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Abstract

Named entity recognition (NER) is one fundamental task in the natural language processing

(NLP) community. Supervised neural network models based on contextualized word repre-

sentations can achieve highly-competitive performance, which requires a large-scale manu-

ally-annotated corpus for training. While for the resource-scarce languages, the

construction of such as corpus is always expensive and time-consuming. Thus, unsuper-

vised cross-lingual transfer is one good solution to address the problem. In this work, we

investigate the unsupervised cross-lingual NER with model transfer based on contextual-

ized word representations, which greatly advances the cross-lingual NER performance. We

study several model transfer settings of the unsupervised cross-lingual NER, including (1)

different types of the pretrained transformer-based language models as input, (2) the explo-

ration strategies of the multilingual contextualized word representations, and (3) multi-

source adaption. In particular, we propose an adapter-based word representation method

combining with parameter generation network (PGN) better to capture the relationship

between the source and target languages. We conduct experiments on a benchmark ConLL

dataset involving four languages to simulate the cross-lingual setting. Results show that we

can obtain highly-competitive performance by cross-lingual model transfer. In particular, our

proposed adapter-based PGN model can lead to significant improvements for cross-lingual

NER.

Introduction

Named entity recognition (NER) aims to extract named entities and meanwhile identify their

semantic types (e.g., person, organization and location) from text, which is one of the funda-

mental tasks in natural language processing (NLP) [1]. The task can be beneficial for a range of

applications, including relation extraction [2], coreference resolution [3] and question answer-

ing [4], as the extracted named entities are critical elements for these applications.
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NER is generally treated as a sequence labeling problem by word-level tagging, where the

tags are defined according to the entity boundary information [5]. Fig 1 shows one example

for NER modeling. Conditional random fields (CRF) models with neural networks have

achieved state-of-the-art performance [6, 7]. In particular, equipped with contextualized

word-level neural representations such as BERT [8], neural NER systems can reach a perfor-

mance over 92% by the F-measure on the benchmark ConLL03 English dataset, close to 2%

increases over the previous systems [6, 9, 10].

All these successes are based on supervised setting, assuming that a large-scale manually-

constructed high-quality corpus is available for model training. However, it is not always the

setting in practical, especially for the resource-scarce languages, where there exists no training

corpus to learn such a supervised model. According to the official statistics, there are over

7,000 languages today, and most of them do not have any annotated corpus for NER.

The model transfer is one mainstream method for unsupervised cross-lingual adaption

[11–13], which builds cross-lingual models on language-independent features such as cross-

lingual word representations, and thus the learned models can be applicable to target lan-

guages directly. The method has received great attention as it is quite straightforward and easy

to follow. Under the neural setting, previous cross-lingual NER studies are mostly focusing on

multilingual word embeddings [14], or a simple exploration of mBERT to another line of

transfer strategies [15, 16].

In this work, we present the first work to study cross-lingual model transfer with contextu-

alized word representations for NER comprehensively. Here we mainly focus on mBERT and

XLM, which are two widely-adopted multilingual contextualized word representations based

on the transformer network. Our first goal is to compare the two kinds of word representa-

tions, and meanwhile investigate fine-tuning and feature-based methods of exploiting mBERT

and XLM [8]. Fine-tuning is the standard strategy because of its high performance, whereas

the feature-based strategy by frozen the mBERT or XLM parameters is much more parameter-

efficient. Here, we adopt the adapter mechanism for the feature-based strategy in order to

make the two strategies comparable in performance. Finally, we study single-source and

multi-source model transfer, and propose a novel model based on parameter generation net-

work (PGN) [17] to better capture the differences between the source and target languages.

We conduct experiments on the benchmark ConLL dataset to evaluate our models, which

includes four languages: English, Spanish, German and Dutch, respectively. The languages are

used to simulate the resource-scarce languages, where only the test dataset is available when

one is selected as the targeted language. First, we can find that XLM can achieve better

performance than mBERT with fair comparisons as a whole. Second, the adapter enhanced

Fig 1. An example of neural NER with sequence labeling.

https://doi.org/10.1371/journal.pone.0257230.g001
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feature-based method is one good alternative for model transfer, which achieves very competi-

tive performance with much less learned parameters. Third, multi-source transfer can help the

target language greatly, leading to averaged improvements by 2.79 points compared with the

best-reported bilingual transfer.

In summary, our major contributions in this article are three folds. (1) We present the

first comprehensive work to investigate cross-lingual NER by using model transfer with con-

textualized word representations, including comparisons between different multilingual

contextualized word representations, different exploration methods of word representations

as well as multi-source transfer. (2) We are the first work of exploiting the adapter module

and parameter generation network to enhance multilingual contextualized word representa-

tions for unsupervised cross-lingual model transfer. (3) We empirically evaluate the model

transfer method with various settings for cross-lingual NER. The codes and related data are

released publicly available at https://github.com/qtxcm/UCT-NER under Apache License

2.0.

Method

Given an input sentence, the goal of NER is to identify all entities with specific named types,

such as Person, Organization, Location, and etc. The standard sequence labeling architecture

is widely exploited to formalize the task, which transforms entities/non-entities into character-

level boundary labels by using the BIO or BIOES schema. Here we adopt the the BIOES

schema, where each sentential word is labeled as either “O”(non-entity words), “B-XX” (the

beginning word of an entity with type “XX”), “E-XX” (the end word of an entity with type

“XX”), “I-XX” (the middle word of an entity with type “XX”), or “S-XX” (a single-word entity

with type “XX”). Notice that the overlapped or discontinuous entitles are not considered in

this work.

The model

We adopt BERT-BiLSTM-CRF as the main model structure for our NER task, which can

achieve state-of-the-art performance for NER [9]. The model consists of four components:

(1) word representation, (2) Encoding, (3) CRF decoding, and (4) training, and particularly

for word representation, we consider the fine-tuning and feature-based strategies for external

pretrained parameters. Fig 1 shows the overall architecture by an example. Here we introduce

the model in detail.

Word representation. The word representation is the key to cross-lingual NER of model

transfer, which serves as the primary bridge to adapt to multiple languages. For a given sen-

tence �w ¼ w1 � � �wn (i.e., n indicates the sentence length), we first convert it into sequential

hidden vectors by using pretrained contextualized language model:

e1 � � � en ¼ TRANSFORMERPLMð�wÞ: ð1Þ

Here we only exploit the pretrained transformed-based language models. The overall net-

works of these pretrained models are stacked by several standard transformer layers, as shown
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in Fig 2a. Each transformer submodule [18] is organized as follows:

q1���H
i ; k1���H

i ; v1���H
i ¼ SPLITðWqxi;Wkxi;WvxiÞ;

ali;j ¼ SOFTMAXð
TRANSPOSEðql

iÞk
l
j

ffiffiffiffiffiffiffiffiffiffi
head
p Þ; l 2 ½1;H�;

ri ¼ CONCATð
Xn

j¼1

a1

i;jv
1

i ; � � � ;
Xn

j¼1

aHi;jv
H
i Þ;

yi ¼ LAYERNORðxi þ riÞ;

f i ¼W2RELUðW1yi þ b1Þ þ b2;

zi ¼ LAYERNORMðyi þ f iÞ;

ð2Þ

where �x ¼ x1 . . . xn is the input, which is the word and positional embeddings at the first layer

and the previous layer outputs for the other layers, and �z ¼ z1 . . . zn.

In more detail, SPLIT divides a vector into H components, and following, self-attention

aggregations are performed for the H components, respectively. Then, the updated hidden

vectors after these individual self-attentions are concatenated. The above process is referred to

as multi-head self-attention. After the multi-head attention, a layer normalization (i.e., LAYER-

NORM) is used to regularize the original input xi and the attention output ri. Finally, a two-layer

Fig 2. The internal structure of a one-layer transformer. (a) Standard Transformer. (b) Transformer with Adapters.

https://doi.org/10.1371/journal.pone.0257230.g002
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feed-forward layer is executed, followed by another layer normalization, producing the one-

layer transformer output zi.
In this work, we investigate two multilingual word representations: mBERT and XLM [15,

16], which are both pretrained language models based on the transformer network. Although

the BiLSTM-based ELMo is also a widely-studied language model, we ignore it here because of

its lower performance for cross-lingual model transfer. In addition, note that mBERT or XLM

leads to subword-level representations, which include inconsistencies with our desired word-

level outputs, as one full word might be decomposed to several subwords in mBERT and XLM.

Here we use the averaged pooling over all the covered subwords for the representation of a full

word. Thus, we can finally obtain a sequence of word-level representations �e ¼ e1 . . . en as

shown in Eq 1 for NER.

Fine-tuning or feature-based. Transformer-based language model pretraining has

achieved state-of-the-art results on a wide range of NLP tasks [8]. It accepts full sentences as

inputs, outputting contextualized word representations based on a well-pretrained bidirec-

tional Transformer. Fine-tuning is the standard exploration for such pretrained language

models. Concretely, the last-layer vectorial output is exploited for feature extraction, and all

the internal parameters are fine-tuned along with our NER objective. It is the standard strategy

for using transformer-based language models, and can bring great successes for a number of

NLP tasks.

Although fine-tuning can achieve remarkable performances [8], the strategy may suffer

from the parameter inefficiency problem, where a newly-trained model would introduce a

new copy of mBERT or XLM weights (i.e., consuming 110M parameters). This process may

lead to great inconveniences in real scenarios which involve multiple NLP tasks and model

ensembles, since each model keeps a different copy of BERT weights. Thus, it is highly

meaningful to study the feature-based method which freezes the parameters of mBERT or

XLM during training. In this way, we can preserve a shared BERT across different NLP

models. Here we follow the above observation, investigating the feature-based method of

freezing the internal parameters of the large pretrained language models such as mBERT or

XLM.

The preliminary experiments show that direct feature extraction from mBERT or XLM

leads to significant decreases compared with fine-tuning. To reduce the gap, we exploit the

adapter mechanism [19, 20], applying it to the unit transformer layers of mBERT or XLM. The

overall process of one adapter can be formalized as follows:

down‐proj : hmid ¼ GELUðWdownhin þ bdownÞ;

up‐proj : hout ¼Wuphmid þ bup þ hin;
ð3Þ

where Wdown, Wup, bdown and bup are model parameters, which are much smaller than those of

transformer in scale, and the dimension size of hmid is also smaller than that of the correspond-

ing transformer dimension. The dimension sizes of hin and hout are consistent with the corre-

sponding transformer.

Fig 2b shows the differences between the standard transformer and the transformer with

adapters. For each transformer, we insert the adapters before the two layer normalization
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layers [20]:

q1���H
i ; k1���H

i ; v1���H
i ¼ SPLITðWqxi;Wkxi;WvxiÞ;

ali;j ¼ SOFTMAXð
TRANSPOSEðql

iÞk
l
j

ffiffiffiffiffiffiffiffiffiffi
head
p Þ; l 2 ½1;H�;

ri ¼ CONCATð
Xn

j¼1

a1

i;jv
1

i ; � � � ;
Xn

j¼1

aHi;jv
H
i Þ;

r0i ¼ ADAPTERðriÞ ;

yi ¼ LAYERNORMSðxi þ r0iÞ;

f i ¼W2RELUðW1yi þ b1Þ þ b2;

f
0

i ¼ ADAPTERðf iÞ ;

zi ¼ LAYERNORMSðyi þ f
0

iÞ;

ð4Þ

Note that we only tune the weights of the adapter modules during training, keeping all

parameters of the pretrained language models fixed.

Encoding. We use a bidirectional LSTM layer to further abstract the final hidden features

for our task [21], where the process can be formalized as:

h1 � � � hn ¼ BILSTMð½e1 � � � en�Þ ð5Þ

where �h ¼ h1 . . . hn is the desired features for the next decoding.

Actually, the majority of previous studies show that mBERT or XLM with fine-tuning does

not require any other extra encoding layers, and the output �e ¼ e1 . . . en can be directly

exploited for decoding with little loss in performance. Here, we insist on a BiLSTM encoding

since the performance is more stable and slightly better after using it. In addition, the BiLSTM

encoding can be effective for the feature-based methods.

Decoding. CRF has been a standard decoding strategy for sequence labeling [22]. First, a

linear feed-forward transformation layer is exploited to calculate the initial label scores. Then,

a label transition matrix T is used to model first-order Markov chains. Let �y ¼ y1 . . . yn be any

output label sequence, its score sð�yj�xÞ can be computed by:

oi ¼Whi þ b

sð�yj�xÞ ¼
Xn

i¼1

ðTyi� 1 ;yi
þ oi½yi�Þ

ð6Þ

where W, b and T are the model parameters. The decoding aims to find the highest-scored �y,

and here we utilize the Viterbi algorithm to achieve the goal.

Training. We exploit the sentence-level cross-entropy objective for our task training.

Given a gold-standard training instance ð�x; �yÞ, we first compute the conditional probability

pð�yj�xÞ based on the score function defined in Eq 6, and then apply a cross-entropy function to
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obtain the single instance loss:

pð�yj�xÞ ¼
exp ðsð�yj�xÞÞ

P
~y2~Y exp ðsð~yj�xÞÞ

;

Lð�x; �yÞ ¼ � log pð�yj�xÞ;

ð7Þ

where ~Y denotes all possible candidate predictions for sentence �x.

Cross-lingual model transfer

Based on the above model, we can achieve our cross-lingual model transfer by using multilin-

gual word representations. Moreover, since no language-dependent feature is exploited in the

NER model, we can use the model for any language in the world, treating all languages with no

discrimination. Thus, we can exploit a training corpus of any language for a target language. In

particular, if only one language is exploited for model training, we usually refer to it as single-

source cross-lingual model transfer, whereas if multiple languages are exploited during train-

ing, we characterize it as multi-source cross-lingual model transfer.

In this work, we present a new method that enables sophisticated representations of input

languages. By this method, we can capture the distances between different languages, which

can better help the single-source and multi-source cross-lingual model transfer. The key idea

is to use an embedding to denote each language, where several languages may have very similar

embedding vectors and others are different. To use the embeddings, we exploit the parameter

generate network (PGN) to enhance the word representations of our basic model.

We apply the PGN only to the adapter-based word representations, where the parameters

inside pretrained language models are kept frozen. The main reason lies that it is difficult to

integrate the language embeddings into the fine-tuned methods, which requires a re-pretrain-

ing for the language models by using a large-scale raw corpus. In contrast, only the adapter

parameters are required to be tuned for the adapter-based method, which can be combined

with PGN and learned from a distant task lightly.

Fig 3 shows the concrete network architecture of our adapter-based word representation

with PGN. Formally, we collect all adapter parameters as a whole and pack them into a vector

Vada, and also the vector can be unpacked for the calculation of individual adapters. In the

vanilla adapter model, Vada is shared by all languages with the same values, and after PGN is

exploited, Vada is produced dynamically for each language by the following equation:

Vada;l ¼ Oel; ð8Þ

where Vada,l indicates the new adapter parameters for a given language l, O is one model

parameter, and el is the language embedding.

Fig 3. The pretrained transformer-based language model coupling with adapters and PGN.

https://doi.org/10.1371/journal.pone.0257230.g003
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Since we do not have any target-language corpus to train our model, thus the determination

of el is difficult. Although we can learn the source language embeddings from the training cor-

pus, the target language embedding is in no way to be obtained. Here we adopt a distant super-

vision method to pretrain the language embeddings, which is then fixed for our final NER

model in the cross-lingual supervision. We exploit a parallel corpus to achieve the goal by a

binary classification to judge if a pair of sentences of different languages are translations of

each other. We simply use the adapter-based word representations to derive a sentence vector,

and then diff the pairwise vectors for classification. The positive instances are sentences from

the parallel corpus, while the negative instances are randomly sampled. In this way, we can

obtain the language embeddings as well as initialized adapters in advance, which are then fed

into our neural NER model, tuning only the parameter O continually.

Experiments

Experimental settings

Datasets. We construct a benchmark dataset by merging the CoNLL-2002 (Spanish and

Dutch) and CoNLL-2003 (English and German) datasets [23, 24]. All corpora of the four lan-

guages are annotated with 4 entity types: PER, LOC, ORG, and MISC, and each language-spe-

cific dataset is split into training, development, and test sets. Table 1 shows the dataset

statistics. We use the BIOES scheme to convert NER into the sequence labeling problem.

Network configurations. We leverage the cased mBERT (https://github.com/google-

research/bert/blob/master/multilingual.md) and XLM (https://dl.fbaipublicfiles.com/XLM/

mlm_17_1280.pth) for the pretrained word representations, where the first pretrained lan-

guage model includes 12 Transformer blocks, 768 hidden units, 12 self-attention heads, and

the second one is with 16 Transformer blocks, 1028 hidden units, 16 self-attention heads.

When adapters are applied, the dimensions of middle vectors are all set to 256. The language

embedding size is set to 16. For the BiLSTM encoding part, the hidden size is set to 200.

Network training. We implement all our proposed models based on the huggingface

Transformers (https://github.com/huggingface/transformers). We use online batch learning to

optimize model parameters, where the batch size is set to 32. For the optimizer, we adopt

AdamW with a learning rate of 5e-4 [25]. Furthermore, we use gradient normalization as well

by a max norm of 5. We train each model for several iterations, and use the model with the

best performance on the development set as the final model.

Offline learning of language embeddings. In particular, our PGN network requires off-

line language embeddings since there is no way to connect the target language embeddings

with the source language embeddings in our unsupervised setting. As mentioned in the Model

section before, we achieve the goal by a binary classification framework to judge whether two

sentences of different languages are with the same meaning. We exploit the Europarl V7

(https://www.statmt.org/europarl/) to obtain the parallel corpora as the positive instances, and

the negative examples are limited to the sentence set of these parallel corpora. We sample

Table 1. Data statistics, where the number of sentences and entities are reported, and Devel indicates the development set.

Language #Sentence #Entity

Train Devel Test Train Devel Test

English (en) 14,987 3,466 3,684 23,499 5,942 5,648

German (de) 12,705 3,068 3,160 11,851 4,833 3,673

Spanish (es) 8,323 1,915 1,517 18,798 4,351 3,558

Dutch (nl) 15,806 2,895 5,195 13,344 2,616 3,941

https://doi.org/10.1371/journal.pone.0257230.t001

PLOS ONE Unsupervised cross-lingual model transfer for NER with contextualized word representations

PLOS ONE | https://doi.org/10.1371/journal.pone.0257230 September 21, 2021 8 / 17

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://dl.fbaipublicfiles.com/XLM/mlm_17_1280.pth
https://dl.fbaipublicfiles.com/XLM/mlm_17_1280.pth
https://github.com/huggingface/transformers
https://www.statmt.org/europarl/
https://doi.org/10.1371/journal.pone.0257230.t001
https://doi.org/10.1371/journal.pone.0257230


randomly by a ratio of 1:5 corresponding to positive v.s. negative. In addition, give the repre-

sentations of a paired sentence, we exploit the absolute value function over their vector-sub-

traction for feature extraction, which is used for the next binary classification.

Evaluation. We use entity-level F1-score as the primary evaluation metric, following pre-

vious NER studies [5], and precision (P) and recall (R) are also reported. For each experiment,

we conduct 5 runs and report the average F1-score.

Main results

Single-source evaluations. Table 2 reports the main results of single-source cross-lingual

NER based on different feature-extraction methods and pretrained language models. There

are several interesting findings.

First, the English and Dutch as the sources languages can achieve better performances for

cross-lingual transfer. The potential reason is complicated, which includes at least three

aspects: the size of the training corpus, the size and distribution of the training entities, and the

distances between the source and target languages. As shown, we can see that the training cor-

pus size might be more critical for the transfer.

Second, the XLM as the pretrained word representations brings better performance than

mBERT as a whole. Under the fine-tuning, feature-based as well as the feature-based (PGN)

settings, the averaged improvements are 73.27 − 72.61 = 0.66, 73.87 − 73.31 = 0.56, 74.96

− 73.99 = 0.97, respectively.

Third, our feature-based method is better than the standard fine-tuning method. The obser-

vation indicates that the feature-based method is a better alternative in both parameter effi-

ciency and performance. We will see that the feature-based method only consumes one-

thirteenth of the parameters of the fine-tuning method.

Finally, the feature-based model with PGN can capture the language relationship effectively,

resulting in significantly better performance in cross-lingual transfer as a whole. Notice that

the exploration of PGN might be not as significant (i.e., the improvements larger than 0.5%

Table 2. Main results of single-source cross-lingual NER, where lavg indicates the averaged performance for each target language, and avg denotes the overall aver-

age F-scores of all source-target pairs.

Target Source (mBERT) Source (XLM)

en de es nl lavg avg en de es nl lavg avg

Fine-Tuning

en - 72.96 73.62 76.33 74.30 72.61 - 73.32 72.98 78.33 74.88 73.27

de 70.16 - 66.79 71.09 69.35 68.52 - 66.07 71.16 68.58

es 75.42 75.05 - 72.77 74.41 76.71 75.67 - 78.45 76.94

nl 77.45 68.16 71.51 - 72.37 79.08 67.68 71.29 - 72.68

Feature-based

en - 73.81 73.45 77.25 74.84 73.31 - 74.85 72.03 78.34 75.07 73.87

de 70.23 - 68.72 71.12 70.02 69.27 - 67.10 71.85 69.41

es 77.04 74.27 - 72.93 74.75 77.95 76.86 - 77.93 77.58

nl 77.96 70.86 72.13 - 73.65 79.25 68.08 72.92 - 73.42

Feature-based (PGN)

en - 74.98 74.59 77.59 75.72 73.99 - 75.78 75.12 78.94 76.61 74.96

de 70.31 - 70.03 71.26 70.53 69.52 - 69.07 72.03 70.21

es 77.59 74.46 - 73.28 75.11 78.01 76.93 - 78.87 77.94

nl 78.01 72.15 73.62 - 74.59 79.30 72.09 73.87 - 75.09

https://doi.org/10.1371/journal.pone.0257230.t002
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can be regarded as significant by pairwise t-test below 10−4) in some of the language pair trans-

fers. However, PGN is more desirable since it is more robust, which seldom gives degraded

performances for all these language pairs. The effectiveness of PGN has been demonstrated in

several other tasks, and our observation is consistent with theirs. Therefore, according to the

results, we adopt the feature-based XLM model combined with PGN as the most preferred

selection for the cross-lingual NER transfer.

Multi-source evaluations. Further, we perform multi-source cross-lingual transfer exper-

iments. The leave-one-out manner is adopted to select source languages, i.e., all languages

except the target one are regarded as source languages for multi-source transfer. Table 3

reports the results of different methods for multi-source cross-lingual NER. We investigate the

multi-source transfer by the same strategies as the single-source transfer, and also, the best-

reported results of the single-source transfer are used for comparisons.

By examining the results of various multi-source cross-lingual transfer models, we can see

that for each pretrained language model, feature-based adapter models outperform the stan-

dard fine-tuning methods. In addition, PGN can further advance the performance of multi-

source cross-lingual transfer in most cases, and the overall averaged performance can be

boosted by 0:61þ0:6

2
¼ 0:61 for mBERT and XLM. The observation is similar to that of single-

source transfer. Although PGN is not able to give significantly better performance in all sce-

narios, it is a better choice since it can seldom degrade the transfer performance (i.e., only one

exception by 72.86 v.s. 72.87). By comparing mBERT and XLM, we can see that XLM is better.

Both observations are consistent with those of the single-source transfer, which further dem-

onstrate the effectiveness of feature-based PGN strategy and the exploration of XLM.

Finally, we compare the results of multi-source cross-lingual transfer with single-source

transfer. As shown, the multi-source transfer can give significantly better performance in all

languages. The overall increments are 77.89 − 74.11 = 3.78 and 79.09 − 77.29 = 1.80 for

mBERT and XLM, respectively.

Comparisons with previous work. Here we compare our proposed models with the pre-

vious state-of-the-art methods. For fair comparisons, we take English as the source language

and German, Spanish, and Dutch as the target languages for the single-source model transfer.

Table 4 reports the results of different methods for single-source and multi-source cross-lin-

gual NER. We list the results of our three models based on XLM. It can be seen that our meth-

ods are comparable to the previous state-of-the-art methods. Remarkably, the feature-based

model with PGN achieves highly-competitive performances, obtaining the best F1-values in

Table 3. Main results of multi-source cross-lingual NER, where all other languages except the target language itself are exploited as the source languages.

Model Target Average

en de es nl

mBERT

Fine-Tuning 77.92 72.35 77.91 79.03 76.80

Feature-based 78.25 73.16 78.29 79.82 77.38

Feature-based (PGN) 79.94 73.21 78.37 80.03 77.89

Single-Source (Best) 77.59 71.26 77.59 78.01 74.11

XLM

Fine-Tuning 79.89 71.12 79.79 77.93 77.43

Feature-based 79.97 72.87 80.35 79.76 78.49

Feature-based (PGN) 80.67 72.86 80.95 80.88 79.09

Single-Source (Best) 78.94 72.03 78.87 79.30 77.29

https://doi.org/10.1371/journal.pone.0257230.t003
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the Spanish language. Moreover, compared with the best method (Wu et al., 2020) [29], which

fully exploits both the unlabeled corpus of the target language and the labeled corpus of the

source language, our feature-based models are only trained on source language and require

much fewer model parameters and computational costs for both training and inference, mean-

while reaching comparable performances.

Analysis

mBERT v.s. XLM. Our main experiments show that XLM can lead to better performance

than mBERT in most cases. Considering that mBERT is pretrained simply by concatenating all

corpora of different languages directly, while XLM leverages additional parallel corpora of dif-

ferent language pairs as well, the advantage of XLM over mBERT is reasonable, which also

indicates the great value of these parallel corpora.

In order to understand the advantage of XML clearly, we offer one example to compare the

word-level alignments between XLM and mBERT by a parallel sentence with named entities

inside. Intuitively, word alignments can be a good visualizing indicator to demonstrate the

transferability of the multilingual word representations. The calculation of word alignments is

performed straightforwardly by using the cosine scores between the vectorial representations

of pairwise sentential words, where the one with the highest cosine score is chosen as the align-

ment. Here we only perform one-side alignment, which is shown in Fig 4. As expected, XLM

can give an overall better alignment quality, which could guide NER implicitly. The success of

XLM indicates that more sophisticated multilingual word representations with certain supervi-

sion can bring more gains for cross-lingual NER transfer.

The advantage of adapter. Our feature-based models exploit adapters to extract features

from the pretrained transformer-based language model, where the extracted features are used

as the basic word representations. As claimed, the method is much more parameter than the

widely-adopted fine-tuning architecture for the BERT and XLM language models. Here we

Table 4. Comparisons with previous studies.

Model Target Average

de es nl

Single-Source

Xie et al. (2018) [26] 72.37 71.25 57.76 67.13

Moon et al. (2019) [27] 71.42 75.67 80.38 75.82

Wu and Dredze (2019) [28] 71.10 74.50 79.50 75.03

Wu et al. (2020) [29] 73.16 76.75 80.44 76.78

Fine-Tuning 68.52 76.71 79.08 74.77

Feature-based 69.27 77.95 79.25 75.49

Feature-based (PGN) 69.52 78.01 79.30 75.61

Multi-Source

Täckström (2012) [30] 36.40 61.90 59.90 52.73

Rahimi et al. (2019) [31] 59.10 71.80 67.60 66.17

Chen et al. (2019) [32] 56.00 73.50 72.40 67.30

Moon et al. (2019) [27] 72.44 76.53 83.35 77.44

Wu et al. (2020b)� [33] 81.33 75.33 78.00 78.22

Fine-Tuning 71.12 79.79 77.93 76.28

Feature-based 72.87 80.35 79.76 77.66

Feature-based (PGN) 72.86 80.95 80.58 78.13

https://doi.org/10.1371/journal.pone.0257230.t004
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analyze the two strategies in detail. The results are shown in Table 5, where both the single-

source and multi-source transfers are reported, and XLM is exploited as the input backbone

for the discussion. We consider a gradual way to insert the adapter modules from the top

transfer layers incrementally to the bottom transformer layers, i.e., the covered transformer

layers by adapter from zero to all 16 layers.

As shown, it is apparent that XLM with Adapter is much more parameter efficient, and

even when all layers are exploited, the model consumes below one-thirteenth parameter num-

bers compared with BERT fine-tuning. The straightforward feature-based method without

using adapter performs worse than XLM fine-tuning, which indicates the importance of

adapter. As the number of covered transformers increases, the performance is gradually

boosted, and after 4 layers, the performance is comparable with XLM fine-tuning. Finally, we

select the model by applying full 16 layers with adapters since it can achieve the best overall

performance.

The effect of source-target languages. Further, we examine the effect of model transfer

with respect to different source-target language pairs. Fig 5 shows the heatmap matrix for dif-

ferent language pairs, which are computed according to the pretrained language embeddings.

As shown, we can find that the English, German and Dutch languages are highly similar, while

the Spanish language is slightly away from the three languages. The observation is reasonable

since the English, German and Dutch languages all belong to the Germanic branch of the

Indo-European language family, and the Spanish language is from the Italic branch.

Further, we investigate how source-target languages influence the PGN model. Intuitively,

language pairs with larger differences can benefit more from the PGN module. As shown in

Fig 4. An example of word alignment visualization between a German sentence and its English translation, where the solid arrows are

gold-standard being all correctly predicted by XLM, and the dashed arrows are incorrectly aligned by mBERT, and the others are the same

for the two types of word representations.

https://doi.org/10.1371/journal.pone.0257230.g004

Table 5. The comparisons between the fine-tuning and feature-based adapter exploration methods, where XLM is

used as the input language model.

Model Single-Source Multi-Source Trainable Params Size

Fine-Tuning 73.27 77.43 230M

The feature-based method with adapter inside

0 layers 71.83 75.81 0.6M

2 layers 72.68 77.00 2.7M

4 layers 73.16 77.45 4.8M

6 layers 73.44 77.81 6.9M

8 layers 73.66 78.31 9.0M

10 layers 73.68 78.44 11.1M

12 layers 73.82 78.33 13.2M

14 layers 74.05 78.40 15.3M

16 layers (all) 73.87 78.49 17.4M

https://doi.org/10.1371/journal.pone.0257230.t005
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Table 2, we find that indeed es-other and other-es can obtain more improvements by PGN,

which is consistent with our intuition.

Case study. Finally, we offer a case study to compare the cross-lingual model transfer

methods. We focus on the comparisons between the single-source transfer without PGN and

with PGN, as well as the multi-source transfer without PGN and with PGN. All models exploit

XLM as the backbone, and the feature-based method is selected used. As shown in Table 6, we

can see that PGN can help to obtain more accurate entity boundaries, while multi-source

transfer can recall more named entities.

Related work

Here we introduce the related work by six aspects, including NER, cross-lingual NER, model

transfer, multi-source cross-lingual transfer, adapter and PGN.

NER

Early NER systems are based on handcrafted rules, lexicons, semantic and syntactic features.

These systems are followed by statical machine learning models with careful feature-engineer-

ing of humans [1]. Recently, neural network models have become the dominant methods for

Fig 5. The similarity heatmap of language embeddings for different language pairs, where deeper color indicates

higher similarity.

https://doi.org/10.1371/journal.pone.0257230.g005

Table 6. A case study, where the text with underlines indicates errors.

Model Text and Entities

Single-Source (Dutch-English)

Feature-Based Australian parliamentarian [John Langmore]PER has formally resigned from his lower house

seat, [the office of House of Representatives speaker]ORG [Bob Halverson]PER said on Friday.

Feature-Based

(PGN)

Australian parliamentarian [John Langmore]PER has formally resigned from his lower house

seat, the office of [House of Representatives]ORG speaker [Bob Halverson]PER said on Friday.

Multi-Source (Others-English)

Feature-Based [Australian parliamentarian]LOC [John Langmore]PER has formally resigned from his lower

house seat, [the office of House of Representatives]ORG speaker [Bob Halverson]PER said on

Friday.

Feature-Based

(PGN)

[Australian]MISC parliamentarian [John Langmore]PER has formally resigned from his lower

house seat, the office of [House of Representatives]ORG speaker [Bob Halverson]PER said on

Friday.

Ground-truth [Australian]MISC parliamentarian [John Langmore]PER has formally resigned from his lower

house seat, the office of [House of Representatives]ORG speaker [Bob Halverson]PER said on

Friday.

https://doi.org/10.1371/journal.pone.0257230.t006
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NER due to their high performance [6, 34–36]. Especially, the pretrained contextualized word

representations such as ELMO and BERT have advanced the NER performance greatly [37–

40]. The NER system based on BERT together with CRF decoding can achieve state-of-the-art

performance [6, 7]. Our basic model is built according to the system, and our work focuses on

the unsupervised cross-lingual setting, studying different exploration methods for the BERT-

alike word representations.

Cross-lingual NER

Cross-lingual NER has been a hot topic in the NLP community [13, 41]. There are two main-

stream categories for cross-lingual NER. The translation-based category aims to build pseudo-

labeled data for a target language, and then the data is used to train a target NER model [26,

41–43]. The methods of this category always require a mount of parallel corpora (or a transla-

tion lexicon). In this work, we also exploit parallel corpora to pretrain language embeddings,

while our method is highly different from theirs.

Model transfer

Our work follows another line of cross-lingual NER, namely model transfer [13], which is

quite simple and straightforward. The category has been studied intensively before for tasks

such as parsing [11, 12]. Based on language-independent features such as cross-lingual word

clusters [44], word embeddings [14] and gazetteers [45], a model trained on the source

language can be directly applied to the target language. Here we exploit multilingual contextu-

alized word representations [15, 16] and present several substantial improvements for the

model transfer. This is the first work to study the unsupervised model transfer for NER

comprehensively.

Multi-source cross-lingual transfer

McDonald et al. (2011) [11] present the method of multi-source transfer for unsupervised

cross-lingual adaption. They simply concatenate all labeled datasets of different source lan-

guages, which are used to train a unified model being able to handle the target language. Moon

et al. (2019) [27] exploit the idea to cross-lingual NER. The two studies are both extended

model transfer essentially, and treat all source languages equally. Chen et al. (2019) [32] lever-

age adversarial neural networks to weigh the importance of different source languages better,

considering that different languages may contribute differently to a target language. In this

work, we present a different method to model the different source languages.

Adapter

The adapter has been originally investigated in the computer vision community, aiming to

adapt a model for multiple domains [46]. Recently, the adapter modules have been applied to

NLP for quickly adapting a pretrained transformer model to new domains and tasks without

fine-tuning the transformer model [19, 20, 47], thus it is much parameter-efficient. Here we

use the adapter modules to enhance the basic model for a parameter-efficient NER model, and

it can be combined with PGN seamlessly for cross-lingual transfer.

PGN

PGN is essentially used to disclose the relationship between tasks, domains and languages by

embedding vectors, where the similarities and differences between different tasks, domains

and languages can be both captured. Initially, Platanios et al. (2018) [17] learn language vectors
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and them to generate parameters for multilingual machine translation. Jia et al. (2019) [48]

apply the idea firstly for multi-domain adaptation, using NER as the case. Fei et al. (2020) [49]

adopt PGN to cross-lingual semantic role transfer. Ust un et al. (2020) [50] present the work

most similarly to our work, which combines PGN and adapter for universal dependency pars-

ing. However, they are not aimed for an unsupervised cross-lingual transfer, and they can learn

language embeddings directly through the training data. Our work adopts a similar word repre-

sentation method, but exploits a distant supervision method for language embedding learning.

Conclusion and future work

In this work, we investigated the unsupervised cross-lingual adaption for NER based on the

model transfer framework. We focused on the NER models based on contextualized word rep-

resentations since they can benefit NER much and lead to a state-of-the-art system. We chosen

two types of multilingual contextualized word representation, mBERT and XLM, respectively,

comparing their performances by different exploration methods. In addition, we extended sin-

gle-source model transfer to multi-source transfer as well, as the latter can bring better perfor-

mance and meanwhile are more suitable for the real setting. We proposed a novel model with

sophisticated neural networks to exploit multilingual word representations. Concretely, we

applied the adapter mechanism to enhance the feature-based exploration method of the pre-

trained transformer language models, and further adopted PGN to better encode the relation-

ship between different languages including the source and target languages. In order to learn

effective language embeddings for PGN, we suggested a novel pretraining strategy by using

parallel corpora of mixed language pairs.

Finally, we conducted experiments to verify the performance of various models. We

selected a benchmark dataset from ConLL evaluation tasks for simulation evaluations, which

includes four languages, including English, Spanish, Germany and Dutch. The results show

that XLM can achieve better model transfer performance for different languages with various

settings, due to its pretraining with cross-lingual supervision, which hints that multilingual

word representations with rich supervised pretraining might be more prospective for the

cross-lingual NER. Although fine-tuning can achieve impressive results, the adapter-enhanced

feature-based models can be more prospective. In particular, the feature-based adapter model

with PGN can greatly boost the final performance for unsupervised cross-lingual transfer.

The model transfer can still have great potentials for unsupervised cross-lingual transfer.

For example, the method can be integrated with translation-based methods, where the lan-

guage embeddings of PGN might be more effectively learned. In addition, there could exist

more types of powerful multilingual word representations in the future, which can be exploited

as inputs as well. These attempts can be served as future studies.
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