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Abstract

Recent studies show the potential of artificial intelligence (Al) as a screening tool to detect
COVID-19 pneumonia based on chest x-ray (CXR) images. However, issues on the data-
sets and study designs from medical and technical perspectives, as well as questions on the
vulnerability and robustness of Al algorithms have emerged. In this study, we address these
issues with a more realistic development of Al-driven COVID-19 pneumonia detection mod-
els by generating our own data through a retrospective clinical study to augment the dataset
aggregated from external sources. We optimized five deep learning architectures, imple-
mented development strategies by manipulating data distribution to quantitatively compare
study designs, and introduced several detection scenarios to evaluate the robustness and
diagnostic performance of the models. At the current level of data availability, the perfor-
mance of the detection model depends on the hyperparameter tuning and has less depen-
dency on the quantity of data. InceptionV3 attained the highest performance in
distinguishing pneumonia from normal CXR in two-class detection scenario with sensitivity
(Sn), specificity (Sp), and positive predictive value (PPV) of 96%. The models attained
higher general performance of 91-96% Sn, 94-98% Sp, and 90-96% PPV in three-class
compared to four-class detection scenario. InceptionV3 has the highest general perfor-
mance with accuracy, F1-score, and g-mean of 96% in the three-class detection scenario.
For COVID-19 pneumonia detection, InceptionV3 attained the highest performance with
86% Sn, 99% Sp, and 91% PPV with an AUC of 0.99 in distinguishing pneumonia from nor-
mal CXR. lts capability of differentiating COVID-19 pneumonia from normal and non-
COVID-19 pneumonia attained 0.98 AUC and a micro-average of 0.99 for other classes.

Introduction

A supplementary to reverse transcription polymerase chain reaction (RT-PCR) in screening
COVID-19 is imperative to augment the current global strategies in mitigating its continuous
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spread and potential future outbreak. Although RT-PCR testing is precise and considered as
the gold standard for COVID-19 diagnosis, it is not easily accessible and scalable because of
the costs and operational requirements [1-3]. Due to this limitation, radiologic-based
approaches have been widely adopted for the initial screening of suspected cases. Preliminary
studies showed that analysis of chest x-ray (CXR) images might lead to better sensitivity and
specificity than RT-PCR-based diagnosis. Furthermore, the misdiagnosis rate of COVID-19 is
very high and the misdiagnosis cost is expensive [4]. While the wide availability of CXR
machines make it an attractive option for rapid and extensive screening, many radiologists
had difficulty reading CXR due to the indistinct manifestation of radiological features such as
consolidation and hazy increased opacities [5-8]. A technology-driven solution is to develop
an artificial intelligence (AI)-based detection system that will facilitate an automated, accurate,
and rapid COVID-19 pneumonia screening based on CXR images.

In recent years, medical diagnosis using Al-driven systems have demonstrated remarkable
progress in assisting radiologists and clinicians for disease detection, characterization, and
monitoring. The automated nature of Al to recognize intricate patterns in radiologic images
and its ability to provide quantitative assessment offer an efficient and scalable mechanism to
augment the current diagnostic workflow in the hospitals and ambulatory testing centers.
There were preliminary works that utilized Al-driven methodologies to assist radiographic
examinations in identifying the visual indicators highly associated with COVID-19. Wang
etal. [2] introduced COVID-Net, a convolutional neural network (CNN) designed to detect
COVID-19 cases using CXR images. The COVID-Net was trained using 13,800 CXR images
to identify COVID-19-related cases and attained 92.6% accuracy and sensitivity of 97.0% (nor-
mal), 90.0% (non-COVID-19 pneumonia) and 87.1% (COVID-19). Recently, Basu et al. [9]
trained AlexNet, VGGNet, and ResNet on a dataset consisting of 108, 379 CXR images derived
from the US National Institute of Health to classify between diseased and normal CXR. These
models were subsequently retrained via transfer learning using 1, 277 images and achieved
90.13% accuracy in distinguishing normal, other diseases, pneumonia, and COVID-19. A
non-conventional approach in using transfer learning is to utilize the pretrained architectures
as feature extractors. Turkoglu [10] extracted features using AlexNet, selected features using
Relief, and classified the images using support vector machines (SVM) whereas Montalbo [11]
concatenated the extracted features from two truncated Densenets and added a classification
head. Another study trained AlexNet, GoogleNet, and ResNet and made the final prediction
via majority voting [12]. In addition, several studies [13-16] have shown successful model
development via transfer learning by incorporating data augmentation strategies such as rota-
tion, translation, flipping and scaling to increase the number of training instances. Moreover,
several works, albeit adopting different base architectures and development strategies, have
also illustrated the potential of Al in detecting COVID-19 pneumonia using CXR images [4, 5,
9,13, 14,17-21].

While the studies mentioned above have shown high classification performance of AI mod-
els, several issues have emerged concerning its clinical applicability. The most apparent issue is
the data quality and quantity. The majority of the datasets used in developing AI models were
derived from public repositories. These datasets were aggregated from various sources and
typically do not include metadata and associated clinical information that may allow research-
ers to verify its validity. Moreover, the absence of demographic characteristics and other
potential risk factors impedes an alternative approach in examining these medical images.
Considering the recency of the pandemic, the number of positive cases has also been limited,
resulting in models trained on a highly imbalanced dataset. Another issue is the lack of infor-
mation on how these datasets were generated, thereby restricting researchers to design a
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Development Strategy and Detection Model Training and Optimization
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suitable retrospective study to evaluate the dependence of the results on the population size,
gender, age groups, and race, among others.

In this work, we address some of the issues by generating our own dataset through a well-
designed retrospective clinical study to augment the dataset available in public repositories.
We pursued a comprehensive model development workflow by manipulating dataset distribu-
tion and introducing different detection scenarios to look for an easily deployable model for
practical use. More precisely, the contributions of this article are as follows:

o From a clinical standpoint, the Al models could be used as a tool to assist radiologists screen
suspected COVID-19 patients, thereby shortening the waiting time for clinical decisions—
whether RT-PCR is necessary for a confirmatory step or to remove these patients from the
suspected lists. We note that the development of Al-driven detection of COVID-19 pneumo-
nia does not intend to replace the RT-PCR test as it is the gold standard in diagnosing
COVID-19. Rather, Al-driven detection aims to augment the inaccessibility of RT-PCR
machines in many countries.

o From a methodical perspective, this study illustrates the potential of an Al-driven system for
pneumonia (COVID-19, viral, and bacterial) detection considering a more realistic data dis-
tribution. We provide different level of detection scenarios which could be adopted as a
development approach for a more localized clinical deployment. We used a wide variety of
metrics, e.g., accuracy, sensitivity, specificity, negative predictive value, positive predictive
value, negative and positive likelihood ratio, confusion matrix, and area under the receiver
operating characteristic curve to rigorously evaluate the general as well as the per-class per-
formance of models. Furthermore, visual explanations of the prediction were generated
using gradient-based class activation maps (Grad-CAM) to facilitate analysis of the region of
interest.

 From a data perspective, this study provides a clinically validated dataset to augment the
existing publicly available datasets such as [3, 22], among others, that were used by the
research community to develop AI-driven pneumonia detection models. To our knowledge,
during the course of this study, we utilized the highest number of COVID-19 positive cases
in developing the detection models, thereby minimizing issues on the class imbalance
dataset.

Model development

The overall development framework adopted in this study is shown in Fig 1. In this section, we
describe: (i) study settings and data aggregation from our retrospective clinical study and

Two-Class:
normal vs pneumonia

Performance Evaluation
y Three-Class: (Accuracy, Sensitivity,
\) normal, non-COVID,

COVID19 Pneumonia

Specificity, PPV, F1-Score, G-
mean, ROC, AUC)

Four Class:
normal, bacterial, viral, (CNN Models: InceptionV3, Xception, MobileNet,
COVID19 VGG19, InceptionResNetV2)

Fig 1. Model development workflow.

https://doi.org/10.1371/journal.pone.0257884.9001
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external sources, (ii) development strategy and detection scenarios introduced to develop the
models, (iii) model training via transfer learning and base architecture selection, and (iv)
hyperparameter tuning and performance evaluation.

Study setting and data aggregation

Upon the approval of The Medical City Institutional Review Board (TMC IRB), a database of
patients with a CXR done from April 11 to June 1, 2020, as well as a COVID-19 RT-PCR swab
done within three days of the CXR, was generated by the TMC IT team. This database contains
the patients’ hospital ID number, age, sex, and an assigned study participant ID number. The
hospital ID numbers were used by the study clinicians to access patients’ medical records and
obtain the clinical information needed through a retrospective chart review. The TMC IRB
waived the requirement for informed consent before accessing the medical records. The study
clinicians had no direct contact with the patients during the course of the study, and no patient
names were encoded or used in data analysis. In addition, the patients’ names were removed
from the CXR images metadata.

This internally generated dataset consists of 1,171 CXR images from a total of 821 cohorts
with the following inclusion criteria: (i) the age of the participants must be 18 years and above,
(ii) have RT-PCR results and CXR images, (iii) were admitted to TMC under the care of infec-
tious disease and/or pulmonary specialists, and (iv) the demographic and clinical data are
available, including clinical diagnosis or indicators in the CXR images. 430 (52%) and 391
(48%) of the cohorts are male and female, respectively. The age of the cohorts ranges from 23-
100 years old, of which 63% of the patients with COVID-19 pneumonia are older than 60 years
old. Out of the total instances, 335 are normal, 194 are abnormal non-pneumonia, 565 are
non-COVID-19 pneumonia, and 77 are COVID-19 pneumonia. We note that while 135
instances had positive RT-PCR results, only 77 are labelled COVID-19 pneumonia, and the
rest were either normal or abnormal non-pneumonia. We aggregated CXR dataset designed
for pneumonia detection studies from several external sources to augment our internal dataset.
Table 1 shows the summary of the dataset and their corresponding labels used in this study to
develop the COVID-19 pneumonia detection models. Tables 1 and 2 in S1 Appendix show
summary statistics of the clinical information of the cohorts and the description and sources of
the externally aggregated dataset, respectively. The dataset used in this study is organized and
can be accessed through https://github.com/lpbaltazar/ COVID-CXR-AL

Development strategy and detection scenarios

We adopted two development strategies to evaluate the performance of the models on different
dataset distribution. Similar to the earlier works [13, 17-19], the first strategy involves the
maximization of the data to build the model, i.e., the dataset was divided into 80% training and

Table 1. Summary of the dataset used to develop the detection models.

Class Label Internal External Total
Normal 335 3,258 3,593
COVID-19 Pneumonia 77 552 629
Viral Pneumonia - 1,505 1,505
Bacterial Pneumonia - 2,786 2,786
Abnormal Non-Pneumonia 194 - 194
Non-COVID-19 Pneumonia 565 - 565
Total 1,171 8,101 9,272

https://doi.org/10.1371/journal.pone.0257884.t001
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20% validation. This strategy exposes the base architecture to more data during optimization
thereby allowing the model to learn more radiological features associated to each class. This is
the typical modelling routine to maximize the data in model building when the dataset is lim-
ited, as in the case of COVID-19. In the second strategy, we pursued a more stringent model
testing by splitting the dataset into 70% training, 20% validation, and 10% testing, congruent
to the approach adopted in [4, 14, 15, 20, 21, 23]. The main difference between these strategies
is the existence of the “unseen” dataset in the latter, i.e., data that were not used to train the
model will be used as a test dataset mimicking the clinical deployment scenario. We note that
our approach aims to illustrate quantitatively the effect of data distribution on the different
techniques adopted in several works considering the limited number of COVID-19 cases. To
our knowledge, no literature has designed a similar experiment in model development, i.e.,
previous studies utilized only either one of the two strategies.

To further evaluate the robustness and clinical applicability of the models, we introduce
several variants of detection scenarios. These detection scenarios involve training the models
to detect different class labels. A two-class detection scenario refers to the ability of the model
to detect two classes: normal and pneumonia. A three-class detection refers to the ability of the
model to detect three classes: normal, non-COVID-19 pneumonia, and COVID-19 pneumo-
nia. Lastly, a four-class detection refers to the ability of the model to distinguish CXR images
into one of the four classes: normal, bacterial pneumonia, viral pneumonia, and COVID-19
pneumonia. Following this design, a relabeling scheme guided by our resident radiologists
were formulated and applied to our entire dataset. For the two-class detection scenario, class
labels such as bacterial, viral, and COVID-19 were generalized as pneumonia. For the three-
class detection scenario, labels such as bacterial and viral pneumonia from the external dataset
and non-COVID-19 pneumonia from our internal dataset were reclassified and generalized as
non-COVID-19 pneumonia. Tables 2 and 3 show the data summary for the different develop-
ment strategy and detection scenarios.

Table 2. First strategy data distribution for different detection scenarios.

Two-class Detection Three-class Detection Four-class Detection
Labels Training Validation Labels Training Validation Labels Training Validation
Normal 2,875 718 Normal 2,875 718 Normal 2,875 718
Pneumonia 4,333 1,083 Non-COVID-19 Pneumonia 3,837 959 Bacterial Pneumonia 2,229 557
- - - COVID-19 Pneumonia 496 124 Viral Pneumonia 1,204 301
- - - - - - COVID-19 Pneumonia 496 124

https://doi.org/10.1371/journal.pone.0257884.t1002

Table 3. Second strategy data distribution for different detection scenarios.

Two-class Detection Three-class Detection Four-class Detection
Labels Training | Validation | Testing | Labels Training | Validation | Testing |Labels Training | Validation | Testing
Normal 2,514 719 360 Normal 2,514 719 360 Normal 2,514 719 360
Pneumonia | 3,790 1,084 542 Non-COVID-19 3,356 960 480 Bacterial Pneumonia | 1,949 558 279
Pneumonia
- - - - COVID-19 Pneumonia 434 124 62 Viral Pneumonia 1,053 301 151
- - - - - - - - COVID-19 434 124 62
Pneumonia

https://doi.org/10.1371/journal.pone.0257884.t003
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Transfer learning

One of the main challenges in developing Al-driven disease detection models in the medical
field is the scarcity of the dataset and the difficulty in acquisition due to data privacy and other
ethical considerations. To circumvent the data limitation problem, the use of pre-trained mod-
els via transfer learning offers an alternative development workflow. Transfer learning is a
machine learning technique in which models trained on a specific task is repurposed for a new
task. Through the years, the development of deep learning models for disease detection via
transfer learning has been widely adopted as a modelling strategy, particularly in cases where
the dataset is limited. For instance, Narin et al. [20] used transfer learning to distinguish
COVID-19 from normal images using only 100 CXR images. Albeit different base architecture
selection and optimization methods, several studies [4, 14, 17, 18, 20, 23-25] have also adopted
transfer learning in developing COVID-19 pneumonia detection models.

In our model development pipeline, five well-known architectures which were also adopted
by several studies in COVID-19 detection were selected as the base architectures. These are
InceptionV3 [4, 14, 15, 20, 21, 23, 24], Inception-ResNet V2 [17, 20, 21, 23-25], Xception [17,
18, 23], VGG19 and MobileNet [4, 14, 17, 23]. In training and fine-tuning the CNN architec-
tures, we used stochastic gradient descent (SGD) as an optimizer and categorical cross-entropy
as the loss function.

Hyperparameter tuning and performance evaluation

Hyperparameter tuning plays a crucial part in optimizing the performance of the models. We
implemented the grid search method to obtain the optimal values of the hyperparameters.
Grid search is an exhaustive optimization procedure that involves permuting all the possible
combinations of the selected hyperparameters to determine the values that would result to
highest model performance. Table 4 shows the list of the selected hyperparameters and their
corresponding values.

The general and per label performance of the models were evaluated using 10-fold cross val-
idation to determine the best performing models considering the different data distribution
and detection scenarios. General performance refers to the performance of the model consid-
ering the overall performance in all classes, while the per class performance refers to the per-
formance of a model considering a particular class.

The detection models were developed using Tensorflow (TF) version 2.1.0 in Python 3.7
environment and optimized using a 32-core (64 Thread) computing server and two NVIDIA
Tesla V100 (32GB) graphic processing units (GPU) servers. Depending on the complexity of
the model and the selected hyperparameter combinations, e.g., InceptionV3 with batch size
32, fully connected layers of 256, dropout of 0.2, and regularizer of L2(0.001), the runtime
ranges from 60 to 120 minutes per model permutation.

Table 4. Hyperparameters values used during model optimization.

Hyperparameter Values

Batch Size 16, 32

Fully Connected Layers 256, 512, 1024

Dropout 0.2,0.3,0.5

Regularizer L1(0.001, 0.01), L2(0.001, 0.01)

https://doi.org/10.1371/journal.pone.0257884.t1004
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Results

From a clinical point of view, COVID-19 pneumonia detection models should reliably identify
positive cases and ensure that the predicted positive cases are true positive. This will allow
healthcare frontliners to isolate positive cases during triaging and employ suitable mitigation
strategies to effectively reduce the transmission rate. Moreover, the detection models should
lessen the detection of false positives to reduce the resources allocated in testing negative cases.
In this view, we considered a more realistic clinical deployment scenario and evaluated the
performance of the models focusing on three key parameters: sensitivity (Sn), specificity (Sp),
and positive predictive values (PPV). Sn and Sp refer to the ability of the model to detect posi-
tive and negative cases, respectively, while PPV is the probability that the subjects with positive
screening results are true COVID-19 positive. While we also provide in the Supplementary
section other metrics such as negative predictive value (NPV), F1 score, geometric mean
(gmean) and likelihood ratio (+LR) for external evaluation of the models, we focus our analysis
on the key parameters because in clinical deployment scenario, the COVID-19 detection
model should be highly sensitive with high specificity and PPV.

Development strategy

The development strategy we pursued aims to show the effect of the data distribution in opti-
mizing the model. Driven by data limitation, earlier works opted to split the data into training
and validation, a strategy that does not allow model testing on an unseen dataset. An alterna-
tive experimental design in building a detection model is to test the performance of the model
on a dataset that is not included during the model training. Here we provide a quantitative
comparison between these two approaches by calculating the standard deviation of the Sn, Sp,
and PPV among the different models. Full numerical results are presented in the Supplemen-
tary section. The standard deviation of Sn, Sp, and PPV in all trained models in the first strat-
egy are 4.61%, 1.31%, and 4.66%, respectively. For the second strategy, the standard deviation
of Sn, Sp, and PPV are 4.98%, 1.29%, and 5.02%, respectively. These results highlight that
despite the difference in data distribution between the two approaches, the general perfor-
mances of the models are comparable, i.e., absolute difference in the standard deviation
among the models in the two development strategies is at most 0.37%. At the current level of
data available for modelling, the detection performance has less dependency on the quantity of
data but more on the thorough hyperparameter search during model optimization. Table 5
shows the optimum hyperparameter values for the selected architectures along with the num-
ber of trainable parameters and average training runtime per epoch.

Detection scenario

In our attempt to create a deployable model, the detection scenarios were designed to subdi-
vide the multiclassification task to look for potential models that can be further evaluated to

Table 5. Hyperparameters and the average optimization runtime per epoch of the best performing model.

Model Batch Size
InceptionV3 16
InceptionResNetV2 32
Xception 16
VGG 16
MobileNet 16

https://doi.org/10.1371/journal.pone.0257884.t005

Fully Connected Layers Regularizer Dropout Trainable Parameters Runtime Per Epoch
256 L2 (0.001) 0.2 23,015,331 56 sec
512 L2 (0.001) 0.3 55,327,587 1 min 50 sec
256 L2 (0.001) 0.3 20,684,611 41 sec
1024 L2 (0.001) 0.3 22,053,931 i min 25 sec
1024 L2 (0.001) 0.5 3,277,315 10 sec
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Table 6. Performance of various models in COVID-19 pneumonia detection.

Model Sn (%) Sp (%) PPV (%)
InceptionV3 86 99 91
InceptionResNetV2 82 99 87
Xception 72 98 79
VGG 80 99 85
MobileNet 66 99 84

https://doi.org/10.1371/journal.pone.0257884.t1006

prove their applicability in a clinical setting. In this manner, we were able to evaluate the capa-
bilities of the models in distinguishing different types of pneumonia from a normal CXR
image. Our rigorous model training demonstrates that all optimized base architectures for
two-class detection are highly capable of distinguishing pneumonia. The Sn, Sp, and PPV
scores range from 93-96%, illustrating the high accuracy of the models to detect radiological
features typically associated with pneumonia. Among the five models, InceptionV3 attained
the highest performance in two-class classification with Sn, Sp, and PPV of 96%.

To specifically test the detection capability of the model in distinguishing COVID-19 from
normal CXR and other types of pneumonia, we designed the three-class (normal, COVID-19,
and non-COVID-19 pneumonia) and four class (normal, bacterial, viral, and COVID-19
pneumonia) detection scenarios. For the three-class detection scenario, the Sn, Sp, and PPV of
the models range from 91-96%, 94-98%, and 90-96%, respectively. On the other hand, the Sn,
Sp, and PPV for the four-class detection scenario range from 81-86%, 94-95%, and 81-86%
indicating that the trained models performed better in three-class detection scenario. The sig-
nificant reduction (~10%) in the sensitivity and PPV in differentiating COVID-19 pneumonia
from bacterial and viral pneumonia in four-class detection scenario may indicate considerable
similarities in radiological features among the different types of pneumonia. Interestingly, the
performance scores illustrate that the Inception-based models generally outperformed Mobile-
Net and VGG19. Furthermore, InceptionV3 attained the highest performance in detecting
COVID-19 pneumonia with Sn, Sp, and PPV of 86%, 99%, and 91%, respectively. Table 6
shows the performance of trained models in COVID-19 pneumonia detection.

To further evaluate the detection capability of the InceptionV3 to distinguish COVID-19
pneumonia from other classes, the accuracy, F1-score, gmean, and confusion matrix were
obtained. In terms of accuracy, the InceptionV3 has a generalization ability of 96% in identify-
ing both the positive and negative cases. The F1-score and g-mean are both equal to 96%, indi-
cating the balance between Sn and PPV as well as the classification performance on both
majority and minority class, respectively. We note that similar works which also utilized Incep-
tionV3 to develop a COVID-19 pneumonia detection model have achieved a sensitivity, PPV,
accuracy, and F1-score of 91% [4], while [3] has achieved an accuracy of 93% to distinguished
COVID-19 pneumonia, illustrating that our optimization procedure led to better perfor-
mance. In addition, the per class performance in Table 7 shows that the InceptionV3 is highly
sensitive and specific with high PPV on all classes.

Fig 2 shows the resulting confusion matrix for the two-class and the three-class detection
scenarios. The IncetpionV3 was able to correctly predict 528 out of 548 (96%) unseen pneu-
monia CXR (Fig 2a) images for the two-class scenario. For the three-class detection scenario,
the model was able to correctly predict 54 out of 61 (84%) unseen COVID-19 pneumonia
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Normal

Pneumonia

Table 7. Per-class performance of the InceptionV3 model.

Class Labels Sn (%) Sp (%) PPV (%)
Normal 97 97 96
Non-COVID-19 Pneumonia 99 97 99
COVID-19 Pneumonia 86 99 91

https://doi.org/10.1371/journal.pone.0257884.t1007

positive cases. Furthermore, Fig 3 shows some of unseen dataset along with the true class and
predicted class to demonstrate the capability of the model.

Clinical deployment perspective

In general, to evaluate diagnostic the performance of Al-driven detection models designed to
assist radiologists in analyzing CXR images, a multi-reader study is performed. Several com-
parative studies [26-28] have shown that the performance of Al-driven detection models is on
par with practicing radiologist. However, we note that in clinical deployment scenario, the AI
system should be adopted and integrated in clinical workflow as a decision support tool. This
perspective has been illustrated in previous works [29, 30], in which the performance of the
radiologists with and without the assistance of the Al system were compared. For example, Bai
et al. [29] shows that the radiologists achieved better performance in differentiating COVID-
19 pneumonia from other types of pneumonia with the assistance of Al. The probability scores
provided by the Al improved the accuracy, sensitivity, and specificity: 85% to 90%, 79% to
88%, and 88% to 91%, respectively [29].
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Fig 2. Confusion matrix of the InceptionV3 detection model. (a) two-class detection scenario and (b) three-class detection scenario.

https:/doi.org/10.1371/journal.pone.0257884.9002
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Fig 3. Example of test CXR images which were correctly classified and misclassified by the model.

https://doi.org/10.1371/journal.pone.0257884.9003

Considering a prospective clinical validation study, we assess the diagnostic performance
of our trained InceptionV3 as a screening tool by determining the receiver operating char-
acteristics (ROC) and area under the curve (AUC). The ROC curves allow the visualization
of the model’s ability to distinguish among classes at different thresholds whereas AUC
measures the separability among the different classes. The higher the AUC, the better the
model is at differentiating the COVID-19 pneumonia from other classes. More precisely, we
evaluated the performance of the model in distinguishing pneumonia from normal CXR in
two-class detection scenario as well as detecting COVID-19 pneumonia in three-class sce-
nario. Compared with a similar work by Punn et. al. [9] which attained an AUC score of
0.90, our trained InceptionV3 detector achieved an AUC of 0.98 for COVID-19 class and a
micro-average AUC of 0.99 for other classes. Moreover, our model achieved better perfor-
mance with an AUC of 0.99 compared to 0.80 reported in the work [31] in which deep
learning architectures and supervised classifiers were combined to develop model for pneu-
monia detection. Fig 4 shows the ROC curve of the top models for pneumonia detection
and COVID-19 detection.

The availability of a visual characterization of the model prediction provides the clinicians
assistance in providing a final diagnosis. The explainability of AI-driven detection models is
achieved using a heat map that illustrates the model’s decisions. The gradient information
from the CXR images is fed back into the final convolutional layer to determine the impor-
tance of each neuron in classifying an image to each disease class [32]. Fig 5 shows the class
activation maps of CXR images from COVID-19 cases.
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Fig 4. ROC curve of the top model. (a) pneumonia detection (two-class detection) and (b) COVID-19 detection (three-class detection).
https://doi.org/10.1371/journal.pone.0257884.9004

One of the technical challenges in AI deployment is the model’s compatibility from the
development environment to an actual clinical translation. The wide variety of deployment
tools and dependencies often results in restructuring of the model which may lead to inconsis-
tencies during model translation. Another technical issue is the lack of model portability in
which difficulty arises when migrating AI models to another host, e.g. local machine to cloud
environment. In this perspective, we evaluated the runtime of the model when deployed to dif-
ferent computational infrastructure such as computer desktop, local server, or cloud environ-
ment. See Table 8 in S1 Appendix for the hardware specification. The prediction runtime in
which the AI model analyzes an image and subsequently provides the corresponding predic-
tion score is between 15 seconds to 2 minutes. Evidently, deployment of our Al-driven model
to facilitate screening of COVID-19 pneumonia is attainable using a typical computer desktop
and therefore deemed scalable even in remote hospitals where computational infrastructure
and cloud services are inaccessible.

Conclusion

In this study, we developed Al-driven models designed for COVID-19 pneumonia detection
using CXR images. To augment the existing CXR dataset available in open access repositories,
we conducted a retrospective clinical study in which 1,171 clinically validated CXR images
across 821 cohorts were generated. In optimizing the detection models, we pursued two
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Bettaufnahme

Fig 5. Grad-CAM for three CXR images diagnosed with COVID-19 pneumonia. The first column shows the original CXR,
the second column shows the overlaid activation map on the original image.

https://doi.org/10.1371/journal.pone.0257884.9g005

different strategies to assess the impact of the data distribution and provide a quantitative com-
parison between two study designs adopted in previous works. In our attempt to build robust
and deployable model for clinical use, we introduce different detection scenarios. The diagnos-
tic performance of the detection models was evaluated considering key parameters relevant to
clinical deployment standpoint. At the current level of data available for modelling, we have
developed highly sensitive and specific with high PPV models that can easily classify pneumo-
nia from normal CXR as well as distinguish COVID-19 pneumonia from other types of pneu-
monia. Furthermore, we illustrated that our AI-driven detection model can be deployed in a
typical computer desktop with an approximate runtime of two minutes to analyze an image;
hence, deemed scalable and can facilitate automated screening of COVID-19 cases in remote
areas. To a large extent, this study provides clinically validated CXR images and a well-formu-
lated study design which can be adopted by to the research community to advance and create
practical Al solutions to mitigate COVID-19. Naturally, the research design can be extended
to other types of pneumonia and pulmonary diseases depending on the available dataset and
clinical context.
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(DOCX)
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