying water tanks on roofs and swimming pools to classify areas based on their socioeco-

nomic class or to identify vector breeding sites [22].

1.2 Remote sensing

Remote sensing is a quick and low-cost method to characterize and identify Ae. aegypti breed-

ing sites and classify the areas according to different degrees of risk. Some studies have used

this technique to identify risk areas for vector-borne diseases or have at least highlighted the

possibility [16]. The studies developed by Sanchez et al. [18] and Lorenz et al. [21], using satel-

lite images, identified a relationship between the number of Ae. aegypti adult females and the

presence of asbestos slabs and roofs in the building.
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Some studies have applied machine learning (ML) to identify soil cover using random for-

est (RF) [23] and support vector machine (SVM) [24] techniques. The recent development of

AI techniques and ML methods based on deep learning (DL), which has revolutionized the

recognition of patterns in images and established the state of the art in various applications

including remote sensing, can be an important technique for optimizing of the use of aerial

images in the surveillance and control of arboviruses.

1.3 Deep learning in computer vision

Computer vision is a field of study that enables computers to obtain information with a high

level of abstraction from images and videos. A major motivation for this field is the automation

of tasks that require analyzing substantial amounts of visual data in a short period of time [25].

In this context, one of the most useful tasks is object detection, where the computer not only

detects objects present in an image, but also their location, standing out in a variety of applica-

tions inside and outside of computer science. Similarly, ML is a branch of computer science

focused on making predictions through a mathematical model inferred by the machine itself,

based on the training data it receives as an input. Such a technique is essential in applications

in computer vision since it is often infeasible for a human to solve the problems present in this

field.

A deep neural network (DNN) is composed of multiple layers of perceptrons, which are

small learning units. The function of a perceptron is to learn weights for a linear decision func-

tion. The DNN can combine multiple perceptron layers to create an effective decision function

that models the class of interest [25]. For pattern recognition in images, the most common

DNN method is to use multiple layers of convolutional perceptrons. This allows the network

to effectively learn color, shape, and texture patterns that help the model to differentiate the

classes of interest. For more information about convolutional neural networks (CNN), [25–

27].

In the context of vector control and remote sensing, the application of DL can be highly

effective, as can be seen in Zhang et al. [28], since it allows processing large geographic areas

such as urban areas (cities) by allowing the pattern recognition associated with the develop-

ment of Ae. aegypti breeding sites, for example. DL methods are often used in the application

of wide-area information because it has high potential in the extraction of characteristics, such

as texture, color, and format. Therefore, this study uses DL to detect objects most correlated to

the infestation of the vector. In this context, the objects were chosen based on one of the most

important elements in the life cycle of this species of mosquito, i.e., water.

1.4 Related work

Several studies have used satellite imagery to detect swimming pools in urban areas [16, 22, 30,

33, 34, 37]. More specifically, some of these studies made use of shallow learning methods to

fulfill the task, while others utilized a variety of different computer vision techniques. More-

over, the motivations for such studies range from helping emergency services to controlling

disease vectors.

In 2008, a group of researchers from Australia published a paper describing a technique to

identify swimming pools in satellite images using SVM [29], intending to help emergency ser-

vices locate water bodies throughout the city to facilitate bushfire fights in their country. In the

approach presented, as well as in the work herein, only the Red, Green, and Blue (RGB) bands

from the images in the dataset were used, calculating the difference between the blue-red and

blue-green values, and feeding this data to the SVM. Unfortunately, no metric was calculated

to determine the effectiveness of the method [30]. In 2009, another paper tried to identify
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swimming pools by using a different approach: first, the RGB color space of the image was

converted to the C1, C2, and C3 [31], although only the C1 component was used, and a thresh-

old was applied to generate a binary image containing only the detected pools. Additionally, all

the regions considered too small for a typical swimming pool were eliminated. Thereafter, con-

tours of the detected objects were refined through a snake algorithm [32]. Finally, the authors

claimed that their method was able to detect more than 93% of the swimming pools contained

in the dataset assembled by them [33].

Other studies used the normalized difference water index (NDWI) [34], which was pro-

posed to delineate open water features in aerial imagery by making use of the near-infrared

and green bands of the given image. A study in 2011 combined NDWI with the rectangular fit

space metric [35] to detect swimming pools to help control the population of the Culex mos-

quito vector of the West Nile Virus in the United States of America [22], showing a user’s accu-

racy of 80.1% in pool positive samples and 92.8% in negative ones. A similar method using

NDWI and a simple threshold was proposed to tackle the same problem, achieving better

results with a user’s accuracy of 98% in parcels with pools and 88.3% in those without them

[16]. In 2014, the normalized difference swimming pools index (NDSPI) was proposed and

used to detect pools semi-autonomously, alongside principal component analysis (PCA) [36],

image segmentation, and region adjacency graphs (RAGs), obtaining an overall accuracy of

99.86% [37].

Some studies also investigated methods for the detection of water tanks. Niebergall et al.

[14] developed new image processing techniques and GIS integration methodologies to assess

the vulnerability within megacities based on remote sensing information and showed that

smaller water tanks, which are often located on the top of a building’s roof, could be identified

well in the panchromatic band. Saini et al. [38] used faster region-based CNN (Faster R-CNN)

for detecting overhead water tanks from satellite imagery. Ayush et al. [15] used an interpret-

able computational framework to predict poverty at the local level by applying object detectors

at high resolution, and one of the multiple objects used was water tanks.

1.5 Objectives of the study

This study aimed to use remote sensing and DL to detect swimming pools and water tanks

installed on roofs in areas of Campinas, São Paulo (SP) to investigate the relationship between

the presence of these objects and the area’s socioeconomic level and to discuss the possible

application of the obtained results in the control of dengue and its vector, Ae. aegypti. It should

be noted that, although mosquitoes might breed even in insignificant amounts of water [2, 39],

the present study is limited to water tanks and swimming pools as they are more easily detect-

able using high-resolution imagery. In the case of this study, the imagery comprises images

obtained by a 12.1 megapixel (MP) Canon PowerShot S100 (5.2 mm focal length) carried by

an unmanned aerial vehicle (UAV) with 0.03 m/pixel spatial resolution. This study has the

potential to improve dengue control with remote sensing by detecting specific targets and gen-

erate an updated classification in real time for socioeconomic indexes. This classification is

considerably important in countries like Brazil, where the demographic census, which is the

main source of knowledge about the living conditions of the population, is only conducted

every 10 years. Furthermore, this methodology would contribute to identifying areas at the

greatest risk, which, once prioritized, could make disease control more effective. By using

automated methods, the areas and places most likely to encounter this type of breeding site

could be found more efficiently. This would allow public services to act directly on properties

that could be considered key for maintenance and increase of vector infestation.
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This paper is organized as follows. Section 2 presents the Materials and Methods, which

introduces the study area, describes how the datasets were built, describes all the tools and soft-

ware that we used, and outlines the methodology we used to train the neural network. The

results we obtained are provided in Section 3, while in Section 4 our results are discussed by

analyzing the socioeconomic relationship that we discovered, describing our limitations dur-

ing the research, describing how this study can be expanded to other areas, and denoting our

possible next steps and future research. Finally, Section 5 provides our conclusions.

2. Materials and methods

2.1 Study area and datasets

2.1.1 Belo Horizonte. In Fernandes, Wildemberg & Dos Santos [40], the authors assem-

bled two separate datasets for the city of Belo Horizonte, MG, Southeast Brazil (Fig 1) at 19˚

48’57"S and longitude 43˚57’15"W. The climate is subtropical and wet, with an average annual

temperature and rainfall of 20.8˚C and 1205 mm, respectively.

One of the datasets had annotated pools (BH-Pools), and the other had annotated water

tanks (BH-WaterTanks). Both datasets consisted of imagery from several neighborhoods of

the city of Belo Horizonte, Brazil, the data were acquired through the Google Earth Pro tool.

The RGB images were exported from a flying altitude of 330 m above the ground with a size of

3840 × 2160 pixels (4K). Each 4K image was then cropped into six patches of 1280 × 1080 pix-

els each, and patches without any annotations were removed. Subsequently, 80% of the images

Fig 1. City of Belo Horizonte with the neighborhoods used in the dataset.

https://doi.org/10.1371/journal.pone.0258681.g001
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from each neighborhood were used as a training dataset, and the other 20% were used as a test

dataset.

The dataset BH-Pools consisted of 200 4K images from eight different neighborhoods (25

images for each) and contained 3980 annotated pools. The data preparation step resulted in

655 patches designated for training and 160 for testing. The dataset BH-WaterTanks was made

up of 150 4K images from six neighborhoods (25 images for each) and contained 16216 anno-

tated water tanks. The data preparation step resulted in 608 patches designated for training

and 148 for testing. Because the images are from Google Earth Pro, it is not possible to deter-

mine their exact spatial resolution, since each one is a combination of several different images

from different observations that are meshed together to form a new, higher-resolution image.

However, through a visual analysis of the imagery, one can estimate their spatial resolution to

be around 0.15 m/pixel.

2.1.2 Campinas. In a manner similar to that employed for the Belo Horizonte datasets,

two new datasets were assembled with imagery from the city of Campinas, SP, Southeast Brazil

(Fig 2), located at 22˚53’03"S and 47˚02’39"W. The city has the third-largest population in the

state with just over one million inhabitants and has a high rate of human development (0.805).

The climate is hot and temperate, with an average annual temperature and rainfall of 19.3˚C

and 1315 mm, respectively.

Four areas were selected (Fig 2) with different socioeconomic levels [41], which were char-

acterized using the information of the demographic census of 2010 made available by the

Fig 2. City of Campinas with neighborhoods used in the dataset.

https://doi.org/10.1371/journal.pone.0258681.g002
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Brazilian Institute of Geography and Statistics (IBGE). Area 1 had the best socioeconomic

level, with an average income per household of 1,807 Reais (the Brazilian currency) and 3.0

inhabitants per household; Area 4 had the worst socioeconomic level, with an average income

per household of 755 Reais and 3.5 inhabitants per household. Areas 2 and 3 had intermediate

socioeconomic levels, with 1,285 and 1,138 Reais of average income per household, respec-

tively, and 3.2 and 3.5 inhabitants per household, respectively.

We also considered the Social Vulnerability Index of SP (IPVS) to characterize these four

areas; the index was based on the 2010 demographic census and made available for the census

tracts. IPVS was created by the State System of Data Analysis Foundation (SEADE) [42, 43]

and measures the population’s vulnerability to poverty. It has two dimensions, a socioeco-

nomic and a demographic one, and considers variables such as the per capita household

income, the percentage of women aged 10 to 29 in charge of the households, and the state of

subnormal agglomeration (slums) in the census tract. Areas 1 (22˚56’31"S; 47˚05’57’’W) and 2

(22˚58’01’’S; 47˚08’41’’W) were classified as areas with mostly exceptionally low vulnerability

(median and high socioeconomic levels and young, adult, and elderly families). Area 3 (22˚

58’14’’S; 47˚07’58’’W) was classified with exceptionally low, low, and medium vulnerability

(low socioeconomic levels and young families). Area 4 (22˚59’29’’S; 47˚07’15’’W) was classified

with mostly extremely high vulnerability (low socioeconomic levels and young families living

in slums). Areas 1 to 4 had 377, 689, 624, and 543 households and occupied areas of 0.32, 0.30,

0.41, and 0.27 km2, respectively.

The study on the four areas described above required the approval of the Ethics Committee

in Plataforma Brasil (Brazil Platform System), according to the presentation certificate for ethi-

cal evaluation no. 43813015.9.0000.0059 and approved according to opinion no. 1.082.780.

We cropped the UAV images of the four areas into smaller patches (240 × 240-pixel clip-

pings). With these patches, two datasets were assembled, one for swimming pools and another

for water tanks. The swimming pool dataset was assembled by labeling 74 patches, which were

divided into 52 samples for training and validation, and 22 for testing. We labeled 146 patches

to assemble the water tanks dataset, which was divided into 102 for training and validation,

and 44 for testing.

Table 1 presents a comparison between the Belo Horizonte and Campinas datasets. It can

be seen that Dataset 2 presents a small number of samples (patches) for a DL application,

because we only had mosaic images of four regions in Campinas and there was not an abun-

dance of swimming pools and water tanks, unlike in Belo Horizonte.

Table 1. Comparison between the Belo Horizonte and Campinas datasets.

Dataset 1 Dataset 2

City Belo Horizonte, Minas Gerais, Brazil Campinas, São Paulo, Brazil

Image source Satellite (Google Earth Pro) UAV

Flying altitude (meters above the ground) 330 100

Date of imagery 05/16/2018 04/13/2016

Patch size (px) 1280 x 1080 240 x 240

Spatial resolution (meters per pixel) 0.15 0.03

Total area coverage (km2) 31.5 3.05

N˚ of patches (swimming pools) 665 for training 52 for training

160 for testing 22 for testing

N˚ of patches (water tanks) 608 for training 102 for training

148 for testing 44 for testing

N˚ of annotated swimming pools 3980 65

N˚ of annotated water tanks 16216 196

https://doi.org/10.1371/journal.pone.0258681.t001
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2.2 Faster R-CNN

In this study, we used a Faster R-CNN framework for object detection, based on the work of

Fernandes, Wildemberg & Dos Santos [40]. This framework is not state-of-the-art but is a rela-

tively new and effective framework for object detection. It is widely used, and, because of that,

there is substantial support material available online. The Faster R-CNN pipeline, shown in

Fig 3, consists of: 1) a CNN to receive the input image and provide the feature map; 2) a Region

Proposal Network (RPN) to generate bounding boxes (rectangular boxes to describe a target

location) and predict the possibility of them being background or foreground; and 3) a series

of fully connected layers to predict the locations of the bounding boxes in the image and their

respective labels (Softmax). More details on Faster R-CNN can be seen in Ren et al. [44].

2.3 Software and hardware setup

This study used Python with the DL models being replicated using Pytorch [45] version 1.40, a

framework conceived to allow efficient exploitation of DL with a graphics processing unit

(GPU). All experiments were performed on a product from Google Research, named Google

Fig 3. Faster R-CNN architecture pipeline illustration. Satellite images published under a CC BY license, with

permission from G drones, original copyright 2016.

https://doi.org/10.1371/journal.pone.0258681.g003
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Colab. The Colab is a free computational environment that allows anybody to write and exe-

cute python code through the browser and is especially well suited to ML, data analysis, and

education. More technically, Colab is a hosted Jupyter notebook service that requires no setup

to use, while providing free access to computing resources including GPU with approximately

12.72 GB of RAM. Microsoft Windows 10 Pro was used as the operating system, with ArcGIS

10.5 and Python version 3.6. Additionally, we used an open-source graphical image annotation

tool called Labelme [46]. The R-4.0.3 software environment was used for statistical computing

and graphics.

The UAV flight took place on April 13, 2016 on a cloudy day following a rainy day. The

flight planning software used was MissionPlanner, where the overlay of the images was defined

according to the recommendations of Agisoft (2016), which were 60% lateral and 80% longitu-

dinal. The ground resolution used was approximately 0.03 m/pixel.

The flight execution stage started with verification of the ground equipment, and, since no

problems were perceived, the orthomosaic of images of the base captured from 100 m height

was evaluated. After this verification, the data and images that made up the mosaics were

acquired from the 12.1 MP Canon PowerShot S100 (5.2 mm focal length) carried by the UAV

Phantom 3 from the manufacturer DJI. The camera model used had a maximum resolution of

4000 × 3000 pixels, a focal length of 5.2 mm, 12.1 effective megapixels, a pixel pitch of 1.87 μm,

a sensor size of 7.53 × 5.64 mm, and sensor resolution of 4027 × 3005 pixels. More details

about the camera can be seen in Digital Camera Database [47].

We used Agisoft Photoscan 1.2.0 software for the digital processing of the data obtained by

the UAV. The alignment of the images was performed through the correlation of the properly

oriented overlapping images, where the algorithm searched for common points in the images

and combined them, finding the position of the camera in each image and refining its calibra-

tion parameters, generating a sparse cloud of points. The five basic steps of processing with

Agisoft Photoscan are: (1) automatic camera calibration based on the exchangeable image file

format data of the photographs; (2) alignment of the photos from the common points between

the photographs; (3) generation of the point cloud, where the x, y, and z coordinates are identi-

fied based on the estimated positions of the photographs; (4) creation of a digital model of the

triangular mesh surface; and (5) generation of an orthomosaic from the texturing of the geom-

etry constructed by the triangular mesh [48].

For the measurements, we did not use control points, and nadir images were used. For the

city of Campinas, four areas were considered; in the stage of mission planning the number of

projected images varied. Areas 1 to 4 had 170, 207, 458, and 314 images, respectively.

2.4 Methodology of training and prediction

The neural networks were based on the models used by Fernandes, Wildemberg & Dos Santos

[40], both for water tanks and swimming pools, which used the Faster R-CNN framework and

MobileNetV2 [49] as the CNN backbone. The MobileNetV2 is a light weight model with

improvements focused on deep mobile computer vision applications. The training process was

exactly the same as that in the cited work [40]. We used the Adam optimizer and a learning

rate of 0.0001, momentum of 0.9, and weight decay of 0.0005. Then, the model was trained for

50 epochs with a batch size of 4, and a random horizontal flip (0.5) transform was used in the

data loader as a form of data augmentation.

This made it possible to initialize the networks with the weights of these models trained on

the dataset of Belo Horizonte [40] to speed up and improve the performance of the algorithm

and then train the networks on our new dataset, adapting them to the characteristics of Campi-

nas. This strategy is called “transfer learning”. This technique frequently used in computer
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vision studies where there are a limited number of images to train the network but there is a

similar larger dataset that can serve as a starting point for the training process.

The global methodology for obtaining object detection was divided into six steps, which are

presented in Fig 4 as a methodology flowchart for the water tank detection. From the input

data (Step 1), we performed a data processing step (Step 2), because the original UAV images

were larger than 15000 × 15000 pixels and over 1 GB in size, which required high processing

power. To resolve this problem, we reduced the file size of the images using ArcGIS 10.5 by

converting from TIFF to JPG, because the JPG is the most suitable format for training the DL

model [50]. It is important to highlight that the spatial resolution remained at approximately

0.03 m/pixel, because, although the JPG files are a loss compression format, when the conver-

sion is done properly, such as through professional software like ArcGIS, it still obtains good

quality images. Additionally, each UAV image was cropped into 625 smaller patches

(240 × 240-pixel clippings), because the Faster R-CNN architecture works well with such

image dimensions. Thereafter, we selected the patches for the training and testing datasets

(Step 3)-in this instance, only patches that had water tanks or swimming pools. It should be

noted that it was not necessary to have a dataset with many samples, because the transfer learn-

ing from Belo Horizonte to Campinas showed great results. After the construction of the data-

set, we manually annotated the patches using Labelme software (Step 4) [46]. After the

training process, we applied the prediction procedure to all patches for the four regions, a pro-

cess which consisted of realizing the object detection with the trained models for each patch in

a region (Step 5) and merge all the patches to reconstruct the original image, but with the

detected objects (Step 6). We set an 80% reliability threshold for the detection of an object;

therefore, only good predictions were displayed in the final result of the object detection.

We used a popular metric called mean average precision (mAP) to measure the precision of

the object detector. This metric considers the ratio between true positives and the total number

of predicted positives. To classify if a prediction was a true positive or a false positive an Inter-

section over Union (IoU) threshold was defined. The IoU measures how much the predicted

bounding box overlapped with the ground truth bounding box annotation. To evaluate our

object detector, we used two different IoU thresholds: 0.5 and 0.5:0.05:0.95 (the average AP for

IoU threshold from 0.5 to 0.95 with a step size of 0.05). The first one is the traditional threshold

for AP calculation in object detection and the latter is the primary challenge metric in the

Common Objects in Context (COCO) dataset.

A work methodology flowchart is provided in S1 Fig. The flowchart illustrates the process

performed to create the neural network models responsible for water tank and swimming pool

detection in digital images.

Fig 4. Methodology flowchart for the water tanks detection. Satellite images published under a CC BY license, with

permission from G drones, original copyright 2016.

https://doi.org/10.1371/journal.pone.0258681.g004
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2.5 Evaluating the relationship between water tanks and socioeconomic

levels in the four areas of Campinas

The number of swimming pools and water tanks was obtained for each study area of Campi-

nas, allowing the calculation of the densities of these objects per square kilometer and per 100

households. The number of these objects per study area was tested using the Chi-square test

for tendency and we considered a significant result a p-value lower than 0.05. The study was

conducted in the R software environment.

3. Results

3.1 Metrics

To test the networks, separate metrics were computed for water tanks installed on the roof and

swimming pools, considering the four study regions of the Campinas dataset. The metrics of

the two objects of study are presented in Table 2, and they were obtained with different valida-

tion conditions: trained models using only the Campinas dataset, without fine-tuning, and

with fine-tuning.

The codes of the object detection framework used, as well as the Campinas dataset and

other useful data for the results presented in this study can be found at the GitHub site https://

github.com/higor-sc/DL-Aedes.

When using only the Campinas dataset to train the neural network, it was clear that the

metrics for swimming pools and water tanks were poor, both for an IoU threshold of 0.5 and

higher IoU values, which shows that the samples were insufficient according to the quantity

denoted in the column Dataset 2 of Table 1. This conclusion comes from the fact that the

images in both the training and testing datasets (all from Campinas) were obtained in the

exact same manner and, therefore, all have very similar features. The parameters of the models

for detection were based on those indicated in Section 2.4, but we changed the learning rate to

0.005 and the batch size to 1, in addition to using 20 epochs for water tanks and 15 epochs for

swimming pools.

Another result obtained refers to the validation without fine-tuning, that is, we used the

models of neural networks trained in Belo Horizonte to detect swimming pools and water

tanks directly. In this case, the results for swimming pools were satisfactory, with 80.27% of AP

with an IoU threshold of 0.5, and when higher IoU thresholds were used the metric dropped

to 51.65%; this indicates that the method detected almost all swimming pools present on an

image, but the coordinates of the bounding boxes predicted were not entirely accurate. For the

water tanks, the results were extremely inadequate, which shows that the Belo Horizonte and

Campinas images do not have the same characteristics, and the model had difficulty making

predictions. The parameters of the models for detection were the same as those indicated in

Section 2.4, because we used the models trained in Belo Horizonte directly.

The last result obtained refers to the validation with fine-tuning, that is, using the models

of neural networks trained in Belo Horizonte for the transfer learning and using the Campinas

dataset to train the models with the characteristics of Campinas, consequently improving the

Table 2. Metrics for water tanks and swimming pools.

Only Campinas Without Fine-Tuning With Fine-Tuning

AP at IoU = .50 AP at IoU = .50:.05:.95 AP at IoU = .50 AP at IoU = .50:.05:.95 AP at IoU = .50 AP at IoU = .50:.05:.95

Swimming Pools 33.81 10.48 80.27 51.65 90.23 56.9

Water Tanks 46.12 20.39 0 0 87.53 46.8

https://doi.org/10.1371/journal.pone.0258681.t002
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results for the detection of swimming pools and water tanks through the fine-tuning tech-

nique. It is important to highlight that we used an independent subset of the Campinas dataset

for the validation of the algorithm. With an IoU threshold of 0.5, we obtained 90.23% of AP

for swimming pools and 87.53% of AP for water tanks, which indicates an excellent perfor-

mance of the technique on the swimming pool and water tank datasets after the fine-tuning.

The parameters of the models for detection were based on those indicated in Section 2.4, but

we changed the learning rate to 0.005 and the batch size to 1, in addition to using 15 epochs

for both the water tanks and swimming pools.

In the case without fine-tuning for the water tanks that presented an inadequate result (0%

of AP), we studied the influence of the Campinas dataset on the fine-tuning process, as shown

in Fig 5. The Campinas dataset used to train and validate the neural network that detects the

water tanks had 146 samples in total, as listed in Table 1. To evaluate the influence of the Cam-

pinas dataset on the learning of the neural network over water tanks in Campinas, we split the

dataset into percentages of the total samples, and for each percentage chosen, we trained a

model neural network and evaluated its performance. The percentages chosen were: 0% (with-

out fine-tuning in Table 2; we directly used the neural networks trained in Belo Horizonte to

detect the object in Campinas), 12.5% (18 patches), 25% (37 patches), 50% (73 patches), 75%

(110 patches), and 100% (146 patches; with fine-tuning in Table 2). For each percentage cho-

sen we split 70% of the patches for training and 30% for testing, that is, in the case of using

100% of the samples (146), we used 102 samples for training and 44 samples for testing. The

result indicates that, to have an interesting performance in the detection of water tanks in

Campinas from the neural network trained in Belo Horizonte, it was necessary to adjust the

weights of the neural network a little because, with only 18 patches of Campinas (12.5% of the

Fig 5. Influence of the Campinas dataset on the fine-tuning. The higher the percentage of the Campinas dataset

used, the better the performance of the neural network in terms of the AP metric. To evaluate our object detector, we

used two different IoU thresholds: 0.5 (blue curve) and 0.5:0.05:0.95 (the average AP for IoU threshold from 0.5 to 0.95

with a step size of 0.05; red curve).

https://doi.org/10.1371/journal.pone.0258681.g005
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total), it was already possible to obtain 68.06% of the AP with an IoU threshold of 0.5, as

shown in Fig 5.

The four study regions of Campinas presented a certain socioeconomic disparity, both in

the social sense (discussed in Section 2.1.2) and in the number of objects detected, and these

may be related to vulnerability to dengue and other similar deadly diseases that can be spread

through mosquitoes. In this instance, Area 4 was the poorest of the four regions, and conse-

quently, had more exposed water tanks and fewer swimming pools. In Figs 6 and 7 it is possi-

ble to see the detection of water tanks and swimming pools.

Unlike the aforementioned region, Area 1 is more developed; therefore, there were more

pools and fewer water tanks, as these are located inside the houses. Fig 8 shows the high num-

ber of pools.

The detection of water tanks and pools can be complicated due to their similar blue color;

however, the trained deep neural networks use different features of the images to tell them

apart. These features are not so clear because, during training, a CNN can rely on any useful

property of the image to do this classification, but it is possible to list some viable features

explored by the networks. The first example is the size and shape of the objects, since domestic

Fig 6. Water tank detection in Area 4. A sample of the UAV image without water tank detection is shown in (a) while

(b) shows the water tank detection through bounding boxes. Satellite images published under a CC BY license, with

permission from G drones, original copyright 2016.

https://doi.org/10.1371/journal.pone.0258681.g006

Fig 7. Swimming pool detection in Area 4. A sample of the UAV image without swimming pool detection is shown

in (a) while (b) shows the swimming pool detection through bounding boxes. Satellite images published under a CC

BY license, with permission from G drones, original copyright 2016.

https://doi.org/10.1371/journal.pone.0258681.g007
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water tanks follow a very common pattern in size and shape, usually being round and substan-

tially smaller than a pool. We can also cite the spatial context, which is a crucial feature, due to

the fact that the surroundings of a pool are very different from those of a water tank. Water

tanks are found on the top of roofs or specific structures; in contrast, pools are found in exter-

nal leisure areas and backyards, usually with a peculiar pattern around them. This can be used

to tell them apart even if the pool is empty, dirty, or of a peculiar color.

3.2 Failures

Despite some satisfactory results, the neural network model is still susceptible to errors. This

scenario can be seen in Fig 9, where detections with 80% confidence (threshold) were gener-

ated; the prediction errors are characterized by false negatives and false positives, respectively,

for swimming pools and water tanks.

Fig 8. Swimming pools detection in Area 1. Satellite images published under a CC BY license, with permission from

G drones, original copyright 2016.

https://doi.org/10.1371/journal.pone.0258681.g008

Fig 9. Prediction errors-false negatives and false positives. In (a) there is a swimming pool that was not detected,

and in (b) a blue car was detected as a water tank. Satellite images published under a CC BY license, with permission

from G drones, original copyright 2016.

https://doi.org/10.1371/journal.pone.0258681.g009
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3.3 Relationship among swimming pools, water tanks and socioeconomic

levels of the study areas

As quantitative results, we calculated the densities of swimming pools and water tanks per kilo-

meter and 100 households in the four study areas of Campinas. Table 3 shows that, while the

densities (per kilometer and 100 houses) of swimming pools decreased (except Area 2) with

worsening socioeconomic levels, the densities of water tanks increased.

Table 4 shows that the difference in the swimming pool profile is significant from the water

tank profile, in the four areas, implying that the higher the socioeconomic level the higher the

swimming pool densities and lower the water tank densities.

4. Discussion

4.1 Swimming pool and water tank detection to infer the region’s

socioeconomic status and applications

Because the number of samples were small for Campinas, our study aimed to use true-color

images with high spatial resolution remote sensing sensors and DL techniques to develop an

efficient procedure that allowed the identification of swimming pools and water tanks installed

on the roofs in residential parcels to make a socioeconomic classification of the areas. These

findings were very promising, primarily because they used relatively recent data (2016) to

show the current situation in a certain area. We also found a positive relationship between

areas with higher socioeconomic levels and higher densities of swimming pools, and a negative

one between the same areas and higher densities of water tanks. These results have several

applications in vector and disease control, showing that it is possible to detect specific targets

Table 3. Numbers and densities of swimming pools and water tanks per square kilometer and 100 households in the study areas of Campinas.

Area 1 Area 2 Area 3 Area 4

Areas Number of households 377 689 624 543

Area (km2) 0.32 0.30 0.41 0.27

Swimming pools Total UAV image 41 6 26 8

Total in the area 37 6 22 6

Swimming pools/km2 � 116.7 20.3 54.3 21.9

Swimming pools/100 households� 9.8 0.9 3.5 1.1

Water Tanks Total UAV image 8 19 39 129

Total in the area 8 18 32 99

Water tanks/km2 � 25.2 60.9 78.9 360.8

Water tanks/100 households� 2.1 2.6 5.1 18.2

� Chi-square equal to 89.159; p-value = 0.05.

https://doi.org/10.1371/journal.pone.0258681.t003

Table 4. Numbers of swimming pools and water tanks in the four study areas of Campinas.

Areas Area 1 Area 2 Area 3 Area 4 Total

Swimming pools Number 37 6 22 6 71

Line % 52.0 8.5 31.0 8.5 100.0

Water tanks Number 8 18 32 99 157

Line % 5.1 11.5 20.4 63.0 100.0

Total Number 45 24 54 105 228

Line % 19.7 10.5 23.7 46.1 100.0

https://doi.org/10.1371/journal.pone.0258681.t004
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for dengue control, and generate an updated classification in real-time for socioeconomic

indexes. This is essential for the optimization and efficiency of control and surveillance pro-

grams. Our results, mainly through the use of swimming pool and water tank densities, could

also have an impact in other areas of research.

The principal measure for controlling arboviruses like dengue, Zika, and chikungunya is

vector control of Ae. aegypti, which is based on the elimination or treatment of breeding sites,

which generally consist of containers with water found in households, such as potted plants

with water, a drinking apparatus for animals, disposable containers, gutters, water tanks, and

swimming pools [13, 39, 51]. This vector control is developed by the municipalities and con-

sists of visiting the properties; however, this activity has not been sufficient to prevent dengue,

Zika, and chikungunya epidemics, which are increasingly widespread. A major concern with

the vector control program is the limited and temporary impact on the prevention of arbovi-

ruses cases, either because they are ineffective or because they have limited coverage [52]. Iden-

tifying areas with high levels of Ae. aegypti infestation could be an important step in

identifying potential areas for the occurrence of vector-borne illnesses and could allow for the

creation of more appropriate coping plans for Zika, dengue, and chikungunya fever epidemics

[53].

The development of a methodology for identifying water tanks installed on roofs and swim-

ming pools using remote sensing images and AI has the potential to optimize vector control.

On one hand, this methodology would be useful for socioeconomically classifying areas [11,

12, 14, 15] to identify those at greatest risk, which, once prioritized, could make control more

effective. On the other hand, eliminating breeding sites is difficult as it depends on visual iden-

tification and is often out of sight of people and in places that are difficult to access [16]. As

such, it is important to identify the areas and regions most likely to develop this type of breed-

ing site using automated methods. This would allow the public service to act directly on prop-

erties that could be considered key for the maintenance and increase of vector infestation.

Since areas of low socioeconomic levels are more prone to Ae. aegypti infestation and its

associated diseases [6–10], investing more human and financial resources in these areas could

be one way to increase the effectiveness of control activities. In general, the classification of

areas with different socioeconomic levels is made using data from the demographic census,

which, in Brazil, occurs every 10 years, and is often outdated. This has disadvantages like the

lack of uniformity in the set of variables, changes in the boundaries of the census tracts, longer

than expected periods between two surveys (e.g., the census of 2020 did not occur in Brazil),

and others [12]. As shown by several authors [11, 12, 14, 15] and the results discussed herein,

swimming pool and water tank densities could be used to classify areas from a socioeconomic

point of view and overcome the disadvantages of using census data [12]. This classification

could be a useful tool to identify risk areas for dengue and the dengue carrying mosquitoes,

enabling the optimization of vector and disease control. It could also be useful to identify pri-

ority areas for investments in sanitation, housing, education, health, and other issues.

In addition to prioritizing high-risk areas, a strategy that could be used to improve the effec-

tiveness of the Ae. aegypti control is to prioritize key properties, which contain many potential

breeding grounds of immature forms of the mosquito (mainly tires, cans, and bottles, among

other objects that retain water) and/or contain large breeding sites, like water tanks and swim-

ming pools, capable of producing large amounts of mosquitoes. Sometimes, the large breeding

sites are more necessary to control, because of their mosquito productivity. There may be loca-

tions with many small breeding sites, which tend to have low productivity for the winged

forms of the vector, while, on the other hand, a single large-sized breeding site may present

high productivity of adult mosquitoes.
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Studies have presented several ways to identify key properties of a region for the presence of

breeding sites [41, 54–57]. The main issue with these methods is the necessity of visiting the

places to classify them as key or not. Given the constant lack of human and financial resources

in the health sector, there are usually not sufficient human and financial resources to identify

the problem places in the entire area around Brazilian cities. Our study showed an alternative

and more economical way to identify some of these key places using remote sensing images

and IA.

Among the Ae. aegypti breeding sites, water tanks, and swimming pools could be consid-

ered important breeding grounds for this vector. This importance is due to the volume of

water in these containers capable of producing large quantities of adult mosquitoes [58, 59]

and, in general, because they are difficult to access for professionals who perform vector con-

trol activities. The water tanks placed above the roof constitute modern architecture planning

and, regardless of where they are placed, could produce mosquitoes and need to be monitored

[13]. In some Brazilian municipalities, household reservoirs can be recognized as the main

breeding ground for Ae. aegypti [13].

Water tanks, in most areas, are located in inaccessible places, hampering inspection during

routine control activities. Additionally, especially in poorer areas, they are located on slabs

without a roof covering or over the roofs with the main concern being the use of inadequate

tank screens, which is quite common in these areas. Even though the detection of water tanks

is an important result of our study, there is a need to advance the use of remote sensing and AI

to enable the identification of those not properly sealed, since they are the ones that could pro-

duce mosquitoes in greater numbers. Saini et al. [38], using Faster R-CNN for detecting over-

head water tanks from satellite imagery, considered the circular pattern of the tank and

respective shadow on the ground as the target object in the input image and, by transfer learn-

ing, identified the features of the Faster R-CNN Inception-V2 mode. They believed that the

accuracy could be improved in the future by adding more images in a dataset with various pat-

terns and features of the overhead water tanks.

Swimming pools are characterized as important breeding sites when they are not properly

treated, which can cause substantial increase in the number of mosquitoes [16]. This occurs

mainly in closed and unmaintained buildings, since these buildings are often uninhabited,

mainly being up for rent or sold, and therefore the identification of the existence of non-main-

tained swimming pools through home visits can become practically impossible [16]. The

remote sensing and AI tools used in our study were capable of detecting swimming pools that

could be useful to select residences to be visited for checking the quality of their maintenance.

In such cases, the ideal situation would be to identify whether the swimming pools were

treated properly.

4.2 Limitations of the study

The main observed limitation of our study was the small sample number used in the training

step of DL, which necessitates an enormous number of samples. Here, there were limited

external water tanks on the roofs, which meant that the number of samples were not sufficient

to train the neural networks. Although there are water tanks under the external roofs of any

building due to the country’s water deficiency, urban external tanks on the roofs are dominant

in regions with low and very low income and, in contrast, residential urban swimming pools

are related to high income dwellings. Thus, the proposed methodology could have a better per-

formance in poor districts, peripheries of big or mega cities, or small towns. For these loca-

tions, with a generally strong budget constraint, the majority of the dwellings have external

water tanks on the top. Those aspects will be considered in future research.
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It is also important to highlight that, the results of this study show that, even with such a

small sample number, the object detection presented great accuracy with the transfer learning

and fine-tuning. This is an important result, because it shows that this methodology can be

reproduced and expanded to other areas, even though the sample size was small. Another

important point is the fact that high-resolution UAV images, or even satellite images, are

expensive, and require considerable time to be obtained, however, the cost is lower compared

to that spent by the government for socioeconomic surveys and the money spent with surveil-

lance programs. Therefore, it is important in future research to investigate the performance of

publicly available images from remote sensing for the detection of water tanks and swimming

pools, such as via Google Earth Pro, which was used by Fernandes, Wildemberg & Dos Santos

[40] to train the Belo Horizonte dataset, or through the Google Earth Engine.

Another limitation is related to the fact that we have not conducted real inspections to

check the quality of the manual classification that was made to train and validate the algorithm.

This is considered a limitation because it is not easy to access all the houses in the study area to

check if the water tanks and swimming pools were annotated correctly, especially water tanks,

which are located in inaccessible places, like the roof, which would make it necessary to enter

and access the roof in every house to verify the annotation.

4.3 Generalization of the network to other cities and sensors

One important possibility is the ability to generalize our procedures to other cities and sensors;

this implies that our results for Campinas can be replicated in other regions. In our experi-

ments, with the model trained without fine-tuning, we tried to analyze how the network

behaves to generalize the model for other cities and sensors. We determined that, without

fine-tuning, the results were satisfactory for swimming pools; the method detected almost all

swimming pools, but the coordinates of the bounding boxes predicted were not perfectly accu-

rate. However, for water tanks, the results were inadequate.

For the Campinas dataset, we used UAV images, while for the Belo Horizonte dataset we

used satellite images. Even with this difference of sensors and locations, the network was able

to generalize well; however, all the images needed to be of high resolution. We also had satellite

images of the study area of Campinas, but were unable to use the images due to the resolution

(0.5 m). This was because water tanks, for example, are relatively small, and different image

resolutions can affect the predictions. In the case of using this neural network in other areas, it

would also be necessary to adapt the dataset format to the format expected by our network for

the input data. Therefore, those results show us that the network can also generalize for other

sensors and cities as long as the image resolutions are high and similar to those used in our

datasets and the dataset is in an appropriate format.

4.4 Detection of dirty swimming pools and open water tanks

The detection of pools and water tanks is an important step towards the optimization of the

arbovirus control program, although it is the first in a series of potential developments that

could be provided by the combined use of remote and DL sensing, for which there are chal-

lenges that will require new studies. Examples of these issues would be the detection of dirty

swimming pools and open water tanks, which are places with a high probability of the presence

of mosquitoes; the detection of objects that are not very well defined, such as asbestos roofs

and slabs, which are also identified as risky places for the breeding of Ae. aegypti [18, 21]; and

the use of other technologies to identify objects of interest for vector control.

When it comes to detecting specific characteristics of objects in aerial images, such as dirty

swimming pools and open water tanks, resolution is a significant obstacle. For instance, even
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satellite images with extremely high resolution might still not be sufficient to spot those char-

acteristic features; however, UAV imagery, like that used for this study, might just have the

potential to allow for this precise classification. Moreover, even with high-resolution images

available, another difficulty is obtaining the image samples of these objects. Although DL

methods have the potential to successfully differentiate subtle differences among similar

objects, this task requires a large amount of training data for each one of the classes, becoming

prohibitive when such anomalies are rare.

4.5 Detection of other objects that are not so well delimited

It is possible to expand this work for the detection of asbestos roof tiles or roof type classifica-

tion. One of the possible drawbacks of this task is that those kinds of objects are not well delin-

eated like swimming pools and domestic water tanks, meaning that the boundaries of roofs

from different buildings are not clearly defined. Higher-resolution images can eliminate some

ambiguity, especially in poor and densely populated urban areas, but even with high-resolution

images, the detection in this scenario is not expected to be very precise.

For such situations, where the target classes are not well delimited, a viable option is seman-

tic segmentation [60]. In this approach, each pixel of an image is given a label, representing the

class of object that it belongs to. This way, it is possible to obtain high-level contextual infor-

mation about the scene represented in the input image, such as the proportions of the seg-

mented objects and how much of the scene is occupied by them. Therefore, in the task of

segmenting different types of roof tiles in a satellite image, for example, the proportion of the

area with one type of roof over another can be calculated, indicating the conditions of living in

that region. Wang et al. [61], for example, made use of DL techniques to perform residential

roof condition assessments by segmenting different types of rooftops and artifacts in them.

The authors achieved an accuracy of over 91% using the dataset assembled for the task.

4.6 Future research

The use of spectral information could be useful to identify and differentiate objects, including

new possibilities for mapping urban areas globally [62–66]. Other technologies that are avail-

able but are underdeveloped for detecting water tanks, swimming pools, or other objects of

interest for vector control are laser sensors (such as LiDAR-Light Detection and Ranging), ter-

restrial and airborne technologies (drones or small aircraft), remote sensing microsatellite con-

stellations, algorithms developed to detect small objects (like water tanks), and radar sensors

(such as SAR-Synthetic Aperture Radar).

A crucial need that arises from this study is to deepen the investigations concerning the

relationship between mosquito infestations and socioeconomic levels. We have a grant from

the São Paulo Research Foundation (FAPESP) to continue our investigations in the city of

Campinas that will enable us to evaluate the relationship between soil use and occupation,

including the presence of water tanks and swimming pools and Ae. aegypti infestation. We just

began to develop this research and expect to publish the first results in 2022.

5. Conclusions

Our study confirmed that, despite limitations like the small number of samples to train the

algorithm, it is possible to detect water tanks installed on roofs and swimming pools using

remote sensing images and DL, beyond the techniques of transfer learning. We also found a

positive relationship between the swimming pool density and better socioeconomic levels and

a negative relationship between the water tank density and these levels. These findings have

the potential to optimize Ae. aegypti control activities, to the extent that they could help direct
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control actions for places and areas most at risk. The identification of these objects enables

mosquito abatement personnel to schedule field inspections at specific locations for possible

mosquito abatement procedures. The water tank and swimming pool densities could be used

to identify areas with lower socioeconomic levels to be prioritized for the development of vec-

tor control activities. This could also have applications in other areas, such as the identification

of priority areas for investments in sanitation, housing, education, and health, among other

issues.
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loti-Neto.

Data curation: Higor Souza Cunha, Brenda Santana Sclauser, Pedro Fonseca Wildemberg,

Eduardo Augusto Militão Fernandes, Gerson Laurindo Barbosa.

Formal analysis: Higor Souza Cunha, Brenda Santana Sclauser, Pedro Fonseca Wildemberg,

Eduardo Augusto Militão Fernandes, Mariana de Oliveira Lage, Camila Lorenz, Francisco

Chiaravalloti-Neto.

Funding acquisition: Jefersson Alex dos Santos, Gerson Laurindo Barbosa, Francisco Chiara-

valloti-Neto.

Investigation: Higor Souza Cunha, Brenda Santana Sclauser, Pedro Fonseca Wildemberg,

Eduardo Augusto Militão Fernandes, Mariana de Oliveira Lage, Camila Lorenz, Gerson

Laurindo Barbosa.
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cisco Chiaravalloti-Neto.

References
1. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, et al. (2010). Comparative role

of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa.

Vector borne and zoonotic diseases. 2010; 10(3), 259–266. https://doi.org/10.1089/vbz.2009.0005

PMID: 19725769

2. Kotsakiozi P, Gloria-Soria A, Caccone A, Evans B, Schama R, Martins AJ, et al. (2017). Tracking the

return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLOS

Neglected Tropical Diseases. 2017; 11(7), e0005653. https://doi.org/10.1371/journal.pntd.0005653

PMID: 28742801

3. Chiaravalloti-Neto F. Descrição da colonização de Aedes aegypti na região de São José do Rio Preto,
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