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Abstract

Although the Trans-Himalayan region (THR) is an important endemic and rendezvous area

of peste des petits ruminants (PPR), monitoring and prevention measurements are difficult

to execute because of the rough geographical conditions. Besides, a heterogeneous breed-

ing system and the poor veterinary service of susceptible animals compound the existing

problems. Here, we propose a forecasting system to define the key points of PPR preven-

tion and aid the countries in saving time, labor, and products to achieve the goal of the global

eradication project of PPR. The spatial distribution of PPR was predicted in the THR for the

first time using a niche model that was constructed with a combination of eco-geographical,

anthropoid, meteorological, and host variables. The transboundary least-cost paths (LCPs)

of small ruminants in the THR were also calculated. Our results reveal that the low-elevation

area of the THR had a higher PPR risk and was mainly dominated by human variables. The

high-elevation area had lower risk and was mainly dominated by natural variables. Eight

LCPs representing corridors among India, Nepal, Bhutan, Bangladesh, and China were

obtained. This confirmed the potential risk of transboundary communication by relying on

PPR contamination on the grasslands for the first time. The predicted potential risk commu-

nication between the two livestock systems and landscapes (high and low elevation) might

play a role in driving PPR transboundary transmission.

Introduction

Peste des petits ruminants (PPR) is a contagious viral disease that primarily affects domestic

and wild small ruminants. Because of its high morbidity and mortality, PPR is responsible for

heavy economic losses in livestock husbandry across many developing countries. It is
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considered a significant threat to the global goat and sheep industry [1]. PPR is caused by peste

des petits ruminants virus (PPRV), a member of the family Paramyxoviridae and genus Mor-
billivirus along with Distemper, Rinderpest, and Measles viruses [2]. To date, four PPRV line-

ages (I-IV) have been identified worldwide. Lineage IV is the dominant strain in Asia,

including the entire Trans-Himalayan region (THR) [3]. PPRV has a tropism for epithelial

and lymphoid cells [4]. The virus can exist in different host body tissues and is discharged

from the body through various secretions and excretions. These secretions and excretions,

including the respiratory droplets, become the source of PPRV, allowing the transmission of

the virus through close contact [5] and aerosols [6]. The clinical symptoms of PPR typically

begin with dullness and fever (>40 ˚C). Subsequently, there is the development of oral muco-

purulent discharge, ocular discharge, and eventually, oral lesions, bronchopneumonia, and

diarrhea [4]. The severity of this disease is determined by the strain of the virus, local environ-

mental features, and the immune status of the infected host [7]. The morbidity and mortality

of PPR can vary between 10%–90% and 50–90%, respectively [8]. The typical latency period of

PPR is 4–6 days, whereas the longest incubation period reported is 21 days [9]. The major

hosts of PPRV are livestock, such as sheep and goats [10]. Wildlife is also an important target

for PPRV. The main targets are antelope (such as saiga antelope—Saiga tatarica mongolica),

ibex (such as Siberian ibex- Capra sibirica, Sindh ibex—Capra aegagrus blythi), gazelle (such as

goitered gazelle—Gazella subgutturosa, Arabian gazelle—Gazella arabica) [11–17]. In Asia,

clinical signs and mortality of PPR in wildlife have been reported essentially as the same as

those in livestock [14–19], which provides a basis for interspecific transmission. This situation

is different from the non-clinical infection in Africa, i.e. no viral shedding even if an antibody

is produced [20]. Especially in THR, bharal (Pseudois nayaur) [18], markhor (Capra falconeri)
[13], blackbuck (Antilope cervicapra) [21], and Himalayan goral (Naemorhedus goral) [22]

have been found to exhibit obvious clinical signs. Among them, strains from bharal and mar-

khor were successfully isolated. Phylogenetic analysis showed that they were closely related to

the strains isolated from livestock, suggesting a potential relationship between them [13, 18].

PPR was first reported in West Africa in 1942 [23] and spread across Africa and Asia. Avail-

able research indicates that China, India, and Nepal are all PPR epidemic countries. Two PPR

epidemics have been documented in China; the first occurred in 2007 in the Tibet Autono-

mous Region of China [24]. The more severe outbreak occurred between the end of 2013 and

the first half of 2014, which was first identified in the Xinjiang Uygur Autonomous Region and

later spread to more than 20 provinces in total. This consequence in more than 30,000 sheep

infections, of which 10,000 animals died [24].

In response to the heavy losses caused by PPR, the World Organization for Animal Health

(OIE) and the Food and Agriculture Organization (FAO) have set the goal of eradicating PPR

globally by 2030 [25]. It has been suggested that the global eradication of PPR could return

benefits of about $74 billion over 15 years [26]. However, the continuous epidemiological

cycles of PPR worldwide [27] constitute a great challenge to eradicating the disease. This calls

for a deeper understanding of its temporospatial characteristics. The THR is an important

endemic and high-risk area of PPR where monitoring and prevention measurements are diffi-

cult to implement. This can be majorly attributed to the rugged natural geographical condi-

tions and the low effective livestock system. The poor veterinary services further complicate

the situation in the region. Thus, a forecasting system would be a strong aid in defining the key

points of prevention to save time, labor, and products for underdeveloped countries and

regions.

According to reports, the PPR risk exists across the THR, in which livestock serve as the

maintenance hosts [28]. Wildlife possibly plays the role of bridge hosts [29], in which virus

transmission is not maintained but can persist for a while and be transmitted back (spillback)
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to livestock [30]. Although scientists argue for the direct epidemiological linkage at the inter-

face of livestock and wildlife [31], the interspecies transmission of PPRV during grazing and at

water sources has been confirmed [32]. Sharing the use of rangelands by livestock and wildlife

can lead to disease transmission [33]. Abubakar et al. [14] pointed out that an outbreak of PPR

in Sindh ibex was due to the spillover of the virus from a recent outbreak of PPR in nearby

domestic small ruminants. Similar PPR spillovers to wild hosts are reported in Tibet [18] and

the Ngorongoro Conservation Area in northern Tanzania [20]. Except for trade, free migra-

tion of wildlife and nomadism-driven back and forth movement of livestock enable their meet-

ing in the same space (contaminated or not) across time. Both animals and humans prefer

low-energy-consuming surfaces during movement, which has become its driving force [34]. If

the migration and grassland sharing of the multiple PPRV hosts last, reliance on the contami-

nation of habitats within the latent period of the disease is expected, and the probability of

direct contact via contaminated grassland is increased. While it would be arbitrary to conclude

that the infection occurred on the cross-country paths, the potential communication of risk

among the Trans-Himalayan neighboring countries is worth monitoring.

We assume that interspecies transmission of PPRV occurs on small ruminants in THR,

which forms the basis for the transboundary transmission of PPR. Initially, we predict the dis-

tribution of PPR on both sides using the maximum entropy model (MaxEnt) and the connec-

tivity of landscapes among different PPR-contaminated regions using the LCP model, thereby

revealing the potential transboundary communication of PPR.

Materials and methods

Research area

Our research area (Fig 1) is defined as the THR, which mainly included the Himalayan moun-

tains, a part of the Tibet plateau, the Ganges plains, a part of the Indus plains, a part of the

Indian Peninsula, and the Arakan Mountains. Altogether, seven countries are in this region,

including China, India, Nepal, Pakistan, Bhutan, Bangladesh, and Burma, covering approxi-

mately 6.89×106 km2. The northern, central, and southern parts of the THR differ in natural

geography, ecology, and climatology. The central part, i.e., the Himalayan mountains, has the

highest elevation of approximately 4000–8800 m. It is a long and narrow mountain range with

a length of approximately 3000 km and a maximum width of only 400 km, covering an area of

more than 1×106 km2 [35]. In the south-facing slope of the mountain, lower elevation regions

were covered by the evergreen broad-leaved forest, and higher elevation regions were covered

by coniferous forests, shrubs, and alpine meadows. The north-facing slope displayed the alpine

climate, dry and cold with little precipitation [36]. The northern and the southern parts are

divided by the Himalayan mountains. The northern part is constituted by the Tibetan Plateau,

with an elevation of approximately 2500–5000 m. This area is dominated by plateaus and

mountains interspersed with plains and basins. The intense radiation, low temperature, large

daily temperature range, and small annual temperature range verify a typical plateau climate

feature [36]. The elevation in the southern part was below 1500 m. It mainly consists of flat,

fertile plains with a tropical monsoon climate and a subtropical grassland climate [37].

There are two different livestock systems in THR. The mixed crop-livestock farming system

is represented by the Ganges plains, the Indus plain, and the Indian peninsula (low-elevation).

The other one consists of the grazing system, represented by the Tibetan Plateau (high-eleva-

tion) [38]. The Tibetan Plateau is a traditional pasture (the number of sheep� 10 million,

goats� 5 million) [39]. India (sheep� 65 million, goat� 135 million), Pakistan (sheep� 3.7

million, goat� 7.4 million), and Nepal (sheep� 0.8 million, goat� 10.9 million) are also the

core areas of animal husbandry in the world [40]. With respect to free susceptible hosts, bharal
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is distributed in the Tibetan frontier, Nepal, and Bhutan, and population densities in Nepal

were found to be 0.9–2.7 individual/km2, increasing to a maximum of 10 in the winter, as

herds congregate in the valleys [41]. The number of mature individuals is approximately

47,000–414,000 [42]. Himalayan goral occupies the south-facing slope of the Himalayan

mountains, and its population density varies from 2.6–10.5 individuals/km2 [43]. Blackbuck is

widely distributed in the Indian subcontinent, and the number of mature individuals is around

35,000 [44]. Markhor is mainly distributed in Pakistan. It is also found in small numbers in

India (Jammu Kashmir). The number of mature individuals of this species is approximately

5,754 [45].

Research data

There were 1135 recorded PPR outbreak locations collected from the OIE reports and pub-

lished studies [24, 46–51], including 107 records collected from the latter. The host datasets

were used alongside four fundamental environmental predictor categories relevant for habitat

modeling of terrestrial macro-fauna, i.e., climate, terrain, vegetation, and human impact [52]

(Table 1) to construct the environmental model in this study. The preprocessing and calcula-

tion of all spatial data were conducted in ArcGIS 10.6 and projected in UTM-WGS-1984 with

standard settings or resampling to 30 arc-seconds.

Fig 1. Location map of THR. The elevation is depicted by the digital elevation model (DEM). DEM was obtained from USGS Earth Explorer

(https://earthexplorer.usgs.gov); the boundary was obtained from Natural Earth (http://www.naturalearthdata.com/), which is a schematic line

illustrating the relative position of each country and should not be re-used or misinterpreted for any political reason.

https://doi.org/10.1371/journal.pone.0257094.g001
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PPR spatial distribution model

The MaxEnt model is regarded as one of the best-performing specialty distribution modeling

techniques for analyzing presence-only data [53]. It creates ecological niche models by com-

bining presence-only data with environmental variables using a machine-learning approach

known as maximum entropy. The reliability of MaxEnt has been confirmed by its good capac-

ity to predict novel presence localities for poorly known species/diseases [54]. It has been

widely used in many diseases, including PPR [55] and African swine fever [56].

The MaxEnt model is applied to the spatial distribution model building to explore the risk

situation of PPR in the THR. In the construction of the model, the regions with significant dif-

ferences in elevation are treated separately to overcome the problem that the model is not

robust enough to deal with the DEM with large differences [57]. The low-elevation model

(Model 1) and a high-elevation model (Model 2) were constructed for regions below and

above 1500 m, respectively, according to the elevation standard of highland climate [58]. The

spatial autocorrelation was minimized by filtering all recorded PPR locations using the SDM

Toolbox v1.1c in ArcGIS 10.6 [56]. Filtering was performed by limiting the minimum distance

between each pair of points. In addition, the filtering program plays the role of systematic sam-

pling. It can delete adjacent records to reduce spatial aggregation, which is regarded as the

Table 1. Data layer and source, raster/vector, value range/categories (number of subcategories in brackets), and specification of the unit of measurement/impact

(proxy).

Layer Source Value/categories Variable/proxy

Climatea

Monthly P CHELSA 0 to 275 mm/month Precipitation

Monthly mean T CHELSA -32.6 to 37.3˚C Mean Temperature

Monthly min T CHELSA -37.3 to 30.5˚C Minimum Temperature

Monthly max T CHELSA -27.9 to 43.6˚C Maximum Temperature

Bioclimatic CHELSA Annual trends, seasonality, extreme or

limiting environmental variables

ISR-spring ASTER-GDEM 8.1 to 84.2 wh/m2 Topo-climate

ISR-summer ASTER-GDEM 12.1 to 97.3 wh/m2 Topo-climate

ISR-autumn ASTER-GDEM 3.1 to 60 wh/m2 Topo-climate

ISR-winter ASTER-GDEM 2.8 to 92.2 wh/m2 Topo-climate

Terrain

Elevation ASTER-GDEM -10 to 8844 m a.s.l Climbing distance

Slope angle ASTER-GDEM 0 to 88.2˚ Climbing effort

Distance to river ASTER-GDEM 0 to 410.7 km Water source

Human impact

Human

population

WorldPop 0 to 14229 persons/km2 Human-Animal interaction

Vegetation b

Land cover ESA Cropland (3), Herbaceous, Tree (9), Shrubland (3), Grassland, Urban areas, Bare

areas (2), Mosaic shrub & herbaceous cover, Water bodies, Permanent snow, and ice

Animal food and refuge

Host c

Sheep density GLW3 0 to 447.5 individual/km2 Host-disease interaction

Goat density GLW3 0 to 1865.1 individual/km2 Host-disease interaction

aT = temperature; P = precipitation; Source: CHELSA 1.2 (http://chelsa-climate.org/) at 30 arc-second resolution; ISR = Incoming Solar Radiation.
bSource: Land cover map (https://maps.elie.ucl.ac.be/CCI/viewer/); the number of subcategories in parentheses.
cSource: Gridded Livestock of the World (https://livestockdata.org/contributor/gridded-livestock-world-glw3).

https://doi.org/10.1371/journal.pone.0257094.t001
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most effective method in correcting sampling bias [59]. Multicollinearity was reduced for both

the climate and non-climate predictors. First, major predictors were selected using principal

component analysis (PCA). The variables with eigenvalues larger than 1.0 and the scree plot cri-

terion or ‘broken stick’ stopping rule for PCA in item-level factoring were adopted [60]. Sup-

pression of unnecessary loading and rotation of factor pattern of variables was used to retain

predictors for subsequent analysis in MaxEnt [61]. Next, variables with low contribution rates

were filtered out using the MaxEnt model [62]. Finally, variance inflation factor (VIF) analysis

was conducted to evaluate the multicollinearity among predictors after the reduction. A VIF

value below 10 indicates low and acceptable multicollinearity [63]. The filtered PPR locations

and predictors were then used as input data to construct the PPR model using the MaxEnt algo-

rithm. The present models were developed using occurrence data and 10,000 random back-

ground points, representing the distribution of environmental conditions in the study region

[64]. We divided the selected presence records into 70% training and 30% testing portions to

build and validate the models based on 10 bootstrap replicates. For the remaining parameters,

we kept the default settings in the pilot study. Predicted PPR risk maps obtained by models 1

and 2 were overlaid using the fuzzy overlay to construct the final PPR risk map of the THR. For

visualization, the Jenks natural break optimization method was used to classify the model out-

put to identify high-risk areas [65]. Smoothing was followed for map visualization [62].

The key component of the model validation procedures is the criterion that evaluates the

model performance. We use threshold-dependent and threshold-independent criteria. The

area under the ROC curve (AUC) is a threshold-independent criterion based on plotting the

true positives against the false-positive fractions for a range of thresholds in prediction proba-

bility. Currently, the AUC is considered as the best criterion for assessing model success for

presence/absence data [66]. As a threshold-dependent validation measure, we used confusion

matrix-based measures, including the Kappa test [67] and correctly classified instances (CCI)

[68]. The Kappa statistic normalizes the overall accuracy by the accuracy that might have

occurred by chance alone. The percentage of CCI was defined as the rate of correctly classified

cells. The thresholds of these two criteria are determined using the sensitivity-specificity sum

maximization approach [69].

LCP model

The least-cost paths (LCPs), the shortest paths between two points with maximum efficiency

for a moving individual, have been advocated as an effective, operational, and flexible

approach to analyzing connectivity in heterogeneous landscapes [34]. The LCP model allows

the integration of multi-dimensional information, including geographic and behavioral infor-

mation, to comprehensively predict the potential transboundary (transregional) path of the

animals. LCPs are employed mainly to determine sites that are potentially used as dispersal

routes for terrestrial animals and have been proven to be applicable in ruminants [70]. To pre-

dict the potential transmission paths of the PPR in the research area, we created a cost/resis-

tance surface for the migration of small ruminants using land cover type and elevation as cost

variables according to their movement capability. Two variables were reclassified using the

Jenks natural break method [71]. Cost measurement scale of 1 (lowest cost) to 9 (highest cost)

is determined according to the number of the land cover type (except for water bodies, which

has been assigned as “restricted’ due to its relative barriers to ruminants) [72]. The goat still

maintains the same hoof structure as the wild goat, which is designed for movement and grip

in rugged environments [73]. Similar climbing skills, food and shelter requirements make

domestic and wild goats have similar movement capabilities and habitat preferences [74]. Cost

values were assigned to each classification based on small ruminant habitat preferences
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(see S1 and S2 Tables for more details) [75–77]. Land cover and elevation were then combined

using a logical overlay operation [70]. Recorded PPR outbreak locations were then clustered

by K-nearest neighbor cluster analysis, and LCPs between the clusters were analyzed using the

constructed cost surface. After the calculation, transboundary paths were highlighted by

removing the internal paths.

A sensitivity analysis was performed to assess the robustness of the outputs when they were

affected by uncertainty. The main source of uncertainty in evaluating potential paths for host

movements is the cost value used to constitute the cost surface. The one-at-a-time method was

employed in the sensitivity analysis. This common approach involves changing the input crite-

ria one at a time to observe the effect it produces on the output [78]. This process was repeated

for each variable [79]. We changed the cost of the different land cover types/elevation classifi-

cations one at a time by adding or subtracting an amount Δ = 5% or Δ = 10% from the original

cost value [80] to build iterative models. Raster datasets presenting cost surfaces were pro-

duced through every iteration. To measure the outputs, we rely on the Spearman rank correla-

tion coefficient [81] to compare the ranking of countries obtained with original cost values

with those obtained with different land cover/elevation cost values. The closer the Spearman

rank correlation coefficient is to 1, the more similar the iteration is to the original model. That

is, this classification has less impact on the model.

Results

Results of PPR spatial distribution models

Model 1 (�1500 m): Altogether, 129 recorded PPR outbreak points at a distance of at least 10

km away from each other were obtained after filtering. After PCA and MaxEnt filtering, mini-

mum temperatures of August (Min T Aug.), minimum temperatures of November (Min T

Nov.), human population, land cover, distance to the river, and slope angle were left. The VIF

values among the remaining predictors were 1.014–1.742, which was in line with the low mul-

ticollinearity standard (<10). Moreover, AUC = 0.892, SD (standard deviation) = 0.002,

Kappa = 0.869, and CCI = 0.869, indicated the robustness of the model. The response curves

of the different predictors are shown in Fig 2, and the relative contributions of each predictor

are shown in Table 2 (left).

Model 2 (>1500 m): A total of 96 recorded PPR outbreak points remained after filtering for

5 km. After PCA and MaxEnt filtering, the mean temperature of April (Mean T Apr.), human

population, land cover, distance to the river, and slope angle predictors were left. The robust

VIF values among the remaining predictors were 1.006–1.062. For validation of the model,

AUC = 0.934, SD = 0.010, Kappa = 0.880, and CCI = 0.881, indicated the robustness of the

model. The response curves of the predictors are shown in Fig 3, and the relative contributions

of each predictor are shown in Table 2 (right).

PPR high-risk areas in the THR were predicted using both models and are shown in Fig 4.

High-risk areas were distributed along the Himalayas, covering northern India, Nepal, and

central Pakistan. In addition, PPR high-risk areas were scattered throughout Bangladesh and

central India. It is worth noting that in Tibet, China, high-risk areas show an obvious trend of

distribution along rivers. The results show that the risk of PPR around Pakistan, India, Nepal,

and China borders is extremely high. The possibility of transboundary spread cannot be

ignored, especially since it may be facilitated by wildlife.

Results of the LCP model

The LCP analysis revealed eight potential transboundary paths (Fig 5) in the research area.

The eight identified livestock transboundary paths were: A. Mandi (India)-Ali region (Tibet,
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China); B. Almora (India)-Ali region (Tibet, China); C. Khalanga (Nepal)-Ali region (Tibet,

China); D. Chukha (Bhutan)-Lhasa (Tibet, China); E. Chandpur (Bangladesh) -India-Burma-

Dali (Yunnan, China); F. Mahakali (Nepal)—Uttarakhand/Uttar Pradesh (India); G. Seti

(Nepal)—Uttar Pradesh (India); H. Lumbini (Nepal)—Uttar Pradesh/ Madhya Pradesh

(India).

The cost value of each classification is changed by 5% (incremental percent change) within

the range of −10% to +10% (range percent change). Thus, the sensitivity analysis consisted of

72 model iterations. The results are visually represented by comparing the iterative models

with the original cost value model through the Spearman rank correlation coefficient, as

shown in Fig 6. Fig 6(a) and 6(b) indicate that the cost value of elevation has little effect on

ranking. In contrast, the sensitivity of the cost value of land cover is only slightly higher than

the former (see S3 and S4 Tables for more details). Sensitivity analysis underlined the signifi-

cant stability of the rankings with respect to the variation in the cost value for the land cover

and elevation perspectives.

Table 2. Estimates of relative contributions of the predictor variables to model 1 (left) and model 2 (right).

Model 1 (�1500 m) Model 2 (>1500 m)

Variable Contribution % Permutation importance Variable Contribution % Permutation importance

Human population 58.2 36.6 Mean T Apr. 50.8 70.9

Land cover 28.6 10 Land cover 21 5.7

Min T Nov. 5.4 13.7 Human population 17.1 17.1

Min T Aug. 5.2 37.6 Distance to river 8.9 4.4

Distance to river 1.8 1.2 Slope angle 2.2 1.9

Slope angle 0.8 1

https://doi.org/10.1371/journal.pone.0257094.t002

Fig 2. The response curves of model 1 (�1500 m).

https://doi.org/10.1371/journal.pone.0257094.g002
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Fig 3. The response curves of model 2 (>1500 m).

https://doi.org/10.1371/journal.pone.0257094.g003

Fig 4. PPR high-risk areas predicted by the MaxEnt model. This map was made in ArcGIS 10.6 using the resulting rasters produced by MaxEnt. The

boundary was obtained from Natural Earth (http://www.naturalearthdata.com/), a schematic line illustrating the relative position of each country and

should not be re-used or misinterpreted for any political reason.

https://doi.org/10.1371/journal.pone.0257094.g004
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Discussion

PPR risk and variable analysis

Human population density is the most important predictive variable in the low-elevation

model, with a contribution of 58.2%. Indeed, the low-elevation areas in this study are mainly

Fig 5. Transboundary LCPs for small ruminants and the distribution of wild ruminants. The territory range of wild small ruminants was obtained

from International Union for the Conservation of Nature (IUCN) website (https://www.iucnredlist.org/). The boundary was obtained from Natural

Earth (http://www.naturalearthdata.com/), a schematic line illustrating the relative position of each country and should not be re-used or

misinterpreted for any political reason. The data used for this figure is under CC BY license, and permission for its use has been obtained from the

IUCN.

https://doi.org/10.1371/journal.pone.0257094.g005

Fig 6. Bar chart of land cover (a) and elevation (b) cost value sensitivity analysis. Spearman rank correlation coefficient between the ranking

obtained with the original cost value and the rankings obtained with small variation Δ applied on the original values ranging between -10% and +10%

when applicable.

https://doi.org/10.1371/journal.pone.0257094.g006
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distributed in the Indus plains, which are heavily populated. Although animal husbandry is the

major source of income in this area [82], considering the large local population of the herds,

both the variables of sheep and goat density were excluded by the MaxEnt model due to their

low contribution rate (0–0.1). However, this does not indicate that host density has nothing to

do with PPR risk. It may also be due to the correlation between human and host density that

leads to the deletion of collinear variables in the model, which needs further investigation. In

contrast, human population densities were considered as the third highest prediction variable

in the high-elevation model. Nonetheless, the response curves of the human population den-

sity for both models displayed a similar trend, with a rapid increase in PPR incidence as the

population density increases, followed by a plateau. Therefore, despite the variations in the

contribution of human population density in both models, its close correlation with the inci-

dence of PPR cannot be overlooked.

The temperature has also been suggested to play an important role in transmitting and

spreading infectious diseases [83]. In this study, the mean temperature in April had the highest

contribution rate in the high-elevation model. Small ruminants in the Tibetan plateau are

mainly raised by transhumance, and summer pastures in high-elevation areas are commonly

used during the warm season (April to May) [84]. Transhumance and migration of wildlife

have intensified the direct and indirect contact between wildlife and livestock, which might

increase the risk of PPRV transmission. In contrast, domestic small ruminants are kept in

farms in low-elevation areas. The effect of seasonal temperatures was minimized accordingly.

However, the response curves remind us that the appropriate temperature in summer (Min T

Aug.: 15–30˚C) and winter (Min T Nov.: 0–20˚C) can increase the risk of PPR. These alerted

us to pay additional attention to seasonality in preventing PPR, especially the risks of seasonal

pasture transfer in transhumance areas.

Many landform variables related to gathering contributed to the prediction of the PPR risk

in our models. According to the response curves, habitats with deciduous broad-leaved forests,

urban areas, or shrublands had the highest probability of PPR. Both the deciduous broad-

leaved forests and shrublands could provide food and shelter for small ruminants. In addition,

they are mainly distributed in the temperate zone, which is consistent with the optimum tem-

perature shown by the climate variables. The insignificant importance of the slope angle to our

models can be explained by the good climbing skill of small ruminants, i.e., the slope hardly

restricted their distribution [85]. For this reason, slope angles were not included in our LCP

model.

The variations in the distances to the river contributed significantly in the high elevation

model (8.9%) than in the low elevation model (1.8%). From the high elevation areas response

curve, it could be understood that a farther distance from the river decreases the risk. This is

different from that in the low elevation areas. The high-risk areas distributed along the rivers

in Tibet (Fig 4) can be explained by the prevalence of a cluster of wildlife around the water

holes, which would increase contact and spread of PPRV. The accessibility of water resources

and the lush vegetation in plain areas dispense the need for rivers.

Our model shows that the mixed crop-livestock farming system has a very high PPR risk in

areas close to the Himalayas, and human influence (population) is the main variable in such

cases. Most ruminants in mixed crop-livestock farming systems are found in rural areas and

have frequent contact with farmers due to production demand. Therefore, the risk of PPR

being dominated by the human impact is expected. For grazing systems, high-risk areas are

only scattered around the river valley, and the natural environment (temperature) is the domi-

nant variable. Transhumance became the link between temperature, ruminants, and PPRV.

The communication of risk between the two livestock systems and two different landscapes

may play a potential role in driving PPR transboundary transmission.
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The impact of wild and domestic hosts on PPR

The host populations are important for PPR maintenance, bridges, and transmission. Because

of the complex migration of wild susceptible hosts, obtaining high-quality data for model con-

struction is not easy. However, population profiles (see the second paragraph of the study area

section for more detail) can still help us analyze its impact on PPR. In Fig 5, we observe that

bharal is distributed in the Tibetan plateau, providing sufficient bridge hosts. Himalayan goral

occupies the Himalayas with a high population density. In contrast, the populations of black-

buck and markhor are relatively small. Moreover, the other seven paths, except path E, are

within the territory range of wild small ruminants, which might become bridge hosts for PPR

transboundary transmission.

LCP

The LCP analysis returned eight transboundary paths between India, Bhutan, Bangladesh,

Nepal, and China. Next, we describe the two-way communication of PPR risk from outside

China to inner China. One end of Path A connects to Mandi city in northwest India, which is

known to have a prosperous livestock industry with large populations of small ruminants but

poor animal health and veterinary services [86]. The predicted risk of PPR is extremely high in

this area. Path A further extends southwest to the Himalayas and passes through the middle

section of the Sino-Indian border into China. While the elevation along path A is generally

high with a peak of 5733 m, many wild ruminants (viz. bharal and Himalayan goral) can cross

such rugged terrain. At the other end of path A is the vast alpine pasture area of the Tibetan

Plateau, where nomadic domestic small ruminants are widely distributed, which provides a

sufficient host for PPRV. Path B is like A, from northwestern India to Tibet, but its length is

shorter, and it might be the fastest path contributing to the spread of PPR across borders. Path

C extends from midwest Nepal, where PPR frequently occurs, to Tibet. In this path, the porous

border and unrestricted animal movement within the country during festive seasons (August

to October) may also aid in spreading the disease [87]. Path D extends from Chukha (Bhutan)

along the river valley to Lhasa (Tibet), with wild small ruminants distributed along the way. At

one end of path E is Chandpur (Bangladesh) that follows the Jamuna River and the Brahmapu-

tra rivers to Parshuram Kund (India), and then crosses the Burmese section of the Arakan

Mountains to Dali (Yunnan, China). This path is also mainly distributed along the river valley,

and the bushes on both sides of the valley make it easier for the animals to cross. Both paths F

and G start from the edge of the Himalayas (within Nepal) and reach the Ganges plain. Path H

crosses the Ganges plain and extends to the Indian plain in central India, and the upper two

paths are in low elevation areas, which do not offer any obstruction to the movement of small

ruminants.

The constructed LCP model involved the main variables that affect the movement of rumi-

nants. The complicated secondary variables (such as hunting and natural enemies) were not

included because they could not be measured. At the same time, the merits of the LCP model

do exist, especially for a large geographical scale prediction. The cost value commonly depends

on the literature and the researchers. It is worth noting that identifying the animal corridors is

not easy. LCP is still an effective and universal quantitative method to solve this problem [88].

Mutual verification between the model and reference [89] confirmed that the sensitivity of the

LCP model is resistant to slight changes in the values of variables. We put forward a set of

methods for countries with data limitations and regions too vast and/or too difficult to access

to provide a quick risk assessment.
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