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Abstract

China’s agricultural economy is developing rapidly, but the unbalanced regional develop-

ment is still a key issue that needs to be discussed today. By studying the total factor produc-

tivity of green agriculture and its factors, this paper analyzes the regional differences in time

and space changes between the eastern, central and western parts of China. In this paper,

the total factor productivity of green agriculture is calculated and decomposed by Metafron-

tier Malmquist-Luenberger index based on directional distance function. The results are as

follows: First, the total factor productivity level of green agriculture in China is increasing

year by year, but the overall level is still at a low level and has greater volatility; Second,

although the total factor productivity of green agriculture shows an upward trend, the three

regions show a downward trend in turn, which has great differences; Third, there are obvi-

ous differences in technological efficiency, optimal production potential and technological

gap between the eastern, central and western regions, and there are great differences in

productivity among regions and provinces. Based on the results, this paper puts forward pol-

icy recommendations, according to the regional heterogeneity, from a number of angles to

rely on the joint efforts of many parties to improve the level of total factor productivity of

green agriculture.

1. Introduction

Over the past 40 years of reform and opening-up, China’s agriculture has made outstanding

contributions to ensuring people’s lives [1,2]. According to the China Statistical Yearbook in
2020, the GDP of China’s primary industry has increased from 101.85 billion yuan in 1978 to

7046.67 billion yuan in 2019. It has achieved rapid growth and feeds more than 20% of the

whole world’s population, although China occupies less than 10% of the world’s arable land

[1,3–5]. However, China’s agricultural development has never got rid of the production mode

of high yield and high consumption [6], which has led to a sharp increase in resource con-

sumption [1] and environmental pollution [7,8]. With the development of economic globaliza-

tion, the production mode with low efficiency and large monthly pollution will cause global
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waste of resources and environmental pollution [9,10], and it has important theoretical and

practical value to improve the total factor productivity of green agriculture in a comprehensive

way. Therefore, it is advisable to measure the total factor productivity of green agriculture [11].

At the present stage, China’s agricultural development is mainly manifested in the following

situations: First, there is a large amount of energy waste in China’s agricultural production

process [12–15]. Scholars predict that China’s energy consumption in agricultural will meet

161.61 million tons of standard coal equivalent in 2025. That’s twice as much as in 2016 [16].

Second, under the production mode of high yield and high consumption [1], on the one hand,

"high consumption" makes excessive waste of input factors lead to the deterioration of agricul-

tural ecological environment [7,8,16] and the formation of external diseconomy [17]; On the

other hand, "high output" will be accompanied by "high negative output", and the prevention

and control effect is not good to destroy the environment [18–21]. Third, China is vast, and

due to the differences in economic development [22–24], factor endowment and natural geo-

logical conditions, agricultural development is uneven [25], which also brings challenges to the

future development of agriculture in China [26–28]. Therefore, when calculating the total fac-

tor productivity of green agriculture, the selection of input and output indicators is very

important [29,30].

Based on this, this paper makes a reasonable measurement of total factor productivity of

green agriculture, considering the spatial and temporal differences between the eastern, central

and western regions.

2. Literature review

As far as the calculation method and model of agricultural total factor productivity is con-

cerned, data envelope analysis (DEA) and stochastic frontier analysis (SFA) are applied to the

calculation of agricultural total factor productivity by most scholars. Stochastic frontier model

(SFA), as the representative of the parameter method [31,32], the boundary constructed by

SFA conforms to the characteristics of agricultural production [33], but it needs to set specific

production functions in advance. Data Envelopment Analysis (DEA), as the representative of

nonparametric method [34], used linear programming to treat the same type of decision mak-

ing unit DMU (Decision Making Units) according to multi-input index and multi-output

index. It doesn’t have to preset function form [34,35]. So this paper chooses DEA to do further

calculation.

In the subsequent empirical study, Chung et al. [36] pioneered the combination of direc-

tional distance function and ML (Malmquist-Luenberger) productivity index to consider the

impact of the agricultural total factor productivity based on environmental pollution. With the

deepening of the research, scholars have found some limitations of the traditional ML index

[37,38], and have established the expansion form. Compared with the traditional ML index,

Metafrontier Malmquist-Luenberger index compensates for the neglect of group heterogene-

ity. The group heterogeneity is included in the research process, the samples are divided into

several groups, and the concepts of common frontier and group frontier are introduced, which

is more suitable for regional difference analysis [39,40]. Therefore, Metafrontier Malmquist-

Luenberger index based on directional distance function is selected to measure and decom-

pose the green total factor productivity of Chinese agriculture.

As far as the selection of indicators for different environmental factors (unexpected out-

puts), the view of total factor productivity considering the constraints of resources and envi-

ronmental pollution has been agreed [41–43], but it is not agreed in the calculations of the

total factor productivity with the treatment of environmental factors.
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The view represented by Thijssen [44] is that environmental factors are used as input

variables, and Hailu [45] also used this method to calculate different industries or regions.

This method is feasible in theory, but in the actual production process, it is difficult to

maintain the total proportion of environmental pollution and input resources, and it is

also difficult to reflect the real agricultural production process, so it is not suitable to deal

with agricultural environmental pollution factors according to this method. The view rep-

resented by Ball et al. [46], Nanere et al. [47] and Shen et al. [48] is that environmental fac-

tors are regarded as unwanted output variables, which means that the result of agricultural

production is environmental pollution. Agricultural production has not only expected

output of agricultural products, but also non-expected output of non-point source pollu-

tion and carbon emissions, which accords with the actual agricultural production process.

So this paper regards these two types of environmental pollution elements as unexpected

outputs.

In the selection of agricultural pollutants, Fei and Lin [16] used CO2 as an unexpected out-

put to measure the comprehensive efficiency of agricultural energy and CO2 in China. Wang

and Lin [49] and Yang et al. [50] calculated CO2 emissions based on IPCC guidelines. Boers

[51] pointed out that 60% of total nitrogen and 40% -50% of total phosphorus emitted from

surface water in the Netherlands are derived from agriculture. Haregeweyn et al. [52] provided

the spatial and temporal variations of soil erosion by the agricultural non-point source pollu-

tion model (AGNPS). Li [53] defined the ML productivity index model of agricultural non-

point source pollution as a non-desirable output in terms of the "green productivity revolu-

tion". It can be seen that the selection of agricultural pollutants in academic circles mostly stays

at the level of single carbon emissions or non-point source pollution, lacking comprehensive

investigation of the two. Su et al. [54] proposed that “In order to curb the negative impact of

agricultural production on the environment and improve the level of sustainable agricultural

development, it is necessary to quantify the sustainability of different types of agricultural pro-

duction”. Therefore, carbon emissions and agricultural non-point source pollution are com-

bined as unexpected outputs into green agriculture. Previous literature research mostly stays

on single pollutant accounting, and there are some gaps in the comprehensive calculation of

pollutant emissions.

In order to remedy the shortcomings of the existing research, this paper mainly focuses on

the following three aspects: First, this paper uses the latest year data of 23 years to speculate the

total factor productivity of green agriculture in 30 provinces of China for the first time, which

has a large time span and stronger reference. Second, this paper considers the emissions of var-

ious pollutants more comprehensively, uses IPCC’s method to calculate carbon emissions, and

uses the assessment method of non-point source pollution investigation of unit analysis to cal-

culate non-point source pollution, the accounting method is reasonable, and the result is true.

Third, this paper focuses on the regional differences in the eastern, central and western regions

of China, and comprehensively examines the dynamic evolution process of the three regions

based on the dimension of time and space, which supplements the existing research results

and has a certain theoretical and practical significance.

3. Methodology

In this paper, we mainly select the panel data of 30 provinces in China from 1997 to 2019, and

construct a MML (Metafrontier Malmquist-Luenberger) index model based on directional

distance function to measure and decompose the total factor productivity of green agriculture

in different regions.
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3.1. Directional distance function

Assuming that each province is a production decision making unit (DMU), each province in

the case of K production factors input x ¼ ðx1; x2; � � � xKÞ 2 RK
þ

. M kinds of expected output

y ¼ ðy1; y2; � � � yMÞ 2 RM
þ

, and N kinds of unexpected output b ¼ ðb1; b2; � � � bNÞ 2 RN
þ

can be

obtained. Therefore, the input-output value (xi,t,yi,t,bi,t) in the t period of province i is con-

structed as follows:

PtðxtÞ ¼ fðyt; bt : x can produce ðyt; btÞg ð1Þ

When the decision unit production possibility set Pt satisfies the unexpected output to be 0,

the expected output will also be 0. If the unexpected output can be disposed of under the con-

dition that the unexpected output can be disposed of, the directional distance function can be

defined as:

D!0ðx; y; b; gy; g@Þ ¼ maxfbjðyþ bgy; b � bgbÞ 2 PðxÞg ð2Þ

β is the directional distance function value, g = (gy,gb) is the direction vector, generally take

g = (y,−b), and the purpose of using the directional separation function is to maximize the

expected output (y) and minimize the expected output (b).

3.2. Direction distance function DEA model based on common frontier

The idea of heterogeneity based on the common frontier analysis method originated from the

concept of "Meta-frontier" proposed by Hayami and Ruttan [55], and has been widely used in

efficiency measurement. For example, Fig 1 has three group frontiers under the common fron-

tier, which represent the eastern, central and western parts of the country according to geo-

graphical regions. The total factor productivity of the DMU at the common frontier and the

group frontier can be defined as:

1 � b
meta
¼
kCBk
kCAk

;

1 � b
group
¼
kCDk
kCAk

¼
kCBk þ kBDk
kCAk

ð3Þ

Fig 1. Common frontier and group frontier.

https://doi.org/10.1371/journal.pone.0257239.g001
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According to Chiu et al. [56], βmeta and βgroup can be calculated by the following models:

D!0ðxt; yt; bt; yt; � btÞ ¼ maxbm

s:t:

XT

t¼1

XVm

v¼1

mtvx
t
vk � xtk; k ¼ 1; . . . ;K

XT

t¼1

XVm

v¼1

mtvy
t
vm � ð1þ b

m
Þytm;m ¼ 1; . . . ;M

XT

t¼1

XVm

v¼1

mtvb
t
vn ¼ ð1 � b

m
Þbtn; n ¼ 1; . . . ;N

mtv � 0; v ¼ 1; . . . ;Vm; t ¼ 1; . . . ;T

ð4Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

D!0ðxt; yt; bt; yt; � btÞ ¼ maxbg

s:t:

XT

t¼1

XVg

v¼1

y
t
vx

t
vk � xtk; k ¼ 1; . . . ;K

XT

t¼1

XVg

v¼1

y
t
vy

t
vm � ð1þ b

g
Þytm;m ¼ 1; . . . ;M

XT

t¼1

XVg

v¼1

y
t
vb

t
vn ¼ ð1 � b

g
Þbtn; n ¼ 1; . . . ;N

y
t
v � 0; v ¼ 1; . . . ;Vg ; t ¼ 1; . . . ;T

ð5Þ

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Among them, K, M and N are the quantities of factor input, expected output and unex-

pected output, and Vm and Vg represent the quantity of DMU under the common frontier and

group frontier. μ and θ are intensity variables at these two levels.

In addition, according to the inclusion relationship of heterogeneity: βmeta�βgroup, group

heterogeneity is caused by kBDk. According to Hu et al. [57], the optimal production potential

GMP is defined as the ratio of the potential (minimum) input required to achieve the optimal

technical efficiency under the framework of agricultural multi-factor production. That is:

GMP ¼ 1 � ð1 � b
m
Þ ¼ b

m
ð6Þ

The technology gap ratio (TGR) under the common frontier framework is equal to the ratio

of the common frontier efficiency to the group frontier efficiency, that is:

TGR ¼
1 � b

m

1 � b
g ð7Þ

The value is between [0,1] and reflects the gap between the group frontier and the common

frontier technology level. The larger the TGR, the closer the actual production technology is to

the potential production technology level; The smaller the TGR, the farther the actual produc-

tion technology is from the potential technical level.
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3.3. Metafrontier Malmquist-Luenberger index model

In this paper, the total factor productivity of green agriculture is measured. In order to reflect

the research field, Metafrontier Malmquist Luenberger is recorded as GATFP (total factor pro-

ductivity of green agriculture).

The traditional Malmquist-Luenbeger exponent has no solution to linear programming,

and does not have transitivity and additionality [58]. Pastor and Lovell [59] pointed out that

Metafrontier Malmquist-Luenberger can effectively solve the problem that ML exponential

linear programming is not feasible. Oh [60] applies the Metafrontier method to the Global

Malmquist model and constructs the Metafrontier Malmquist-Luenberger exponential model.

The highlight is that the production of all periods may be gathered and enveloped to build the

global frontier, that is, PG(x) = P1(x1)[P2(x2)[� � �[PT(xT), and the model is:

PGðxÞ ¼

ðyt; btÞ :
XT

t¼1

XI

i¼1

Ziy
t
im � ytm;

XT

t¼1

XI

i¼1

Zib
t
in � btn;

XT

t¼1

XI

i¼1

Zix
t
ik � xtk

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð8Þ

The Metafrontier Malmquist-Luenberger index consists of the distance between the two

adjacent production points and the common frontier. At the same time, the model has transi-

tivity, that is:

mGATFPtt� 1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � D!m
t� 1
ðxt; yt; bt; yt; � btÞ

1 � D!m
t� 1
ðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ

�
1 � D!m

t ðxt; yt; bt; yt; � btÞ

1 � D!m
t ðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ

v
u
u
t ð9Þ

gGATFPtt� 1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � D!g
t� 1ðxt; yt; bt; yt; � btÞ

1 � D!g
t� 1ðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ

�
1 � D!g

t ðxt; yt; bt; yt; � btÞ

1 � D!g
t ðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ

v
u
u
t ð10Þ

mGATFPtt� 1
and gGATFPtt� 1

, which represent the total factor productivity level of green

agriculture at the common frontier and the group frontier respectively. Its value is greater than

1, indicating that the total factor productivity of green agriculture has increased. According to

Wang et al. [61], GATFP can be decomposed into:

GATFPtt� 1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � D!t� 1ðxt; yt; bt; yt; � btÞ

1 � D!t� 1ðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ
�

1 � D!tðxt; yt; bt; yt; � btÞ

1 � D!tðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ

v
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � D!t� 1ðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ

1 � D!tðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ
�

1 � D!t� 1ðxt; yt; bt; yt; � btÞ

1 � D!tðxt; yt; bt; yt; � btÞ

v
u
u
t �

1 � D!tðxt; yt; bt; yt; � btÞ

1 � D!t� 1ðxt� 1; yt� 1; bt� 1; yt� 1; � bt� 1Þ

¼ GATCt
t� 1
� GAECt

t� 1

ð11Þ

GATFP index greater than 1 indicates that the total factor productivity of green agriculture

increases, and less than 1 indicates that the total factor productivity of green agriculture

decreases. Technological progress index (GATC) and technological efficiency index (GAEC)

are greater than 1, which indicate technological progress and efficiency improvement, and less
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than 1, which indicate technological retrogression and efficiency decline, both reflect the tech-

nological changes, regional efficiency level in management, system, scale economy and so on

[62]. Through the GATFP index and its decomposition items, we can analyze the trend of total

factor productivity of green agriculture, and provide an improvement plan for the develop-

ment of green agricultural economy according to the heterogeneity of the three regions.

4. Data and descriptive statistics

4.1. Index selection

This paper uses the panel data of 30 provinces in China except Hong Kong, Macao, Taiwan

and Tibet from 1997 to 2019 for empirical analysis. Considering the availability and continuity

of the data of each province and index, this paper selects the data after 1997 as the research

period. According to the standard of Jun et al. [63] and Wang et al. [64], the whole country is

divided into eastern, central and western regions.

The following are the agricultural input and output indicators that need to be clarified to

calculate the total factor productivity of green agriculture:

According to Xavier [65], agricultural input is defined as land, labor, mechanical power and

fertilizer input. In this paper, agricultural sown area is used as land input, because it reflects a

series of agricultural planting activities such as transplanting crops. The employment of the

primary industry reflects the actual utilization of labor force in a certain period of time, so it is

regarded as labor input. At the same time, in this paper, the total power of agricultural machin-

ery is expressed by mechanical input, and the fertilizer application is converted into pure

amount (including nitrogen fertilizer, phosphorus fertilizer, potassium fertilizer and com-

pound fertilizer used in agricultural production) is expressed by chemical input. The above

indicators are derived from China Statistical Yearbook, China Rural Statistical Yearbook and
Provincial Statistical Yearbook (1998–2020), and individual missing values are filled by

interpolation.

For agricultural output, it can be divided into expected output and unexpected output. In

this paper, the gross domestic product of the primary industry is regarded as the expected out-

put of agriculture, which can accurately reflect the real output level by eliminating the "inter-

mediate consumption".

In this paper, agricultural carbon emissions and non-point source emissions are included

in the research framework of non-expected output.

For carbon emissions, we use Wang and Lin [49] and Yang et al. [50] to calculate CO2 emis-

sions according to the guidance method of IPCC, and calculate agricultural carbon emissions.

IPCC’s method is a global measurement method, which avoids the error caused by different

calculation caliber, so this paper uses IPCC’s method to calculate China’s agricultural carbon

emissions. IPCC’s method gives the carbon source and emission coefficient of agricultural pro-

duction, and its calculation model is as follows:

Dt ¼
X

Ctj � Fj ð12Þ

Dt represents the total carbon emissions in the t year, Ctj represents the consumption of

energy of category j in the t year, Fj is the carbon emission coefficient of energy of type j, where

j = 1,2,3,4,5,6 represent the corresponding carbon sources, that is, the amount of chemical fer-

tilizer application, the amount of pesticide use, the amount of agricultural film use, the area of

cultivated land irrigation, the amount of agricultural diesel oil use and the area of cultivated

land.
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For the discharge of non-point source pollutants, according to the Bulletin of the First
National Pollution Source Census, non-point source pollutants are defined as chemical

oxygen demand (CODcr), total nitrogen (TN) and total phosphorus (TP), and the rela-

tionship between agricultural activities and pollutants is established according to Lai et al.

[66] and Chen et al. [67]’s "Top-down" unit analysis method. The calculation formula is as

follows:

ANSP ¼
X

EUactivity ¼
XX

EUclassification ¼
XXX

EUunit � EUA ð13Þ

In the formula, ANSP represents the sum of the emissions of agricultural non-point source

pollution, that is, CODcr, TN and TP, EUactivity represents the activities that produce non-point

source pollution, EUclassification represents the specific category of non-point source pollution,

EUunit is a specific unit that produces non-point source pollution, in which the activity is com-

posed of categories, the category is composed of units, and EUA represents the pollutant emis-

sions of a single unit. The calculation formula is as follows:

EUA ¼
X

i

EUirijð1 � ZiÞCijðEUij; SÞ

¼
X

i

PEijrijð1 � ZiÞCijðEUij; SÞ
ð14Þ

In the formula, EUi representing the i unit, ρij is the pollution intensity coefficient of the i
unit pollutant j, ηi is the resource utilization efficiency correlation coefficient, PEij is the pro-

duction amount of the pollutant j, Cij represents the j emission coefficient of the i unit of pol-

lutants, determined by EUij, and the spatial characteristics S.

The survey indicators of non-point source pollution production units come from China
Rural Statistical Yearbook, China Statistical Yearbook and Provincial Statistical Yearbook. The

parameters such as pollution intensity coefficient and emission coefficient mainly come from

the provincial data of the first national pollution source census: the relevant resource utilization

efficiency coefficient, loss coefficient and other data refer to the treatment method of Zou et al.

[68].

4.2. Analysis of data significance

After calculating the green agricultural total factor productivity according to the above indica-

tors, this paper makes a single factor analysis of variance on the data of 30 provinces from 1998

to 2019. As shown in Table 1, the measured values have not only temporal significance, but

also spatial significance.

Table 1. Result of a single factor analysis of variance.

Difference SS MS F P-value F crit

Time

Inter-group 0.195756 0.009322 4.540282 1.51E-10 1.572417

Within-group 1.309887 0.002053

Summary 1.505643

Space

Inter-group 0.019209 0.000915 8.794417 9.47E-10 1.800885

Within-group 0.004576 0.000104

Summary 0.023785

https://doi.org/10.1371/journal.pone.0257239.t001
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5. Results and discussion

In this paper, the total factor productivity of green agriculture (GATFP) in 30 provinces of

China from 1997 to 2019 is calculated and decomposed, and the factors affecting the total fac-

tor productivity of green agriculture are analyzed. Based on this, the regional difference and

influence mechanism of total factor productivity of green agriculture are studied.

5.1. The development characteristics of the total factor productivity of

green agriculture in China

Fig 2 is the change trend of total factor productivity of green agriculture in China during the

study period, and the shape of the box in each year is determined by the productivity value of

each province in that year. The longer the box, the more scattered the distribution of each

province in that year, and the shorter the box, the more concentrated the distribution of each

province. From this, we can see that GATFP shows the characteristics of first concentration

and then dispersion in time. Before 2010, due to the great differences in economic level and

social development between regions, growth poles will first be formed in all parts of the coun-

try, and then the economic development of surrounding areas will be improved through "dif-

fusion effect", showing the concentrated characteristics of GATFP. However, in recent years,

Fig 2. Variation of GATFP in China from 1998 to 2019.

https://doi.org/10.1371/journal.pone.0257239.g002
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due to the rapid development of scientific and technological innovation capability, it is very

likely that production relations cannot keep up with the development of productive forces in

underdeveloped areas, thus showing the characteristics of "Matthew Effect".

Fig 3 is the trend of GATFP and its decomposition technology efficiency change (GAEC)

and technology progress level (GATC). As can be seen from the figure, except for 1998

(0.9956), 2002 (0.9936) and 2017 (0.9946), the average of other years is more than 1, showing

an upward trend over time, but the overall level is low. From 1997 to 2019, the total factor pro-

ductivity index of green agriculture was 1.0173, that is, the average annual growth rate was

1.73%, and the cumulative average productivity index was 1.4533. That is to say, the cumula-

tive growth rate during the study period (1997 = 1.0000) was 45.33%, and the cumulative

growth was relatively fast.

From the national level, technological progress (1.0188) has a catalytic effect on GATFP,

while technological efficiency (0.9985) has an inhibitory effect on GATFP. Technological prog-

ress is the core driving force of total factor productivity of green agriculture, the main reasons

are: First, the support of agricultural science and technology investment and the improvement

of production technology directly promote technological progress; Second, due to the

Fig 3. Variation of GATFP and its decomposition terms from 1998 to 2019.

https://doi.org/10.1371/journal.pone.0257239.g003
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inadequate use of agricultural production technology, the idle technical equipment and the

limited large-scale development of agriculture. It has a weak inhibitory effect on GATFP

because of low technical efficiency.

The volatility of GATFP over time is mainly affected by the changes of agricultural policy

and economic policy. Gong [69] divides agricultural policy into three stages: 1994–1998,

1998–2004 and after 2004. Then Huang [70] expanded 2012–2017 to the fourth stage, and the

research period of this paper is 1997–2019. According to the above criteria, it can be divided

into three stages: 1997–2004, 2004–2012 and 2012–2019, as shown in Fig 3.

In the first stage, GATFP showed an integral upward trend. Due to the extraordinary natu-

ral disasters in China in 1998, agricultural production was seriously affected, so that the value

of this point was less than 1, and then it rebounded in 1999. In 2001, China joined the World

Trade Organization, and agricultural products can be freely circulated internationally. In the

same year, the government abolished the quota procurement policy and reduced the protec-

tion measures for agricultural products. In order to cope with the challenges and competitions

brought about by globalization, China’s technological progress in the field of agriculture has

been accelerating, thus achieving the growth of GATFP. During this period, technological

progress (1.0085) stimulated GATFP, and technological efficiency (0.9972) inhibited GATFP,

and that effect of both are not obvious.

The second stage showed greater volatility, agricultural reform documents were issued inten-

sively, and policy instability affected agricultural production. Among them, the abolition of agri-

cultural tax in 2006 stimulated agricultural production and increased GATFP, followed by the

global financial crisis in 2018, which made the prices of agricultural products continue to decline.

It has a greater impact on agricultural production and reduced the growth rate in 2009. Subse-

quently, the economy recovered and the government increased subsidies for agricultural prod-

ucts, which led to a rebound in GATFP. During this period, the distribution of technological

progress (1.0203) and technological efficiency (0.9998) stimulated and inhibited GATFP.

In the third stage, GATFP fluctuated slightly, but it achieved rapid development. During

the 19th National Congress of the Communist Party of China, the government put forward

the development strategy of "Rural Revitalization", stipulating that the contract period of land

should be extended for another 30 years, which raised farmers’ awareness of land using rights,

and would be more willing to increase agricultural investment by introducing advanced sci-

ence and technology, thus making GATFP appear more. In 2017, due to frictions in trade

activities, the import volume of agricultural products in the United States directly caused losses

to farmers, resulting in total factor productivity less than 1. During this period, technological

progress (1.0273) had a weak inhibitory effect on GATFP, while technological efficiency

(0.9984) had a weak inhibitory effect.

In order to make GATFP develop better, we need to improve the technological level and

innovation ability of the whole society, pursue efficient output and reduce environmental pol-

lution. The government needs to increase investment in science, technology and environmen-

tal protection. In the special period, appropriate subsidies should be given to rural farmers to

make agricultural production develop steadily. Only when technology, efficiency and policy

play a positive role in all aspects, can the total factor productivity level of green agriculture in

China develop continuously and healthily.

5.2. Temporal and spatial characteristics of total factor productivity of

green agriculture in different regions

Fig 4 is the trend of GATFP over time in the eastern, central and western regions. From the

time point of view, the time characteristics of the three regions are consistent with the overall
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trend of the whole country basically, showing the characteristics of fluctuation and rising, the

GATFP index from high to low is eastern (1.0199), central (1.0157) and western (1.0155), the

gap between regions is relatively small in most years.

Fig 5 is the trend chart of the production potential (GMP) of the three regions changing

with time.

From the time point of view, the three regional changes have shown a downward trend

gradually, before 2009 and after 2017, GMP declined in turn in the order of the middle, west

and east, in the rest of the intermediate time, the total factor productivity of green agriculture

in each group declined in turn in the west, east and middle. In the eastern, western and central

regions, the annual average values are 0.7349, 0.6560 and 0.6439, that is, with the potential

optimal production technology, the total factor productivity of green agriculture will reach

26.51%, 34.40%, 35.61%.

Compared with the eastern region, the central and western regions have greater production

potential, which shows that the central and western regions need to fully absorb the technolog-

ical advantages of economically developed areas and make production relations keep pace

with the development of productive forces. At the same time, the government should

strengthen guidance and support to keep up with the overall development of the whole coun-

try. Among them, the central region should give full play to its advantages in natural geological

conditions, rationally apply technological innovation to agricultural production, improve its

Fig 4. Changes of GATFP in the eastern, central and western regions from 1998 to 2019.

https://doi.org/10.1371/journal.pone.0257239.g004
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independent innovation ability, design a sustainable circular agricultural system, and reduce

the waste of factor input and environmental pollution.

Technology gap rate (TGR) reflects the gap between the productivity level of a specific

group and the productivity level under the potential common frontier. The larger the value is,

the closer the actual technical level of the decision making unit is to the optimal productivity

technology level of the common frontier. Fig 6 reflects the trend of technology gap rate in the

three regions over time.

From the time point of view, the eastern TGR is close to 1 during the study period, and the

fluctuation range is small. The TGR in the western region is at a medium level and shows a

downward trend, indicating that the level of technological innovation needs to be strengthened

in the future to avoid the decline of TGR progress. TGR in the central region is at a low level,

but it shows an upward trend, indicating that the situation in the central region has improved

in recent years.

From the spatial point of view, the average TGR of the three regions is from high to low in

the east (0.9995), the west (0.9258) and the middle (0.7684). The technical level of green agri-

cultural productivity in most provinces and regions of the eastern and western groups is basi-

cally close to the optimal production technology level of the common frontier in the group,

Fig 5. Changes in GMP in the eastern, central and western regions from 1997 to 2019.

https://doi.org/10.1371/journal.pone.0257239.g005
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while the technical gap rate in the central part is small. The main reasons are the low efficiency

of production technology and the large gap of production technology in the provinces of the

region. Because of the ratio, improving the level of production technology and narrowing the

technological gap between provinces are important ways to effectively improve the total pro-

ductivity of regional green agriculture and to stabilize the development of total factor produc-

tivity of green agriculture in surrounding areas.

Figs 7–10 is the GATFP change and average technology gap rate of each province in differ-

ent regions from 1997 to 2019. From the perspective of the three regions as a whole, the larger

points of GATEP are concentrated around 2000 and after 2016, mainly because the tax reform

has fully mobilized the enthusiasm of farmers and the rapid development of technological

innovation ability in the new era.

From the perspective of specific provinces in different regions (Figs 7–10 and Table 2), The

top five provinces in China are Guangdong (1.0000), Jiangsu (1.0000), Fujian (1.0000), Shanghai

(0.9999) and Liaoning (0.9999) are all in the eastern region, while Shanxi (0.6093), Jilin (0.6516),

Jiangxi (0.7220), Hubei (0.7574) and Anhui (0.8363) are all located in the central part.

The reasons can be explained from the total factor productivity level and technology gap of

green agriculture: the overall GATFP value in the east is larger, and the core driving force of

technological progress is larger. The closer it is to the optimal productivity technology level

under the common frontier; GATFP in the western region is relatively average, indicating that

Fig 6. Changes in TGR in the eastern, central and western regions from 1997 to 2019.

https://doi.org/10.1371/journal.pone.0257239.g006
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the total factor productivity level of green agriculture in the region is relatively close, so there

will not be some provinces to lower the average technology gap, so that the technology gap rate

of the western region is in the middle level; The internal development of the central region was

unbalanced in the early stage, and the situation has improved in recent years, so the average

technology gap rate is at a low level due to the impact of the long-term imbalance in the early

stage.

In order to narrow the gap of green agricultural economic development among regions, it

is necessary to adjust the advantages and disadvantages of the technological efficiency, produc-

tion potential and technological gap between the eastern, central and western regions.

Fig 7. Time variation and average TGRs of GATFP in the eastern provinces.

https://doi.org/10.1371/journal.pone.0257239.g007
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Farmers, enterprises, the government and other aspects should take various measures to com-

prehensively improve the total factor productivity level of green agriculture.

5.3. Effect of technology progress and technology efficiency in different

region

Fig 11 is the semi-box chart of total factor productivity of green agriculture in the eastern, cen-

tral and western regions, and each numerical point represents the average value of different

provinces for many years.

Fig 8. Time variation and average TGRs of GATFP in the central provinces.

https://doi.org/10.1371/journal.pone.0257239.g008
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As shown in Fig 11, the mean values of GATFP and its decomposition terms in the three

regions are all greater than 1, and the mean values of technical efficiency are also greater than

1. The total factor productivity index of green agriculture is from high to low in the east

(1.0199), middle (1.0160) and western (1.0156). Technological progress (1.0211 in the east,

1.0194 in the middle and 1.0160 in the west) is promoted, while technological efficiency

(0.9989 in the east, 0.9966 in the middle and 0.9996 in the west) was consistent with the overall

effect of the whole country.

According to the specific situation of each province (Fig 12 and Table 3), the top five prov-

inces of China’s GATFP are Xinjiang (1.0365), Shaanxi (1.0301), Yunnan (1.0273),

Fig 9. Time variation and average TGRs of GATFP in the western provinces.

https://doi.org/10.1371/journal.pone.0257239.g009
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Heilongjiang (1.0272) and Shandong (1.0266), and these five provinces are in the top five of

GAEC or GATC. The technical efficiency of Xinjiang plays a role in promoting total factor

productivity, and the scale effect is strong. Shaanxi is located at the junction of the western and

Fig 10. The average TGRs of GATFP in national provinces.

https://doi.org/10.1371/journal.pone.0257239.g010

Table 2. TGR ranking of some provinces.

No. Comprehensive No. Eastern Region Central Region Western Region

1 Guangdong 1.0000 1 Guangdong 1.0000 Henan 0.8888 Yunnan 0.9623

2 Jiangsu 1.0000 2 Jiangsu 1.0000 Hunan 0.8434 Gansu 0.9573

3 Fujian 1.0000 3 Fujian 1.0000 Heilongjiang 0.8388 Ningxia 0.9530

4 Shanghai 0.9999

5 Liaoning 0.9999

26 Anhui 0.8363

27 Hubei 0.7574

28 Jiangxi 0.7220 Bottom 3 Tianjin 0.9990 Jiangxi 0.7220 Qinghai 0.8981

29 Jilin 0.6516 Bottom 2 Beijing 0.9986 Jilin 0.6516 Inner Mongolia 0.8946

30 Shanxi 0.6093 Bottom 1 Hebei 0.9983 Shanxi 0.6093 Xinjiang 0.8705

https://doi.org/10.1371/journal.pone.0257239.t002
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central regions, with high-quality natural geological conditions, suitable for large-scale agricul-

tural production. And because the level of technological progress in Shaanxi is relatively high

in the western region, GATFP is in the forefront.

Qinghai (1.0009), Ningxia (1.0021), Guangxi (1.0047) and Jilin (1.0062) and Sichuan

(1.0075) ranked the last five in GATFP and are all underdeveloped areas of agricultural econ-

omy in the central and western regions. Because the level of technological progress in the west-

ern region is at a low level in the whole country, the conditions of agricultural production have

not reached the national average level, so it is at the end of the ranking. In the ranking of the

three indicators, the frequency of the eastern provincial cities is low, which shows that the eco-

nomically developed areas are not necessarily good in technical efficiency. It is difficult to

form a scale effect, which makes the effective technology investment insufficient and the tech-

nology efficiency inhibits the growth of GATFP. Moreover, according to the ranking of the

Fig 11. GATFP of the three regions and its decomposition.

https://doi.org/10.1371/journal.pone.0257239.g011
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three indicators, we can see that the development of the central and western provinces is quite

different, and further key policy support is needed to narrow the regional gap.

In order to further develop the level of green total factor productivity in China’s agri-

culture, it is necessary to improve technological progress and efficiency at the same time,

Fig 12. GATFP of national provinces and its decomposition.

https://doi.org/10.1371/journal.pone.0257239.g012

Table 3. Top and bottom five rankings of GATFP, GAEC and GATC in China.

No. GATFP GAEC GATC

1 Xinjiang 1.0365 Shaanxi 1.0180 Heilongjiang 1.0311

2 Shaanxi 1.0301 Yunnan 1.0143 Shandong 1.0266

3 Yunnan 1.0273 Xinjiang 1.0140 Liaoning 1.0258

4 Heilongjiang 1.0272 Gansu 1.0036 Jiangsu 1.0236

5 Shandong 1.0266 Guizhou 1.0030 Sichuan 1.0231

26 Sichuan 1.0075 Liaoning 0.9882 Qinghai 1.0131

27 Jilin 1.0062 Qinghai 0.9879 Yunnan 1.0128

28 Guangxi 1.0047 Guangxi 0.9870 Shaanxi 1.0119

29 Ningxia 1.0021 Jilin 0.9860 Ningxia 1.0082

30 Qinghai 1.0009 Sichuan 0.9848 Shanxi 1.0081

https://doi.org/10.1371/journal.pone.0257239.t003
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and their effects should not be ignored. First of all, enterprises need to improve their own

technical level, develop and apply sustainable circulation systems, and expand output on

the premise of reducing environmental pollution. At the same time, the government

should strengthen policy guidance, encourage the introduction of advanced technology,

narrow regional differences, adjust measures to local conditions according to the develop-

ment of different regions, and devote itself to the development of total factor productivity

of green agriculture from various aspects.

6. Conclusions and policy implications

This paper calculates and decomposes the green total factor productivity of China from 1997

to 2019, and the following conclusions are obtained:

Firstly, from the national level, China’s GATFP basically showed an upward trend, with

rapid growth and obvious fluctuations over time. Technological progress has a promoting

effect on GATFP, while technological efficiency has a weak inhibitory effect.

Secondly, from the differences of the three regions, we can see that GATFP decreases in the

order of eastern, central and western regions. Moreover, the overall characteristics of the three

regions over time are similar to the national trend. There are disadvantages in scale production

in the eastern region, great production potential in the central region, and worrying prospects

in the technological gap level in the western region, which have brought hidden dangers to the

improvement of total factor productivity of regional green agriculture.

Thirdly, the effect of technological progress and technological efficiency on GATFP in

three regions is similar to that of the whole country. The differences lie in the characteristics

between the provinces within the regions. The eastern part has strong technical advantages,

and the technical efficiency level of most areas is above the average level. The central and west-

ern region has a strong efficiency advantage, which is mainly reflected in the large-scale pro-

duction and scale effect.

Based on the conclusion of this study, the following policy recommendations can be

extended:

Firstly, it is advisable to pay more attention to regional differences, adapting measures to

local conditions, utilizing agglomeration effect and diffusion effect, adjusting input and out-

put, and increasing policy support. The country should continuously reduce environmental

pollution, and comprehensively improve the agricultural green total factor productivity. In the

process of implementation, it may face the problem of uneven distribution among regions,

which has certain challenges for decision-making.

Secondly, for the eastern region, we can increase investment in scientific research, design

and develop new production modes, and fully apply existing technologies to agricultural pro-

duction. Improve production efficiency and reduce environmental pollution. For example, the

comprehensive efficiency of agriculture in Liaoning Province is relatively high, but more than

50% of the areas fail to achieve economies of scale in agricultural production. By increasing the

popularization of agricultural production technology, the agricultural efficiency of Liaoning

has been greatly improved in recent years.

Thirdly, for the central region, we should give full play to its geographical advantages,

absorb the diffusion effect of the growth pole in the eastern region, and fill in the greater pro-

duction potential of the region. At the same time, we should pay attention to environmental

protection, increase investment and control pollution in agricultural production. Although the

implementation of this scheme can theoretically improve GATFP, it may make the production

input and environmental protection input unbalanced in the central region, resulting in poor

financial support.
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Finally, for the western region, on the one hand, the government needs to increase support,

comprehensively improve the level of regional science and technology, actively introduce

advanced technology, and constantly adapt to the development of new productive forces. On

the other hand, we need to apply technology to production activities reasonably and improve

the agricultural development model accurately. In the process of effectively improving rural

productivity, we may face the problem that farmers’ long-term production habits are difficult

to change. So how to effectively improve the content of human capital in the western region is

also a big challenge.

In a word, China should take various measures to coordinate regional development [71].
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