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Abstract

Background

Distal radius (wrist) fractures are the second most common fracture admitted to hospital.

The anatomical pattern of these types of injuries is diverse, with variation in clinical manage-

ment, guidelines for management remain inconclusive, and the uptake of findings from clini-

cal trials into routine practice limited. Robust predictive modelling, which considers both the

characteristics of the fracture and patient, provides the best opportunity to reduce variation

in care and improve patient outcomes. This type of data is housed in unstructured data

sources with no particular format or schema. The “Predicting fracture outcomes from clinical

Registry data using Artificial Intelligence (AI) Supplemented models for Evidence-informed

treatment (PRAISE)” study aims to use AI methods on unstructured data to describe the

fracture characteristics and test if using this information improves identification of key frac-

ture characteristics and prediction of patient-reported outcome measures and clinical out-

comes following wrist fractures compared to prediction models based on standard registry

data.
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Methods and design

Adult (16+ years) patients presenting to the emergency department, treated in a short stay

unit, or admitted to hospital for >24h for management of a wrist fracture in four Victorian hos-

pitals will be included in this study. The study will use routine registry data from the Victorian

Orthopaedic Trauma Outcomes Registry (VOTOR), and electronic medical record (EMR)

information (e.g. X-rays, surgical reports, radiology reports, images). A multimodal deep

learning fracture reasoning system (DLFRS) will be developed that reasons on EMR infor-

mation. Machine learning prediction models will test the performance with/without output

from the DLFRS.

Discussion

The PRAISE study will establish the use of AI techniques to provide enhanced information

about fracture characteristics in people with wrist fractures. Prediction models using AI

derived characteristics are expected to provide better prediction of clinical and patient-

reported outcomes following distal radius fracture.

Introduction

Fractures are the most common form of hospitalised trauma, contributing to approximately

200,000 hospitalisations and over one million bed-days in Australia each year [1]. Distal radius

fractures are the most common fracture of the upper limb across all age groups [2], second

only to hip fracture as the primary reason for admission to hospital for fracture [3]. More than

400,000 people in England were admitted to hospital with a distal radius fracture over a

10-year period [4]. Six percent of women will have sustained a distal radius fracture by 80

years of age [5]. Of concern, the incidence of these fractures is increasing [3, 4]. In the UK, dis-

tal radius fracture admissions rose by more than 80% from 2004/05 to 2013/14 [4], while a pre-

vious Australian study projected a similar increase to 2021 based on figures from 1997 [6].

Distal radius fractures occur across all ages and are sustained in a range of high (e.g. motor

vehicle collision) and low (e.g. fall on an outstretched hand) energy mechanisms and there

many operative and non-operative treatment options. Surgery carries inherent risks for the

patient and considerable cost implications based on the treatment choice and implant used.

While most orthopaedic societies have established distal radius fracture management guide-

lines, adherence to guidelines is variable, even within a single country [7]. Data from Ireland

from 2008 to 2017 showed a significant rise in the rate of plate fixation and a reduction in the

use of percutaneous k-wires [8], despite economic analysis showing plate fixation was unlikely

to be cost-effective if the fracture can be treated with a closed reduction [9]. In the US, surgical

management was found to agree in only 40% of cases where the guidelines recommended non-

operative treatment [10]. A recent meta-analysis of 38 clinical trials favoured plate fixation for

early and sustained functional recovery and lower rates of complications, although these stud-

ies focused on a single sub-type of distal radius fracture [11]. The authors observed variability

in the populations studied, the numbers randomised, the treatments compared, and the out-

come measures used, and they were unable to provide definitive treatment directives [11].

The heterogeneity in anatomical injury patterns in distal radius fractures creates consider-

able treatment challenges. Historically, fracture management objectives have focused on four

elements: (1) restoration of anatomy; (2) stable fracture fixation; (3) preservation of blood
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supply; and (4) early mobilisation of the limb and the patient. More recently, the management

of fractures has shifted to establishing a more holistic approach to the treatment of the fracture

which considers the “personality” of the injury. This approach combines details of the fracture

pattern, soft tissue injury and person characteristics [12], as these factors influence treatment

decisions.

Recovery in many patients can be challenging [13] and can result in prolonged reduction in

function and health related quality of life [14]. Reducing unwarranted variation in clinical care

and the increased burden resulting from issues of both (mis)diagnosis and failure to follow evi-

dence-based guidelines warrants a different approach [15]. An approach that considers the full

spectrum characteristics of patients and combines details of the fracture pattern and soft tissue

injury is needed.

Clinical registries and Electronic Medical Records (EMRs)

Clinical quality registries (registries) have been used to inform clinical practice and health ser-

vice decision making by way of routine prospective collection, analysis and reporting of

health-related information [16, 17]. At the core of high-calibre registries is high quality, com-

plete and valid data collected in a standardised way. The Australian Commission on Safety and

Quality in Health Care’s (ACSQHC) operating principles for registries require limitation of

core data collection to essential elements which are epidemiologically sound (i.e. simple, objec-

tive, reproducible, valid, and collected in a systematic manner across all contributing institu-

tions). These guidelines were developed prior to widespread implementation of EMRs and the

recent rapid evolution of artificial intelligence (AI). As a result, registries are predominantly

populated by structured data with a focus either on readily accessible routine coding or exten-

sive investment in the manual collection of data items.

Much of the data contained in the EMR and associated systems is unstructured in nature

[18, 19]. Unstructured data includes text notes, written reports, and imaging. These data are

often heterogenous, fragmented and not easily organised into a format that can be readily used

by registries or incorporated into clinical algorithms and feedback loops. This type of data is

often challenging [20], as it has no particular format or schema [21], and is often noisy [22].

However, unstructured data sources contain relevant, richly detailed, and nuanced data that

could enhance the capability of registries to inform health care improvement. Recent advances

in multi-modal deep learning algorithms that combine unstructured and structured EMR data

have been found to improve the performance of prediction models and reduce errors [23].

Deep learning AI techniques that cater for both unstructured text and images in healthcare

provide an opportunity to explore the ability to extract untapped information previously hid-

den [24] and provide insights into the fracture “personality”.

Maximising the use of unstructured data

Registries have been used to identify patterns and associations and formulate hypotheses about

cause-and-effect relationships [16, 17, 25]. Prediction modelling of registry data could have the

potential to inform treatment pathways but richly detailed data to differentiate person, frac-

ture, and treatment characteristics is needed. Routine administrative coding of diagnoses and

procedures fails to provide sufficient phenotyping to develop robust prediction models capable

of contributing to evidence-informed treatment pathways. In contrast, the unstructured data

contained in surgical reports, operating theatre records, imaging reports and imaging contain

rich data about fracture characteristics and management, including devices implanted. To date

the unstructured nature of these data has precluded routine use of these data sources.
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Accessing these data in large, representative samples of distal fracture patients could provide

critical information for improving outcome prediction.

In particular, orthopaedic trauma registries, such as the Victorian Orthopaedic Trauma

Outcomes Registry (VOTOR), focus on collecting data about the patient (including their pre-

injury function, health and employment), circumstances of the injury event, diagnoses, man-

agement and patient-centred and clinical outcomes [26–28]. These specific registries could

provide an ideal platform to quantify the characteristics of the fracture injury and contribute

to evidence-informed treatment [16, 17]. However, the barrier has been the lack of detail

about fracture patterns (e.g. degree and location of comminution, degree of displacement,

joint involvement, dorsal inclination, etc) and treatment due to reliance on administrative

coding.

While detailed fracture classifications exist, these are rarely documented in medical records,

and administrative diagnostic coding fails to characterise fracture details sufficiently [29]. In

addition, there is classification error generated randomly, due to (lack of) inter-observer reli-

ability, coding and transcription errors. The International Statistical Classification of Diseases

and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) includes

limited information about key characteristics of the fracture. For example, one third of distal

radius fractures in VOTOR receive the “not further specified” code by hospital coders and

laterality (i.e. left or right) is not captured at all. Similarly, routine coding of the management

of fractures is done through Australian Classification of Health Interventions (ACHI) which

provide a broad overview of the management such as the type of reduction of the fracture

(closed vs. open) and whether fixation was used (but not the type of fixation).

Compounding issues with characterising fracture characteristics is the lack of barcode-to-

patient tracking mechanisms or mandatory reporting of issues with most implants (e.g., plates,

screws, wires). The majority of fracture implants are exempt from the Therapeutic Goods

Administration requirement to provide patient information leaflets. The lack of routine and

systematic post-market surveillance, and standardised capture of implant data at a patient-

level places a greater reliance on collecting data about the detailed management of the fracture

from other sources. Mining the heterogenous health data which already exists, with modern

AI may offer the solution to unravelling previously hidden fracture details and characteristics.

Artificial Intelligence (AI)

There are multiple examples where standard deep learning, such as Computer Vision and Natu-

ral Language Processing (NLP), has achieved outstanding performance in specific tasks (e.g.,

image/text classification, object detection, etc.) [19, 24, 30, 31]. Single model convolutional neu-

ral networks (CNN) deep learning has been used in studies to detect the presence or absence of

distal radius fracture [32, 33], and has shown comparable performance to orthopaedic surgeons

and superior performance to radiologists. Previous AI research has focused only on identifying

the presence or absence of a fracture from a single source of information–either radiology

reports or images. In contrast, humans often combine information from multiple modalities to

acquire knowledge, with vision (images) and language (text) the most common signals used.

Inspired by how humans learn from multiple inputs, multimodal learning is becoming pop-

ular in AI, but remains under-explored in clinical research. The PRAISE study will develop a

flexible and systematic multimodal deep learning system that reasons jointly on surgical

reports, as well as pre- and post-operative imaging reports and imaging, to enable rich pheno-

typing of fracture type and care. This has the potential to enhance the capacity of registries to

delineate fracture profiles, their treatment and outcomes, and provide valuable data for driving

evidence-informed care to improve patient outcomes following a wrist fracture.

PLOS ONE Predicting fracture outcomes from clinical registry data using artificial intelligence: PRAISE study protocol

PLOS ONE | https://doi.org/10.1371/journal.pone.0257361 September 23, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0257361


Study aims

There are three aims of the PRAISE study:

1. Develop valid and reliable algorithms for identifying key distal radius fracture characteris-

tics and treatment details using NLP and deep machine learning techniques applied to digi-

tal images, and surgical and radiology text reports.

2. Test whether AI derived fracture and treatment characteristics improve prediction of

patient-reported outcome measures (PROMs) and clinical outcomes following distal radius

fracture, compared to prediction models based on standard registry data.

3. Establish the documenting and supporting code for deployment of the AI algorithms into

health data platforms to enhance clinical registry data collection and availability of key data

to clinicians.

Materials and methods

Study design

The PRAISE study will be a multi-centre study of adult (16+ years) patients presenting to the

emergency department (ED), treated in a short stay unit (SSU), or admitted to hospital for>24h

for management of a wrist fracture in four Victorian hospitals. The study will use data from

VOTOR, and data from the EMR, including X-rays, surgical reports and radiology reports.

Inclusion and exclusion criteria

Participants will be eligible for this study if they meet the following criteria:

1. Date of injury July 2010 to June 2020;

2. Registered on the VOTOR with an ICD-10-AM diagnosis code pertaining to distal radius

fracture or presentation and management of a distal fracture in the ED or management of a

distal radius fracture SSU of the VOTOR participating hospitals; and

3. Aged 16 years or over at the time of presentation.

Patients presenting with a pathological fracture related to metastatic disease will be

excluded. As VOTOR uses an opt-out method for inclusion, only eligible patients who have

not opted-out of the registry will be included in this study. The current opt-out rate is <1.5%

and, therefore, the coverage of eligible admitted cases will be high. A waiver of consent will be

used to obtain the additional ED presentation and SSU admission cases, as well as the imaging

and text reports for all cases.

Ethics approval

The PRAISE project received ethical approved from participating sites through the Victorian

State Single Ethical Review process (Project number VSM/73423) and will be conducted in

compliance the NHMRC National Statement on ethical Conduct in Human Research (2007)

and the Note for Guidance on Good Clinical Practice (CPMP/ICH-135/95). A waiver of

informed consent was granted by the Human Research Ethics Committees.

Data sources

The PRAISE study will use four data sources: 1) VOTOR registry patient data; 2) ED patient

data; 3) SSU patient data; and 4) linked VOTOR patient data. Data sources 1) to 3) will be used

to achieve study aim 1) and data source 4) will be used to achieve study aim 2).
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1) VOTOR registry data. The VOTOR registry is the largest and most comprehensive

orthopaedic trauma outcomes registry worldwide and is compliant with the ACSQHC operat-

ing principles for clinical quality registries. For patients hospitalised >24h for their wrist frac-

ture, cases will be identified through VOTOR using the relevant ICD-10-AM diagnosis codes

for the admission. Demographic, injury event, injury diagnosis (ICD-10-AM), procedures

(ACHI), in-hospital outcomes, limited implant data, X-ray images, text reports from radiology

and surgery, and patient-reported outcome measures (PROMs) will be extracted for all eligible

patients for this study. The PROMs are collected prospectively via telephone interview at 6-,

12- and 24-months post-injury [34], and include the 12-item World Health Organization Dis-

ability Assessment Schedule (WHODAS), 5-level EQ-5D (EQ-5D-5L), numerical rating scale

for pain, pain location, return to work and work disability questions. Follow-up rates exceed

80% at each time point. Linkage with the Victorian Registry of Births, Deaths and Marriages

(VBDM) is used to identify post-discharge deaths.

2) ED and SSU data. Patients presenting to and discharged from the ED with wrist frac-

ture will be identified from the presenting diagnosis in the EMR, while SSU cases will be iden-

tified by the ICD-10-AM diagnosis codes for the admission. Limited demographic

information (age, gender, socioeconomic status, comorbidities, marital status and type of resi-

dence), injury event (coded cause, place, activity and intent, day of week and time of day of

presentation, diagnosis (ICD-10-AM and text), and treatment classification, length of stay data

and X-ray images and text reports from radiology and surgery will be collected.

3) Linked VOTOR data. The VOTOR registry data and data generated from the AI mod-

els in aim 1) for VOTOR cases will be sent to the Centre for Victorian Data Linkage (CVDL)

for linkage with the Victorian Admitted Episodes Dataset (VAED) and the VEMD to provide

admissions and ED presentations for the two years prior, and all admissions and ED presenta-

tions in the two years following, the VOTOR admission. This linked dataset will provide a

comprehensive dataset for the prediction models, and will contain detailed descriptors of the

fracture including fracture pattern, soft tissue injury and treatment, as well as demographic

details, pre-existing health conditions, injury event details, treating healthcare service, and

associated injuries.

Power calculations

A random sample of 517 patient sets of X-ray and radiology reports, proportional to fractures

admitted to hospital with fractures managed in the ED or short stay unit, will be selected for

classification by an orthopaedic surgeon, to quantify the agreement between the AI techniques

and human assessment [35]. This is based on the diagnostic test with a null hypothesis of 0.7,

alternative hypothesis of 0.8, power>0.8 and prevalence of dorsal displacement type fractures

of 30% [36]. Class probabilities from the fracture classification will be generated and compared

with orthopaedic surgeon assessment of the images and reports (gold standard). Key fracture

words/phrases in text and regions in images, correlated with the predictions, will be

highlighted with attention weights using a visualisation interface for surgeons to review the

results generated by the models. We will retain 20% of the collected visual-linguistic fracture

data pairs from training to test the proposed models. More than 6,000 VOTOR and 4,000 ED

only cases will be available for the study, making the sample size more than sufficient to meet

aim 2 of the study.

Statistical plan

The analysis plan for the PRAISE study aims 1) and 2) is outlined in Fig 1.
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Aim 1: AI algorithms for fracture and treatment characteristics

For eligible ED, short stay unit and VOTOR registered distal radius fracture cases, the pre-

and post-treatment X-ray images, radiology reports and surgical reports (where applicable)

will be obtained for AI analysis. A multimodal deep learning fracture reasoning system will be

developed that reasons jointly on X-rays and clinical text. The analysis will occur in three

stages (Fig 1).

In Stage 1, we will develop specialised language representation models akin to Bert (Bidirec-

tional Encoder Representations from Transformers) [37–39] called Fracture-Bert to generate

bidirectional word representations that captures information related to specific distal radius

fracture characteristics and treatment for the classification task. The X-ray images will be clas-

sified with deep CNN models [40, 41], where we pass each image through a series of fully-con-

nected convolutional layers to learn features of various aspects of the X-ray image.

Stage 2 will build a novel deep multimodal learning architecture that uses joint visual-lin-

guistic representation learning from paired vision-linguistic data (i.e. paired medical images

and radiology/operative text reports) to preserve and fuse semantics across modalities. Frac-

ture reasoning will discriminate different fracture objects based on the learned latent represen-

tations. The pretrained architecture will use a variety of large external resources to

complement the existing hospital data inputs and enhance the neural networks to improve

predictions and advance learnings of fracture data.

Stage 3 extends the models developed in Stages 1 and 2 to boost the model interpretability

with background medical knowledge to highlight the key distal radius fracture features. The

extended models with the attention mechanism [42, 43] will automatically attend to key

phrases while predicting the corresponding fracture types. Salient fracture features will be

assigned weights to generate the unimodal/multimodal representation. Learned attention

weights will enhance our understanding of the key distal radius fracture characteristics and

their treatment.

Fracture features will be categorised as present or absent based on the X-rays and radiology

reports: radial height, radial inclination and ulnar variance; palmar inclination and teardrop

angle; degree of comminution, etc. Treatment will be categorised into one of five categories:

Fig 1.

https://doi.org/10.1371/journal.pone.0257361.g001
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(1) closed reduction and immobilisation, (2) external fixation, (3) percutaneous wire fixation,

(4) open reduction and internal fixation (plate), or (5) wrist fusion. Identification of surgical

management and implant type from the X-ray images and operative report will be compared

against the VOTOR implant data which is obtained from hospital ordering systems. Ordering

systems currently are the most consistently available data source for orthopaedic trauma

implants but the information extracted is highly variable, complete for only 60% of surgical

cases, and does not specifically link implants to injury. VOTOR cases and ED presentation

cases only will be compared for patient and fracture characteristics.

Aim 2: Prediction modelling

The performance of models including the AI predicted indicators from the deep learning

models will be tested against models including standard registry information using the linked

VOTOR registry data (data source 4)). The capacity of the AI indicators to predict outcomes

of clinical and post-operative complications, and PROMs post-injury. This will enable us to

determine which radiological features based on the X-rays and text reports improve prediction

over the standard data available in the registry. AI-derived fracture predicted probabilities and

classes will be added to the VOTOR registry data and sent to the CVDL for the Linked

VOTOR data. This linked dataset will provide a comprehensive longitudinal dataset for the

prediction models.

The capacity of the AI derived fracture characteristics to predict outcome compared to the

Linked VOTOR registry data alone will be tested using the following outcomes:

1. Fracture management complications: implant failure; non-union; mal-union of the frac-

ture; infection; neurological injury

2. Readmission to hospital for fracture management

3. Presentation to the ED for fracture-related issues

4. Patient-reported outcomes at 6-, 12-, and 24-months after injury: EQ-5D-5L; 12-item

WHODAS; pain scores; return to work and work-related disability.

A systematic approach to variable selection and model predictive performance will be

implemented (Fig 1). Models will investigate predictive pathways and risk of outcomes of

interest. State of the art longitudinal machine learning (ML) models [44] will be used for both

the variable selection and prediction stages. The large number of covariates raise potential

multicollinearity issues, and the possibility of unstable estimates. Therefore, where applicable a

number of ML penalized regression methods will be implemented to reduce covariate num-

bers. The analyses will account for correlated and clustered responses to perform the variable

reduction and prediction tasks.

Linear and generalized linear mixed models (LMMLasso/GLMMLasso) [45], longitudinal

multi-level factorization machines model (LMLFMM) [46], longitudinal support vector

regression (LS-SVM) [47] and mixed effects random forest (MERF) [48] will be used as these

machine learning techniques can handle longitudinal data and a large number of potentially

correlated features. The inclusion of predictions from Aim 1 will incorporate associated error

that potentially compounds further error with their inclusion in the predictive models, so we

will use several measures to review model performance. All models will be summarised by the

predictive performance measures of accuracy, precision and recall [49] to select the best per-

forming model for each outcome, and quantify the impact of the inclusion of the AI variables

over registry data alone.
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Data security and confidentiality

Electronic data including images will be transferred from the participating sites to Monash

University through a Secure File Transfer Protocol (SFTP) set up for this project. Once

received at Monash, all data will be curated and analysed using the Monash Secure eResearch

Platform (SeRP) and the Multimodal Australian ScienceS Imaging and Visualisation Envi-

ronment (MASSIVE) platform. Monash SeRP is a secure environment for sharing research

data for collaboration and analysis, within the control and governance of the data custodian.

MASSIVE is a specialised high-performance computing facility for imaging and visualisation

which has hardware dedicated to deep learning type applications (a pool of NVIDIA

DGX1-V servers). Both SeRP and MASSIVE operate in ISO27001 compliant environments.

Risks to patient privacy and confidentiality will be minimised through the use of specific

study IDs and collated data will have identifiers removed. Only aggregate data will be

presented.

Discussion

Distal radius (wrist) fractures are the most common fracture presenting for medical care across

all age groups. The anatomical pattern of injuries is diverse, there is widespread variation in

clinical management, guidelines for management remain inconclusive, and the uptake of find-

ings from clinical trials into routine practice has been limited. Robust predictive modelling

which considers the characteristics of the fracture provides the best opportunity to inform care

pathways and improve outcomes for patients. However, much of the data about the character-

istics of the fracture is in unstructured data sources (x-ray images and text reports) which are

not considered easily accessible and has made it difficult and restrictive for researchers to use

in predictive modelling. This project will use existing data to assess the role of AI techniques to

determine whether information gleaned from images and text reports can improve the predic-

tion of clinical and longer-term patient reported outcomes following wrist fracture. Prediction

models based on routinely collected registry data will be compared with models based on reg-

istry data and enhanced with additional information about fracture characteristics from the

artificial intelligence techniques. The findings of this study have the potential to improve the

automated collection of key information about fractures to support clinical decision making,

guide personalised fracture care and improve outcomes for patients with wrist fractures by

improving predictive models.

Conclusion

In this study, the role of AI deep learning will be explored to determine whether AI techniques

can improve the prediction of clinical and longer-term patient reported outcomes following

distal radius fracture. The flexible three-stage multimodal deep learning fracture reasoning sys-

tem will be used to extract important information from unstructured data sources including

X-ray images, surgical and radiology text reports. Using existing data, prediction models with

and without the AI enhanced findings from the deep learning system will be compared in

order to enhance the capability of clinical registries to generate predictive analytics capable of

guiding personalised fracture care.
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