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Abstract

Background

Right ventricular (RV) systolic strain has recently demonstrated prognostic value in various

cardiovascular diseases. Despite this, the reference range including the lower limit of

normal (LLN) and factors associated with RV strain measurements are not well-established.

This meta-analysis aimed to determine the mean and LLN of two- (2D) and three-dimen-

sional (3D) right ventricular global (RVGLS), free wall (RVFWLS) and interventricular septal

wall (IVSLS) longitudinal strains in healthy individuals and factors that affect strain

measurements.

Methods

In this meta-analysis, Pubmed, Embase and Cochrane databases were searched until 31

July 2020 for eligible studies reporting RVGLS, RVFWLS and/or IVSLS in at least 30 healthy

subjects. We pooled the means and LLNs of RV strains by two- (2D) and three- (3D) dimen-

sional echocardiography, and performed meta-regression analyses.

Results

From 788 articles screened, 45 eligible studies totaling 4439 healthy subjects were eligible

for analysis. Pooled means and LLNs with 95% confidence intervals for 2D- RV strains were

RVGLS -23.4% (-24.2%, -22.6%) and -16.4% (-17.3%, -15.5%) in 27 studies; RVFWLS

-26.9% (-28.0%, -25.9%) and -18.0% (-19.2%, -16.9%) in 32 studies; and IVSLS –20.4%

(-22.0%, -18.9%) and -11.5% (-13.6%, -9.6%) in 10 studies, and similar results for 3D- RV

strains. Right ventricular fractional area change and vendor software were associated with

2D-RVGLS and RVFWLS means and LLNs.

Conclusion

We reported the pooled means and LLNs of RV systolic strains in healthy subjects, to

define thresholds for abnormal, borderline and normal strains. Important factors

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0256547 August 20, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wang TKM, Grimm RA, Rodriguez LL,

Collier P, Griffin BP, Popović ZB (2021) Defining

the reference range for right ventricular systolic

strain by echocardiography in healthy subjects: A

meta-analysis. PLoS ONE 16(8): e0256547. https://

doi.org/10.1371/journal.pone.0256547

Editor: Robert Ehrman, Wayne State University,

UNITED STATES

Received: March 7, 2021

Accepted: August 9, 2021

Published: August 20, 2021

Copyright: © 2021 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: TKMW is supported by the National Heart

Foundation of New Zealand Overseas Clinical and

Research Fellowship (grant number 1775).

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5570-9402
https://doi.org/10.1371/journal.pone.0256547
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256547&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256547&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256547&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256547&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256547&domain=pdf&date_stamp=2021-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256547&domain=pdf&date_stamp=2021-08-20
https://doi.org/10.1371/journal.pone.0256547
https://doi.org/10.1371/journal.pone.0256547
http://creativecommons.org/licenses/by/4.0/


associated with RV systolic strains include right ventricular fractional area change and ven-

dor software.

Introduction

Strain measured by speckle-tracking echocardiography has become an indispensable method

for chamber quantification. While most research has been dedicated to the utility of left ven-

tricular global systolic strain [1–3], several studies demonstrated the usefulness of right ven-

tricular (RV) systolic strain in a variety of clinical scenarios [4–6]. The three main parameters

of RV strain are right ventricular global longitudinal strain (RVGLS), right ventricular free

wall longitudinal strain (RVFWLS) and interventricular septal wall longitudinal strain

(IVSLS). However, the reference range for these parameters are still not established [1, 7]. The

single previous meta-analysis for RV strains in healthy individuals did not report the pooled

estimates of the lower limit of normal (LLN) of RV strain to define the reference range, did not

separate RV strain obtained by two-dimensional (2D-) and three-dimensional (3D-) echocar-

diography techniques, nor adjust for potential confounders by meta-regression, and was lim-

ited by relatively modest number of subjects (n = 486) [8]. In other words, its results cannot be

used to separate normal from abnormal RV strain values. While current echocardiography

guidelines try to overcome this by recommending -20% as the abnormality threshold for

RVFWLS, they acknowledge that this threshold was consensus-based on limited data and may

vary based on factors such as vendor software [1].

Recently, we performed meta-analysis to not only provide the point estimate of average

value, but also the reference ranges for normal values of left ventricle strain parameters

obtained by 2- and 3-dimensional echocardiography along with magnetic resonance imaging

for the first time [9, 10]. This meta-analysis aims to pool the means and LLN of two-dimen-

sional RVGLS and RVFWLS parameters measured by echocardiography in healthy subjects to

determine reference ranges. In addition, we assessed clinical and echocardiographic character-

istics that influence RV strain parameters using meta-regression.

Materials and methods

We followed the PRISMA guidelines for this meta-analysis, with a supplementary information

file checklist provided and no separate protocol. The inclusion criteria were that studies must

report original data for either RVGLS and/or RVFWLS measured by speckle-tracking echocar-

diography as the mean ± (standard deviation (SD), standard error (SE) or 95% confidence

interval (95%CI)), or median (lower quartile, upper quartile) for at least 30 healthy adult sub-

jects, with males and females both constituting at least one third of the individual study

cohorts, especially for case-control studies where certain cardiovascular disease may favor one

gender over another, to maximize applicability to the general population with equal split [11].

Healthy subjects from both cohort studies and control groups of case-control studies can be

included. Studies including those with known cardiovascular disease, risk factors such as dia-

betes and hypertension, chronic single or multi-organ disease or malignancy, on cardiac medi-

cations or with abnormal cardiac examination or investigations were excluded. These should

be stated in the methods section of individual studies and/or their absence demonstrated in

baseline characteristics descriptions and tables to be eligible as healthy patients and studies.

Studies measuring strain other than by speckle-tracking were excluded.
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We searched the Pubmed, Cochrane and Embase databases through to 30 September 2020

using the search terms “(right) AND (ventricle) AND (strain) AND (echocardiography)” and

with human subjects and adults (19+ years) as filter, and no language filters. Reference lists of

related articles were assessed. After screening all abstracts from the search results, potentially

suitable studies had their full-text articles carefully reviewed for final eligibility. Reviews, case

reports, editorials, guidelines, conference abstracts and unpublished data were excluded.

Amongst studies published by the same author group, we only chose the largest study and

assumed the others contained overlapping healthy subjects as duplicates unless specifically

stated in their methods that there were mutually exclusive cohorts.

From eligible studies, data extracted into include author surname, year, number of healthy

subjects, country, disease studied, age, sex, body mass index, body surface area, heart rate, sys-

tolic blood pressure, echocardiography machine, vendor software, frame rate, 2D- or 3D-

echocardiography, left ventricular ejection fraction, left ventricular global longitudinal strain,

right ventricular basal diameter, right ventricular fractional area change (RVFAC), right ven-

tricular lateral annular tissue Doppler S’ velocity, tricuspid annular plane systolic excursion

and right ventricular systolic pressure. The strain outcomes of interest collected were RVGLS,

RVFWLS, IVSLS, and the strain rate for all three right ventricular longitudinal strains. Authors

TKMW and ZP screened studies and reached consensus for inclusion, and TKMW extracted

study data for analyses.

Pooled analyses for healthy subjects from eligible studies to calculate the mean and lower

limit of normal were separately performed for each of the three types of RV strains, and RV

strain rates, and by two or three-dimensional echocardiography, if reported in healthy subjects

by three or more studies. Using the mean and standard deviation of RV parameter in each

study, the LLN is defined as the lower magnitude boundary of the 95%CI for the RV parameter

(ie 1.96 times standard deviation from the mean). The standard error of the LLN (ie SELLN)

can then be derived from the standard deviation of the sample mean (ie SDmean) and the num-

ber of patients in the sample (n) using Bland’s proposed formula [12]: SELLN =
p

(SDmean
2×(1/

n+2/(n—1)).

Based on the mean and LLN with their SD or SE, meta-analysis was performed using the

DerSimonian-Laird method random effects models to estimate pooled RV strain parameter

means and LLNs with 95%CIs, and Forest Plots presented in all eligible studies reporting the

RV strain parameters analyzed [9, 10]. These analyses were also performed for purpose of sen-

sitivity analysis performed for cohort studies of healthy subjects only and excluding case-con-

trolled studies, and performed separately by strain vendor software if reported in at least 2

studies due to presumptive differences. The associations between clinical and echocardio-

graphic characteristics with RVGLS and RVFWLS means and LLNs were assessed using uni-

variable meta-regression to report beta coefficients with 95%CI and P-value first in studies,

and then for sensitivity analysis purpose in studies using the GE EchoPAC strain vendor soft-

ware only. Pre-specified reference groups for some categorical variables include other Asian

versus non-Asian countries for country, GE for echocardiography machine and GE EchoPAC

versus non GE Echo PAC for vendor software. Vendor software was pre-specified for sub-

group analyses of pooled RVGLS and RVFWLS. Quality of studies and risk of bias was evalu-

ated using the Newcastle-Ottawa quality assessment scale for case control studies. In studies

that compared RV strain data between subjects with disease and control (i.e. reference) sam-

ple, this quality assessment scale has a range of 0 to 8, with 8 being the optimal quality. In stud-

ies of healthy subjects only of the quality assessment scale had a range of 0 to 2 as the criteria

referring to “cases” and “exposure” are not applicable. Study heterogeneity and publication

bias were also assessed. The Cochrane Q test (P-value) and I^2 (inconsistency) statistic were

used to evaluate the heterogeneity of studies. Funnel plots were used to assess for publication
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bias. All meta-analyses were performed with OpenMeta-Analyst software [13], and P<0.05

was deemed to be statistically significant.

Results

Disposition of studies from the literature search are shown in Fig 1. There were 788 articles

obtained from the literature search, and after screening all abstracts 106 full-text articles were

reviewed, identifying 45 eligible studies and 4439 healthy subjects for analyses [8, 14–54]. Clin-

ical and study characteristics of eligible studies are listed in Table 1. Studies were published

between 2009–2020, with 30–493 subjects, with 30 case-controlled studies and 15 cohort stud-

ies of only healthy subjects. The range for mean age was 23–67 years old and the range for

male gender was 33–66%. Echocardiographic characteristics of eligible studies are listed in

Table 2. There were 43 studies reporting RV strain by 2D- and 3 studies by 3D- echocardiogra-

phy (1 reported both). Most studies had high study quality as assessed by the Newcastle-

Ottawa quality assessment scale, with the most common unmet criteria being control

Fig 1. PRISMA diagram from literature search to eligible studies.

https://doi.org/10.1371/journal.pone.0256547.g001
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Table 1. Characteristics of eligible studies–study and clinical factors.

Author Year N Country Disease studied Study

quality

Age (years) Male

(%)

BMI (kg/

m2)

BSA

(m2)

HR (/min) SBP (mmHg)

Addetia 2016 259 US None 2/8 44±15 54% 1.7±0.3 63

Barbosa 2014 38 Brazil Chagas disease 7/8 44±9 58% 1.8±0.2 66±9 126±15

Becker 2010 31 Germany Transposition of great

arteries repaired

7/8 23±3 45% 69±6 128±5

Berceanu 2019 90 Romania Type 1 diabetes 6/8 30±8 66% 23±4 1.8±0.2 81±14 117±8

Bostan 2020 70 Turkey Smokers 7/8 34±10 63% 1.6±0.3 76±11 123±7

Cai 2017 37 US Stress /ischemic

cardiomyopathy

7/8 62±13 41%

Cappelli 2012 31 Italy AL amyloidosis 8/8 67±5

Chia 2014 142 Australia None 2/2 45±15 53% 1.8±0.2 77±11 118±11

Clemmensen 2016 41 Denmark Heart transplant 6/8 51±12 59% 24±2 62±7

D’Andrea 2016 45 Italy Pulmonary fibrosis 7/8 65±8 51% 30±4 78±7 135±8

Di Stefano 2020 97 US Cardiac sarcoidosis 6/8 40±14 63% 26±5 73±13 116±16

Durmus 2015 40 Turkey Systemic sclerosis 8/8 46±8 48%

Fine 2013 186 US None 1/2 44±16 39% 25±5 1.9±0.2 72±12 112±16

Fine 2015 116 US None 1/2 48±16 42% 26±4 70±12 117±13

Forsha 2014 40 Denmark None 2/2 29 (18–52

range)

40%

Gudendouz 2012 39 France Heart failure 8/8 50±15 54% 25±5 68±11 137±6

Haeck 2012 30 Netherlands Pulmonary hypertension 6/8 53±12 33% 1.9±0.2

Ichkawa 2013 33 Japan Pulmonary hypertension 7/8 57±14 45% 22±3 63±10 117±12

Jategaonkar 2009 34 Germany Atrial septal defect 7/8 47±9 62%

Kanar 2018 41 Turkey Chronic obstructive lung

disease

7/8 58±10 53% 31±8 85±18

Khan 2018 50 US Pulmonary emboli 7/8 57±17 34% 1.9±0.2 126±17

Kurt 2012 34 Turkey None 1/2 36±9.2 53% 25±4 1.8±0.1 80±12 117±23

Lai 2017 70 China Tetralogy of Fallot repaired 6/8 23±6 57% 21

Lakatos 2018 40 Hungary Athlete’s heart 7/8 20±3 50% 22±3 1.8±0.2 76±17 116±16

Li 2017 30 China Left bundle branch block 7/8 58±8 47% 1.7±0.2 74±10 124±13

Lindqvist 2006 30 Sweden None 1/2 60±11 40% 25 62±9 135±16

McGhie 2017 155 Netherlands None 1/2 45±14 50% 24±3 1.9±0.2 62±10 127±15

Menting 2015 85 Netherlands Tetralogy of Fallot repaired 7/8 34±12 56% 24±3 125±13

Meris 2010 100 Switzerland Right ventricle dysfunction 7/8 43±3 54%

Morris 2016 238 Germany Heart failure 6/8 37±13 50% 23±2 119±10

Muraru 2016 276 Italy None 2/2 44 (32–56

IQR)

45% 23 (21–25

IQR)

1.8±0.2 65 (60–73

IQR)

120 (110–130

IQR)

Nel 2020 253 United

Kingdom

None 2/2 36±12 41% 28±6 1.8±0.2 76±12 121±12

Park 2017 493 Korea None 2/2 47±15 47% 23±3 1.7±0.2 68±10 120±12

Platz 2012 30 US Pulmonary emboli 6/8 50±15 43% 71±15

Rimbas 2020 151 Romania and

Italy

None 2/2 51±14 59% 25±3 121±14

Rosca 2018 30 Romania Hypertrophic

cardiomyopathy

8/8 48±9 40% 25±3

Roushdy 2016 30 Egypt Ballooned mitral stenosis 7/8

Sanz-de La

Garza

2019 80 Spain None 2/2 37±5 50% 1.8±0.2 65±10 117±12

Sarariva 2019 77 Brazil None 1/2 40±10 47% 25±3 122±12

Schieirlynck 2020 82 Brussels Brugada syndrome 8/8 48 (33–55) 51%

(Continued)
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selection, where there were no clear indication if subjects were selected as volunteers from the

community (20/45 studies), and comparability, where the controls were not matched in some

way to the cases (16 of 30 case-control studies).

Pooled means and LLNs for 2D- and 3D- RV strains are presented in Table 3. The pooled

means and LLNs (95%Cis) for 2D- RV strains were RVGLS -23.4% (-24.2%, -22.6%) and

-16.4% (-17.3%, -15.5%) in 27 studies (Fig 2); RVFWLS -26.9% (-28.0%, -25.9%) and -18.0%

(-19.2%, -16.9%) in 32 studies (Fig 3); and IVSLS -20.4% (-22.0%, -189%) and -11.5% (-13.6%,

-9.6%) in 10 studies. Significant heterogeneity was observed in all of these pooled analyses, but

no significant publication bias was seen with symmetrical Funnel plots demonstrated in Fig 4.

Separate pooled analyses of 2D-RVGLS and RVFWLS means and LLNs by various strain ven-

dor software is shown in S1 Table in S1 Appendix, where velocity vector imaging technique

appeared to have lower mean and LLN strain magnitude than other vendors. Sensitivity analy-

ses of pooling only cohort studies with healthy subject and excluding case-controlled studies

are displayed in S2 Table in S1 Appendix, which showed similar findings to the pooling all

studies in Table 3.

Corresponding results for 3D-RV strains as shown in Table 3 were RVGLS -21.8% (-24.1%,

-19.5%) and -15.2% (-19.6%, -10.8%) in 4 studies; RVFWLS -26.2% (-28.3%, -24.1%) and

-17.6% (-21.6%, -13.6%) in 3 studies; and IVSLS -20.1% (-21.0%, -19.2%), and -14.6% (-16.8%,

-12.5%) in 3 studies. Significant heterogeneity were again seen in all of these pooled analyses.

Table 4 lists the meta-regression results to find the factors associated with the means and

LLNs of 2D-RVGLS and RVFWLS. Higher right ventricular FAC and GE Echopac vendor

software (compared to other software) were associated with more negative means and LLNs of

both RV strains. Right ventricular systolic pressure was also negatively associated with

2D-RVGLS mean and LLN but not 2D-RVFWLS mean or LLN. S3 Table in S1 Appendix

showed the meta-regression results in GE EchoPAC studies only, which had similar findings

for FAC and right ventricular systolic pressure, and also left ventricular global longitudinal

strain to be positively correlated with both 2D-RVGLS mean and LLN but not 2D-RVFWLS.

Discussion

This meta-analysis introduces novel definitions for abnormal, borderline and normal RV sys-

tolic systolic strain parameters, based on pooled LLNs and their 95%CI. For example, with

RVGLS and its pooled LLN (95%CI) being -16.4% (-17.3%, -15.5%), a RVGLS measurement

less negative than -15.5% would be considered abnormal, between -17.3% and -15.5% would

be borderline, and more negative than -17.4% would be normal. We also provide for the first

Table 1. (Continued)

Author Year N Country Disease studied Study

quality

Age (years) Male

(%)

BMI (kg/

m2)

BSA

(m2)

HR (/min) SBP (mmHg)

Serrano-Ferrer 2014 40 Australia Metabolic syndrome 7/8 58±4 50% 24±3 61±4 116±11

Smith 2014 60 UK Pulmonary hypertension 7/8 41±12 40%

Tadic 2015.1 54 Italy Diabetes mellitus 7/8 51±8 54% 24±3 1.9±0.1 74±7 122±11

Vitarelli 2015 30 Italy Obstructive sleep apnea 6/8 46±13 37% 26±4 1.8±0.2 69±9 120±8

Yoshida 2019 481 Japan None 1/2 60±12 46% 22±2 113±12

N = number of patients, BMI = body mass index, BSA = body surface area, HR = heart rate, SBP = systolic blood pressure, DBP = diastolic blood pressure, US = United

States, ± = mean±standard deviation, IQR = interquartile range. Study quality and risk of bias was assessed using the Newcastle-Ottawa quality assessment scale for

case-controlled studies, out of 8 for those which studied diseases and controls, and out of 2 for those who only studied healthy subject controls, as explained in the

methods section.

https://doi.org/10.1371/journal.pone.0256547.t001
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Table 2. Characteristics of eligible studies–echocardiographic factors.

Author Year N Machine Vendor Frame rate

(Hz)

2D/

3D

LVEF

(%)

LVGLS

(%)

RVD

(mm)

RVFAC

(%)

RVS’

(cm/s)

TAPSE

(cm)

RVSP

(mmHg)

Addetia 2016 259 Phillips Epsilon 2D 62±6 -18±2 37±4

Barbosa 2014 38 GE EchoPAC 2D 70±6 -21±2 11±2 24±3

Becker 2010 31 GE EchoPAC 2D -17±4

Berceanu 2019 90 GE EchoPAC 2D 58±4 46±6 22±4

Bostan 2020 70 Phillips Qlab >50 2D 55±4 -21±2 31±5 41±8 15±2 24±3

Cai 2017 37 Phillips Epsilon 2D 61±5 37±6 14±3 22±4

Cappelli 2012 31 GE EchoPAC 80–100 2D 62±5 -19±7 26±4 13±2 24±4 25±5

Chia 2014 142 GE EchoPAC >60 2D 59±8 32±4 42±6 12±2 22±2 21±7

Clemmensen 2016 41 GE EchoPAC >55 2D 12±2 27±4 21±5

D’Andrea 2016 45 Esoate EchoPAC 60–90 2D 57±4 -19±3 31±4 12±6 23±3 25±4

Di Stefano 2020 97 GE, Philips TomTec 40–90 2D 64±4 -18±3

Durmus 2015 40 GE EchoPAC 2D 65±5 -21±3 27±3 34±4 13±2 24±3 20±6

Fine 2013 186 GE, Phillips,

Siemens

VVI 40–90 2D 63±4 -17±3 24±7

Fine 2015 116 GE EchoPAC 77±8 2D 63±5 46±1 14±2 24±4 28±5

Forsha 2014 40 GE EchoPAC 50–90 3D 59±4 43±5 22±3

Gudendouz 2012 39 GE EchoPAC >50 2D 59±9 -20±3 49±5 14±2 25±4

Haeck 2012 30 GE EchoPAC >40 2D 62±7 30±3 37±9 23±3 21±3

Ichkawa 2013 33 GE EchoPAC 76±15 2D 66±5 -20±2 52±5

Jategaonkar 2009 34 GE EchoPAC 40–80 2D 26±4 19±6

Kanar 2018 41 Phillips 70–80 2D 61±5 28±2 54±4 20±3 21±8

Khan 2018 50 GE, Phillips,

Toshiba

VVI 2D 20±9 26±6

Kurt 2012 34 GE EchoPAC 50–90 2D 63±3

Lai 2017 70 GE TomTec 2D 57±4 -18±3

Lakatos 2018 40 Phillips TomTec 2D/

3D

63±3 30±4 53±6 13±2 24±4

Li 2017 30 GE EchoPAC 57–72 2D 64±5 32±3 56±5 12±2 23±2

Lindqvist 2006 30 GE EchoPAC 86±11 2D 59±8

McGhie 2017 155 Phillips TomTec 2D 38±5 43±8 12±2 26±4

Menting 2015 85 Phillips Qlab 2D 58±5 37±6 45±8 28±4

Meris 2010 100 GE EchoPAC 70–80 2D 66±5 30±3 45±6 25±4

Morris 2016 238 GE EchoPAC 2D 63±6 -21±2 49±8 13±2 20±3

Muraru 2016 276 GE EchoPAC 2D 49±6 25 (23, 27

IQR)

21 (18, 26

IQR)

Nel 2020 253 Philips Qlab >50 2D 62±6 31±5 42±6 22±3

Park 2017 493 GE EchoPAC 60 2D 62±4 34±4 48±6 23±3

Platz 2012 30 GE, Philips,

Siemens

VVI 40±11 2D >55

Rimbas 2020 151 GE EchoPAC 2D 60±7 -21±3 47±9 25±4 22±8

Rosca 2018 30 GE EchoPAC 60–80 2D 61±4 -21±2 30±3 48±7 14±2 24±3 23±3

Roushdy 2016 30 GE 50–90 2D 57±7 -21±2 45±8 24±3

Sanz-de La

Garza

2019 80 GE EchoPAC 60–80 2D 57±5 48±6 10±1 23±3

Sarariva 2019 77 GE EchoPAC 2D 68±6 15±2 24±4 26±5

Schieirlynck 2020 82 GE EchoPAC 2D 63±6 -19±2 44 (36–

50)

24±4

Serrano-Ferrer 2014 40 Esaote VVI >60 2D 64±5 39±5 14±2 25±2

(Continued)
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time pooled data for the LLNs of RVGLS, RVFWLS and IVSLS, pooled mean for RVGLS, sepa-

rate data for 2D- and 3D- RV systolic strains and updated the pooled means for RVFWLS and

IVSLS. These findings differed from the current echocardiography guidelines in terms on the

value of the actual threshold (only defining that for RVFWLS at -20%), and adding the interval

of borderline strain to the classification of abnormal and normal strains [1]. Furthermore, we

identified important clinical and echocardiographic parameters that are associated with when

measuring RV systolic strain that should be taken into account, such as RVFAC and vendor

software.

Previous meta-analyses set out to report the normal values of strain in healthy subjects

include for right ventricular strain by echocardiography [8], left ventricular strain by echocar-

diography [7, 55], and strain by magnetic resonance imaging [30]. These studies were each

able to pool the means from studies of healthy subjects to provide the point estimates of mean

strain parameters with very narrow 95%CIs that do not reflect the wider distribution of normal

strains or provide estimates of LLN to distinguish normal and abnormal strains. In two recent

meta-analysis for left ventricle strain by echocardiography and magnetic resonance imaging

and this study, we overcome these limitations by estimating the LLNs of RV strains reported

for eligible studies, i.e. 1.96 times the standard deviation plus the pooled mean, and calculating

Table 2. (Continued)

Author Year N Machine Vendor Frame rate

(Hz)

2D/

3D

LVEF

(%)

LVGLS

(%)

RVD

(mm)

RVFAC

(%)

RVS’

(cm/s)

TAPSE

(cm)

RVSP

(mmHg)

Smith 2014 60 Toshiba Aplio

Artida

3D 24±4 26±4

Tadic 2015 54 GE EchoPAC 2D 65±4 -21±2 20±4 13±2 22±3 20±4

Vitarelli 2015 30 GE EchoPAC 2D 61±6 49±12 13±3 23±6 22±3

Yoshida 2019 481 Toshiba TomTec 2D 64±5 -22±3 45±8

N = number of patients, 2D = two-dimensional, 3D = three-dimensional, VVI = velocity vector imaging, LVEF = left ventricular ejection fraction, LVGLS = left

ventricular global longitudinal strain, RVD+right ventricular basal diameter, RVFAC = right ventricular fractional area change, RVS’ = right ventricular S’ by tissue

Doppler, TAPSE = tricuspid annular plane systolic excursion, RVSP = right ventricular systolic pressure, ± = mean±standard deviation, IQR = interquartile range.

https://doi.org/10.1371/journal.pone.0256547.t002

Table 3. Pooled means and lower limits of normal for right ventricular strain.

Strain Studies N Mean 95%CI (mean) Heterogeneity testing LLN 95%CI (LLN) Heterogeneity testing

2D

RVGLS (%) 27 2674 -23.4% -24.2%, -22.6% 1091 (<0.001), 97.6% -16.4% -17.3%, -15.5% 382 (<0.001), 93.2%

RVFWLS (%) 32 3673 -26.9% -28.0%, -25.9% 1575 (<0.001), 98.0% -18.0% -19.2%, -16.9% 737 (<0.001), 95.8%

IVSLS (%) 10 1230 -20.4% -22.0%, -18.9% 425 (<0.001), 97.8% -11.5% -13.6%, -9.6% 223 (<0.001), 96.0%

RVGLSR (/s) 10 1134 -1.45 -1.59, -1.31 593 (<0.001), 98.5% -0.80 -0.92, -0.67 143 (<0.001), 93.7%

RVFWLSR (/s) 6 954 -1.58 -1.88, -1.29 684 (<0.001), 99.3% -0.84 -1.09, -0.59 168 (<0.001), 97.0%

IVSLSR (/s) 4 763 -1.27 -1.48, -1.07 224 (<0.001), 98.7% -0.63 -0.88, -0.38 116 (<0.001), 97.4%

3D

RVGLS (%) 3 140 -21.3% -24.6%, -17.9% 71 (<0.001), 95.8% -13.9% -20.6%, -7.3% 80 (<0.001), 97.5%

RVFWLS (%) 2 80 -25.5% -28.6%, -22.3% 9 (0.003), 88.7% -16.2% -22.3%, -10.1% 11 (<0.001), 90.8%

IVSLS (%) 2 80 -20.8% -22.6%, -18.9% 4 (0.050), 73.9% -13.5% -19.0%, -8.0% 11 (<0.001), 90.9%

95%CI = 95% confidence interval, LLN = lower limit of normal, 2D = two-dimensional, 3D = three-dimensional, RV = right ventricle, GLS = global longitudinal strain,

FWLS = free wall longitudinal strain, IVSLS = interventricular septal longitudinal strain, LSR = longitudinal strain rate, Heterogeneity testing include the Cochrane Q

(P-value) and I^2.

https://doi.org/10.1371/journal.pone.0256547.t003
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the SE of the LLN using Bland’s formula [9, 10, 12]. These estimates were then pooled using

meta-analysis techniques to provide estimates of the LLN with 95%CI from multiple studies,

with greater power and precision than which individual studies can provide.

The pooled LLNs and their respective 95%CIs reported in this study, rather than the pooled

means, are necessary to defining reference ranges [9, 10]. The 95%CI of LLN reflects the range

Fig 2. Right ventricular two-dimensional global longitudinal strain pooled (a) mean and (b) lower limit of

normal.

https://doi.org/10.1371/journal.pone.0256547.g002

PLOS ONE Reference ranges of right ventricular strains by echocardiography

PLOS ONE | https://doi.org/10.1371/journal.pone.0256547 August 20, 2021 9 / 18

https://doi.org/10.1371/journal.pone.0256547.g002
https://doi.org/10.1371/journal.pone.0256547


Fig 3. Right ventricular two-dimensional free wall longitudinal strain pooled (a) mean and (b) lower limit of

normal.

https://doi.org/10.1371/journal.pone.0256547.g003

PLOS ONE Reference ranges of right ventricular strains by echocardiography

PLOS ONE | https://doi.org/10.1371/journal.pone.0256547 August 20, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0256547.g003
https://doi.org/10.1371/journal.pone.0256547


of values within which the true LLN is likely to lie. For example, the LLN of RVGLS and its

corresponding 95% CI are -16.4% (-17.3%, -15.5%). This means that RVGLS values more neg-

ative than -17.3% is very likely normal, less negative than -15.5% is abnormal, while between

-17.3% and -15.5% is indeterminate and therefore borderline. It should be noted that our find-

ings reflect the reference range of RV systolic strain in healthy subjects, not thresholds of what

Fig 4. Funnel plots for pooled analysis (a) right ventricular global longitudinal strain (RVGLS) mean, (b) RVGLS lower limit of normal (LLN), (c) right

ventricular free wall longitudinal strain (RVFWLS) mean, and (d) RVFWLS LLN.

https://doi.org/10.1371/journal.pone.0256547.g004
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is prognostically significant. In addition, the more narrow the 95%CI of the LLN the greater

the reproducibility and robustness of the RV strain measurement. Therefore, pooled 3D-RV

strain values we found with wider 95%CIs suggest that 3D techniques are currently less robust

than 2D.

Our meta-regression analysis identified some important parameters associated with RV

systolic strain. One important parameter is RVFAC, where a higher RVFAC was associated

with more negative RVGLS and RVFWLS means and LLNs. This makes sense given that a

Table 4. Meta-regression of two-dimensional right ventricular systolic strains mean and lower limit of normal.

Mean LLN

Parameter Beta 95% confidence interval P-value Beta 95% confidence interval P-value

Right ventricular global longitudinal strain

Year study published 0.05 -0.26, 0.35 0.768 0.08 -0.32, 0.49 0.685

Age (years) 0.06 -0.03, 0.14 0.196 0.12 0.00, 0.23 0.046

Male (%) 0.00 -0.11, 0.10 0.945 -0.02 -0.17, 0.13 0.830

Asian country (versus other) 0.42 -2.44, 3.27 0.776 1.03 -2.73,4.79 0.592

Body mass index (kg/m^2) 0.25 -0.25, 0.75 0.330 0.41 -0.23, 1.05 0.213

Body surface area (per 0.01 m^2) -0.02 -0.23, 0.20 0.885 0.18 -0.04, 0.41 0.116

Heart rate (/minute) 0.14 -0.03, 0.32 0.111 0.13 -0.08, 0.34 0.217

Systolic blood pressure (mmHg) 0.06 -0.15, 0.26 0.577 0.26 0.00, 0.52 0.051

Left ventricular ejection fraction (%) -0.13 -0.38, 0.13 0.335 -0.11 -0.42, 0.19 0.462

Left ventricular global longitudinal strain (%) 0.08 -1.00, 1.15 0.891 0.39 -0.88, 1.65 0.551

Right ventricular basal diameter (mm) 0.08 -0.07, 0.22 0.317 0.11 -0.11, 0.34 0.325

Right ventricular fractional area change -0.17 -0.30, -0.04 0.012 -0.31 -0.43, -0.18 <0.001

Right ventricular S’ velocity (cm/s) 0.30 -0.61, 1.22 0.517 0.21 -1.10, 1.52 0.754

Tricuspid annular plane systolic excursion -0.08 -0.59, 0.42 0.754 -0.39 -1.01, -0.24 0.227

Right ventricular systolic pressure 0.76 0.21, 1.31 0.007 1.07 0.17, 1.97 0.020

Echocardiography machine: Phillips versus GE -0.50 -3.09, 2.08 0.703 1.08 -1.63, 3.79 0.434

Vendor: Not GE EchoPAC versus GE EchoPAC 2.01 0.01, 4.02 0.048 3.90 1.73, 6.07 <0.001

Frame rate (Hz) -0.16 -0.42, 1.00 0.224 -0.17 -0.50, 0.17 0.335

Right ventricular free wall longitudinal strain

Year study published -0.09 -0.46, 0.28 0.632 -0.11 -0.56, 0.34 0.638

Age (years) 0.03 -0.08, 0.15 0.540 0.11 -0.02, 0.25 0.087

Male (%) -0.01 -0.14, 0.11 0.830 -0.13 -0.28, 0.02 0.083

Asian country (versus other) -1.20 -4.27, 1.86 0.441 -1.45 -5.17, 2.27 0.444

Body mass index (kg/m^2) 0.12 -0.57, 0.82 0729 0.56 -0.15, 1.26 0.121

Body surface area (per 0.01 m^2) -0.08 -0.29, 0.13 0.439 0.22 -0.06, 0.57 0.120

Heart rate (/minute) -0.09 -0.36, 0.15 0.49 -0.20 -0.45, 0.05 0.115

Systolic blood pressure (mmHg) -0.15 -0.39, 0.10 0.240 0.01 -0.31, 0.33 0.962

Left ventricular ejection fraction (%) 0.00 -0.38, 0.56 0.955 0.30 -0.06, 0.67 0.100

Left ventricular global longitudinal strain (%) 0.81 -0.34, 1.95 0.166 1.34 0.37, 2.31 0.007

Right ventricular basal diameter (mm) 0.13 -0.27, 0.53 0.529 0.06 -0.29, 0.42 0.710

Right ventricular fractional area change -0.29 -0.43, -0.15 <0.001 -0.46 -0.63, -0.29 <0.001

Right ventricular S’ velocity (cm/s) 0.70 -0.07, 1.54 0.088 0.80 -0.29, 1.89 0.151

Tricuspid annular plane systolic excursion 0.37 -0.27, 1.00 0.259 0.22 -0.39, 0.83 0.471

Right ventricular systolic pressure 0.35 -0.23, 0.93 0.239 0.74 -0.04, 1.53 0.061

Echocardiography machine: Phillips versus GE -0.46 -3.19, 2.27 0.741 1.85 0.98 4.70 0.200

Vendor: Not GE EchoPAC versus GE EchoPAC 2.29 0.27, 4.31 0.026 3.46 1.13, 5.78 0.004

Frame rate (Hz) 0.00 -0.17, 0.16 0.969 0.00 -0.17, 0.17 0.975

https://doi.org/10.1371/journal.pone.0256547.t004
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higher RVFAC requires greater RV wall deformation and hence more negative strain, although

perhaps a stronger association than expected given differences in RVFAC (angle-dependent)

and RV strain measurement (angle-independent) techniques [1]. It is also notable that both

tricuspid annular plane systolic excursion and right ventricular S’ tissue Doppler velocity

which measures free wall function were not significant associated with especially RVFWLS.

However, left ventricular ejection fraction was not associated with left ventricular strain in pre-

vious meta-analyses of healthy subjects [7, 55]. A future challenge would be to evaluate if RV

systolic strain adds additional prognostic utility incrementally on other measures of RV sys-

tolic function. Of note, equations relating RVFAC or ejection fraction to RV systolic strains

have not yet been developed, whereas one was recently published linking left ventricular ejec-

tion fraction with left ventricular strain using geometric modelling [56]. Another important

parameter influencing RV systolic strain is right ventricular systolic pressure, analogous to the

afterload of systolic blood pressure impacting on left ventricular systolic strain also previously

reported [7].

RV systolic strains are also affected by the vendor software used to measure strain. GE

Echopac continues to be the most widely used software in over 60% of the eligible studies, with

other choices including TomTec, QLab, velocity vector imaging and Epislon and so they were

combined for meta-regression analysis. Each software have their own unique method for

strain analysis using speckle tracking outside the scope of this article, which may be vendor

specific image acquisition such as EchoPAC for GE, or vendor independent such as velocity

vector imaging. Our results showed that non-GE EchoPAC software had less negative means

by 2–3% and LLNs by 4–5% for RVGLS and RVFWLS. Mixed results have been reported for

the influence of vendor software on left ventricular strain using meta-regression, with border-

line impact being reported with 2D- echocardiography (P = 0.08) [7], but significant impact

when using 3D-echocardiography [55]. Individual studies with head-to-head strain measure-

ments comparisons between vendor software are less commonly performed, have generally

evaluated left ventricular longitudinal strain only, and often found small but statistically signif-

icance difference in strain values such as velocity vector imaging having less negative values

than EchoPAC [10, 57]. Vendor software also needs to be taken into account when measuring

and interpreting RV systolic strain according to this meta-analysis, and similar to left ventricu-

lar strain, if echocardiography is repeated, the same vendor software and version is preferred

for serial comparisons of RV strain. These factors have important clinical implications to fur-

ther “tailor” expected mean and LLNs to match individual patient strain measurements.

Even with identifying parameters that influence RV strain values in meta-regression, there

remains considerable residual variability in normal RV strains reported in healthy subjects

across studies. For example, the LLN for RVGLS in the study by Park et al was -15.2%, while it

was -19.9% in that of Muraru et al, despite using the same software (GE Echopac) being used

in both studies and similar sample sizes of>200 patients with narrow 95%CIs. The magnitude

of these differences is difficult to explain. Potential causes are inter-institutional differences in

data acquisition, software versions and analysis, as well as demographics. One way to circum-

vent this might be multicenter cooperation to retrospectively or quantify inter-laboratory vari-

ability, or prospective data collection to develop a definite reference sample for RV strain.

What seems certain, however, is that it appears unlikely that any single institution would be

able to provide a universally accepted reference range for RV strain parameters on its own.

Strain rates are the temporal derivative of strain, and are usually reported using their peak

systolic or diastolic values [3].While systolic strain rate may offer additional information over

strain measurement as it correlates with load independent measures of left [58] and right [59]

ventricular contractility, it is seldom used in clinical practice. The main reason for this is that

strain rate is more prone to signal noise than strain, and that it is influenced by temporal
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resolution of the ultrasound system. Nevertheless, we provide the pooled means and LLNs

with 95%CIs for global, free wall and septal longitudinal strain rates for future research and

clinical applications.

Like all meta-analyses, our study had some limitations. The accuracy of RV systolic strain

measurement may differ by subject and study depending on operator experience and image

quality. There was significant heterogeneity in the design and population (including patient

characteristics and demographics, case-controlled studies), methodology of strain measure-

ments (such as scanner and strain software vendor, technique at different laboratories), as well

as the reported mean strains that were pooled as discussed earlier across studies, however this

is similar to previous meta-analyses of strain [7, 8]. Further research is required to understand

the heterogeneity of mean and LLN strain values across studies, especially as subgroup sensi-

tivity analyses showed that these differences were not attributable to vendor software alone, to

have a higher degree of confidence for applying pooled strain reference ranges into clinical

practice and other studies. In the presence of duplication publication bias, we selected only the

study with the largest number of healthy subjects, noting that there could still be residual bias

by excluding these studies and patients. Not all clinical and echocardiographic characteristics

were reported in all studies as seen in Tables 1 and 2, which can undermine univariable meta-

regression findings and also meant we had insufficient power for multivariable meta-regres-

sion. We defined LLN arbitrarily as the boundary of the 95%CI consistent with other chamber

quantification parameters [1], rather than based on prognostic significance in either healthy

subjects or those with cardiovascular disease, so these findings should not be used for that pur-

pose. The absence of patient-level data meant we had to use meta-analysis technique to calcu-

late pooled means and reference ranges. Publication bias may be present although we did not

find significant evidence for this. Nevertheless, most studies had high study quality according

to the Newcastle-Ottawa quality assessment scale, and the criteria most commonly not fulfilled

including source of control selection and comparability with cases were less relevant to the

meta-analysis with our strict inclusion criteria for the definition of “healthy subjects”.

Conclusion

In conclusion, this meta-analysis reports the reference ranges for RV systolic strains in healthy

subjects by pooling means and more importantly LLNs with their 95%CIs. The latter allows

the classification of RV systolic strains as normal, borderline and abnormal. For example, the

pooled LLN for RVGLS was -16.4% (-17.3%, -15.5%), meaning that RVGLS less negative than

-15.5% would be abnormal, between -17.3% and -15.5% borderline, and more negative than

-17.3 normal. We obtained this reference range for RVGLS, RVFWLS and IVSLS measured by

both 2D- and 3D speckle-tracking echocardiography. The most important factors associated

with the means and LLNs of both RVGLS and RVFWLS measurements by meta-regression

were RVFAC and vendor software which suggest a case could be made for separate reference

ranges by vendor. Finally, caution must be applied when interpreting our findings given the

significant heterogeneity of study populations in pooled analyses.
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