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Abstract

The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more empha-

sis on reducing the parameter amount and storage space of the model in addition to the auto-

matic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional

neural network (LCNN) method for intelligent fault diagnosis of rotating machinery, which can

largely satisfy the need of less parameter amount and storage space as well as high accuracy.

First, light-weight convolution blocks are constructed through basic elements such as spatial

separable convolutions with the aim to effectively reduce model parameters. Secondly, the

LCNN model for the intelligent fault diagnosis is constructed via lightweight convolution blocks

instead of the tradi-tional convolution operation. Finally, to address the “black box” problem, the

entire network is visualized through Tensorboard and t-distribution stochastic neighbor embed-

ding. The results demonstrate that when the number of lightweight convolutional blocks

reaches 6, the diagnosis accuracy of the LCNN model exceeds 99.9%. And the proposed

model has become the most robust with parameters significantly decreasing. Furthermore, the

proposed LCNN model has realized accurate, automatic, and robust fault diagnosis of rotating

machinery, which makes it more suitable for deployment under the IIoT context.

Introduction

In view of the significant role bearings play in rotating machinery, it is of the great essence to

secure the safe and reliable operations of the bearings. Otherwise, once faults occur, it will not

only cause economic loss to the entire industrial system, but also threaten the life of operators.

Therefore, it is of great significance to automatically and accurately monitor the state of rotat-

ing machinery and take necessary measures in the early stages of failure to ensure the safety of

the entire industrial system [1,2].

With the advancement of online monitoring and fault diagnosis technology for rotating

machinery, a series of fault diagnosis methods have been introduced to fault diagnosis of rotat-

ing machinery in the past half century [3,4]. Traditional fault diagnosis methods can be mainly

divided into the construction of fault features and the use of pattern recognition methods for

fault classification. As for fault feature construction, signal processing methods, such as wavelet

transform, wavelet packet transform, empirical mode decomposition as well as variational mode
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decomposition, are adopted to construct the fault characteristic parameters. Then dimensionality

reduction is realized through principal component analysis and auto-encoder of the constructed

parameters [5–8]. The final key feature parameters are selected in this process. As for feature-

based pattern classification methods, they include support vector machines, decision trees, ran-

dom forests, and artificial neural networks [9,10]. As narrow models, however, the traditional

fault diagnosis methods find it in no position to perfectly represent the nonlinear relationship

between fault signals and fault categories. Moreover, they to a large degree rely on signal analysis

and processing methods and diagnostic experience [11,12].

Confronted with the massive acquired data brought about by the development of Industry 4.0

and the Industrial Internet of Things (IIoT), deep learning has emerged as a multi-level model

for fault diagnosis of rotating machinery, for it can well represent the non-linear relationships of

faults. In particular, deep belief networks and auto-encoders are typical representative [13–15].

F. J. et al. proposed a deep neural network-based fault diagnosis method for rotating machinery.

Through adaptively mining fault features from the frequency spectrum, it can be used for the

diagnosis of various problems and in the meantime effectively classify whether the machines are

on health condition [16]. Z. C. et al. constructed a SAE and DBN-based multi-sensor feature

fusion method for bearing fault diagnosis and verified its high recognition rate and low sensitiv-

ity to training samples [17]. S. H. et al. adopted a deep auto-encoding feature learning method

for rotating machinery fault diagnosis, which demonstrated better robustness and effectiveness

in feature learning and fault diagnosis [18]. C. L. et al. used superimposed denoising auto-

encoder (SDA) for the health status recognition of signals in the context of environmental noise

and fluctuations in working conditions, which had high accuracy and strong robustness [19].

With significant automatic feature extraction capability, convolutional neural network (CNN)

has achieved excellent fault diagnosis performance as an important branch of deep learning. S. G.

et al. used a CNN model to directly classify a continuous wavelet transform image (CWTS) for

diagnosis with no need for dimensionality reduction to avoid information loss [20]. W. Y. et al.

designed a broad convolutional neural network (BCNN) with incremental learning ability to per-

fectly capture the fault process features. Moreover, it can effectively realize self-update to include

new abnormal samples and fault classes. J. J. et al. proposed a deep coupled dense convolutional

network (DCDCN) that well combined data fusion, feature extraction and fault classification

together for intelligent diagnosis. As for the multi-scale feature learning of complex vibration sig-

nals. G. J. et al. developed a new systematic structure of multi-scale feature learning-based wavelet

transform gearbox for intelligent fault diagnosis. By introducing coarse-grained layers to tradi-

tional CNNs, the integration of multi-scale feature learning was realized [21]. G. X. et al. pro-

posed an online fault diagnosis method based on the deep transfer convolutional neural network

(DTCNN). After directly transferring the shallow layers of the trained offline CNNs to the online

CNNs, the online CNNs can significantly improve the real-time performance, and the diagnostic

accuracy problem was successfully solved in limited training time [22].

In order to improve the fault diagnosis accuracy, the main method is to deepen the depth of

the model. However, limited by the sample size, as the model deepens, the CNN may encoun-

ter the overfitting problem or even the vanishing gradient. Although the above problems can

be solved by transfer learning, transfer learning fails to take account of the parameter number

and storage space of the model, and in the meantime, it requires similar samples for the migra-

tion objects and the problems to be solved. In order to avoid severe overfitting and vanishing

gradient in the process of model deepening, as well as effectively reduce the model parameters

and storage space, in this paper a lightweight convolutional neural network (LCNN) is con-

structed for automatic and accurate intelligent fault diagnosis of rotating machinery via light-

weight convolution blocks instead of traditional convolution operations. The specific

contributions are as follows:
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1. The LCNN model was constructed via a lightweight convolution block rather than a tradi-

tional convolution operation, which greatly improves failure diagnosis accuracy and signifi-

cantly reduces computational complexity and model memory. In addition, strictly

speaking, it solves the serious overshoot and bending gradient problems caused by the

deepening of the model in a limited number of samples when the accuracy is high.

2. Through constructing different LCNN models with multiple lightweight convolutional

block numbers, the impact of network depth on the performance of fault diagnosis of rotat-

ing machinery is studied. When the number of blocks reaches a certain extent, the recogni-

tion accuracy will gradually remain stable, but the model parameters will increase

exponentially. By comprehensively considering the model accuracy and parameter storage,

the optimal fault diagnosis model for rotating machinery can be determined.

3. In order to give full play to the powerful feature extraction advantages of convolution, we

propose to use multiple convolution sizes instead of a single convolution size during the

construction of the convolution block. A large-scale convolution kernel is used to extract

fault representation features more effectively, thereby improving the recognition accuracy

of the model.

Basic theory

CNN

As a deep learning model for image recognition, CNN is mainly composed of input layer, con-

volutional layer, pooling layer and fully connected layer. With the further development of the

CNN model, the convolutional layer not only includes convolution operations, but also

includes batch normalization and nonlinear activation. Currently, it is typical of the CNN

model to own all three types of operations in the convolutional layer [23].

The input data of the CNN model is generally the original image X. In this paper, Zi refers

to the output characteristics of the l-th layer of the convolutional layer in the model, where Z0

= X. And then the generation process of Zi can be described as Eq (1), where Wi refers to the

weight vector of the convolution kernel of the l-th layer [24]. After convolution operation with

the output feature data in the l-1_th layer, it is further added to the offset vector bi in the l-th

layer. And then a non-linear activation operation is performed on the additive result via f(x)

function to obtain the output feature Zi in the l-th layer. After the convolutional layer, there is

usually a pooling layer. This layer can reduce the dimensions of features while retaining spatial

information. Finally, the fully connected layers are used to map the abstract feature informa-

tion extracted by all previous layers to the sample marker space during the training process to

the sample marker space. After training, the probability distribution Y of the original input

image data can be acquired, as shown in Eq (2).

Zl ¼ fðZl� 1�Wl þ blÞ ð1Þ

Yi ¼ PðL ¼ lijX; ðW; bÞÞ ð2Þ

MSE ¼
1
n
Pn

i ðŶi� YiÞ
2

ð3Þ

Wi ¼Wi� Z
@LðW; bÞ
@Wi

ð4Þ
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bi ¼ bi� Z
@LðW; bÞ

@bi
ð5Þ

The mathematical characteristic of CNN is to perform several linear and non-linear trans-

formations on the matrix Z0 of the initial input image, and finally map it to another new

dimensional space Y. The training process of the CNN model is to minimize the cost function

L(W, b) of the model. In other words, this is a process of minimizing the gap between the pre-

dicted result obtained by the inference operation of the input image matrix Z0 and the

expected result. The commonly used cost equations include cross entropy and mean square

error (MSE) equations, where MSE is shown in Eq (3). In addition, as shown in formulas (4)

and (5), the gradient descent algorithm is widely used to optimize the cost formula. The gradi-

ent descent method propagates the loss value of the model and updates the parameters in the

model layer by layer, where η represents the speed of learning and parameter update. A lot of

research on CNN helps to significantly improve the basic network structure, especially the

depth of the model. With the deepening of the model, more feature information can be

extracted, thereby improving the recognition accuracy

Spatial separable convolutions

Despite the good feature extraction effects in data processing, traditional CNNs cannot be

applied to devices with limited hardware performance due to high computational complexity.

In order to improve the above disadvantage, a LCNN model is constructed via the lightweight

convolutional operations instead of the traditional convolutional operations, which is capable

of effectively improving the accuracy as well as reducing the calculation and storage cost

[24,25]. Among the lightweight convolution operations, including depth-wise separable con-

volutions, channel shuffling, and spatial separable convolutions. Spatial separable convolutions

can promote the faster learning without losing feature information as much as possible after

being applied through spatial aggregation over deep separable convolutions [26].

As for depthwise separable convolution, its convolution process includes the operations of

deep convolution operation layers and pointwise convolutions. Assume that the size of the

input data is Df×Df×M, where M is the number of feature channels of the input data. The deep

separable convolution first uses M convolution kernels of size Dk×Dk×1 for deep convolution.

Each convolution kernel performs convolution operation on only one input feature channel.

In this way, M feature channels can be obtained after these M convolution kernel operations.

Under reasonable settings, the output data is Df×Df×M, and the calculation amount is

Dk×Dk×Df×Df×M. Then, the output results of the deep convolution layer are subjected to

pointwise convolution operations through N convolution kernels with a size of 1×1×M. The

final output data size is Df×Df×N. The calculation amount is M×Df×Df×N. After the above

decomposition, the ratio between the ultimate calculation amount and the calculation amount

the original standard convolution requires is shown in Eq (6). As can be obtained from

Table 1, the ratio of the calculation amount of spatially separable convolution and traditional

convolution is:

Dk � Dk � Df � Df �MþM� Df � Df �N
Dk � Dk �M� Df � Df � N

¼
1

N
þ

1

D2

k

ð6Þ

Considering that Dk
2 is much larger than N, and the ratio of the calculation amount

between the two is approximately 1/N, it can be seen that the calculation amount of the
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lightweight convolutional neural network constructed by spatially separable convolution is sig-

nificantly reduced.

Research shows that the convolution size is proportional to the calculation amount. For

example, with the same filter, the calculation amount of 5x5 convolution kernels are 25/

9 = 2.78 times larger than that of 3x3 convolution kernels. Compared to the 3x3 convolution

kernel, the 5x5 convolution kernel has a broader “field of view”, which can capture more infor-

mation. Therefore, simply reducing the kernel size will result in information loss. In this sense,

a multilayer network is adopted in place of 5x5 convolution. Through regarding a 5x5 network

as full convolution, each output is a kernel sliding on the input. Also, it can be replaced by a

two-layer 3x3 full convolution network, and the information loss at this time can be ignored.

In fact, it is better for a convolution to be decomposed as asymmetric. For example, a 3x1

convolution, followed by a 1x3 convolution, is equivalent to a 3x3 convolution. The calculation

of the two-layer structure is reduced by 33%. If it is replaced by the 2x2 convolution, the calcu-

lation declines only by 11%. Theoretically, nxn convolution can be replaced by 1xn -> nx1

convolution. As n increases, it can reduce more calculations. In practice, such decomposition

effects are not good in the first few layers of the network while in a medium network, it dem-

onstrates this good performance (for feature map of mxm size, m is between 12 and 20). At

these sizes, 1x7 -> 7x1 possesses an excellent convolution effect. The aforementioned decom-

position operation mainly deals with the spatial dimensions of the image and the kernel,

namely width and height. The operation of this kind is a spatial separable convolution

operation.

Spatial aggregation can be accomplished by embedding in lower dimensions without losing

much or any representation ability. Before performing a wider convolution, the number of

input dimensions can be reduced before spatial aggregation without serious negative effects.

Due to the strong correlation between neighboring cells, if the output is used for the spatial

aggregation context, much less information is lost during the dimensionality reduction process

[27]. Considering that these signals are easily compressed, dimensionality reduction can even

promote faster learning.

Method

Lightweight convolution blocks

In order to design LCNN model, a lightweight convolution block with a general structure is

designed to seamlessly replace the ordinary convolutional layers in the simplified network. It

can largely solve the data compression problem and in the meantime effectively explore the

network structure. The lightweight convolution block operation proposed in this paper is

shown in Fig 1, where “dw” refers to deep convolution, “mp” refers to max-pooling, and “ch”

refers to the number of output channels. Firstly, three deep convolutions are decomposed into

two linear layers, which guarantees that pooling processing is performed after the first spatial

layer, and thereby saves the calculation results to the second layer. Then, the sub-sampling is

segmented along the spatial dimension, and a 1 × 2 maxpooling kernel is applied after the first

deep convolution. For the second sub-sampling, the 2×1 kernel and a corresponding step size

are chosen to replace the ordinary pointwise convolution.

Table 1. The number of parameters and computation amount for traditional convolution and spatial separable convolution.

traditional convolution spatial separable convolutions

Parameter Dk×Dk×M×N Dk×Dk×M+1×1×M×N
Calculation amount Dk×Dk×M×N×DF×DF Dk×Dk×M×DF×DF+M×N×DF×DF

https://doi.org/10.1371/journal.pone.0256287.t001
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As one of the cores of ResNet, Bottleneck Architectures greatly reduce the network parame-

ters while effectively simplifying the training process. The Bottleneck structure is to reduce the

parameter number. Bottleneck mainly can be divided into three steps: first, reducing the data

dimensions, then performing the convolution of the conventional convolution kernels, and

finally increasing the data dimensions (similar to the hourglass). According to reference, a

quarter of the output channels are no longer used, but a factor of 0.5 is identified, and the min-

imum channel number is 6.

As shown in Fig 2, the proposed lightweight convolution block uses spatially separable con-

volution operations instead of traditional convolution operations, which is very representative.

The traditional convolution calculation is to perform convolution on 3 channels at the same

time; the spatially separable convolution calculation is divided into two steps: first, convolution

is performed on the 3 channels separately and 3 values are output after one convolution, and

then a value is obtained through a 1x1x3 convolution kernel.

The proposed lightweight convolutional neural network, as an efficient convolutional neu-

ral network designed for mobile terminals, not only solves the problem of data compression,

Fig 1. Lightweight convolution block operation diagram.

https://doi.org/10.1371/journal.pone.0256287.g001

PLOS ONE Rotating machinery fault diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0256287 August 26, 2021 6 / 20

https://doi.org/10.1371/journal.pone.0256287.g001
https://doi.org/10.1371/journal.pone.0256287


but also reduces computational overhead and storage space while ensuring accuracy. This will

enable larger networks to be deployed on low-capacity hardware and improve the efficiency of

use of existing hardware.

Model training

The stochastic gradient descent (SGD) algorithm, namely SGD optimizer, is used for training.

During the training process, all training parameters are uniformly maintained and updated by

the SGD optimizer, with the same learning rate. When training reaches a certain stage, the loss

curve may no longer drop, and the parameter learning becomes difficult. It is necessary to

reduce the learning rate so that the model loss continues to decrease during training. When

training the target recognition network, SGDR is used to adjust the learning rate.

After completing the training, the pruning method can be adopted to further compress the

model volume and operation amount, and improve the running speed. The core task of prun-

ing is to measure the importance of the convolution kernel to the final result. In this paper, we

mainly analyze the kernel cut for spatial separable convolutional layers in the network. In addi-

tion, the parameters in the Batch Normalization (BN) after the convolution layer are mainly

used to measure the importance of the convolution kernel.

The major function of the BN layer is to avoid data shifting among multiple layers. The

main method is to renormalize the data distribution to a distribution with a mean of 0 and a

variance of 1. In order to maintain the expressive competence of the model, the normalized

data is endowed with a bias β and a coefficient α.

In the BN layer, both α and β are training parameters. After training, each BN layer has spe-

cific values for corresponding α and β. Since the BN layer exclusively corresponds with the

respective convolutional layer, the coefficient α can roughly represent the importance of the

corresponding convolution. In this paper, we mainly analyze the coefficient α of BN in each

layer or each module to measure the importance.

Fig 2. The schematic diagram of traditional convolution and spatial separable convolution. (a) traditional

convolution (b) spatial separable convolutions.

https://doi.org/10.1371/journal.pone.0256287.g002
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Model framework

To sum up, in this paper lightweight convolution blocks are constructed via spatial separable

convolution. And the constructed blocks are used to build a novel LCNN model. The entire

network construction and diagnosis process is presented in Fig 3. A LCNN-based fault diagno-

sis framework for bearings is summarized in the following four steps:

1. Construction of lightweight convolution blocks. Through tentative experiments apart from

previous studies, spatial separable convolution operation is used to construct lightweight

convolution blocks in place of the traditional convolution operations, which effectively

compresses the model.

2. Network construction. By using the lightweight convolution blocks constructed above

instead of the traditional convolution operations, an effective LCNN is constructed for fault

diagnosis.

3. Network training and optimization. The model has been executed at least five times to elim-

inate the effects of random initialization. During model training, SGD is used as an opti-

mizer, and the pruning method is used to further compress the model volume and

operation amount to improve the model running speed.

4. Model deployment. The trained LCNN is extracted to construct the fault diagnosis model.

Deploy the fault diagnosis model on bearings for real time monitoring and fault diagnosis.

The LCNN model is constructed by using LCNN blocks. With little impact on the accuracy,

this model retains the content that has been largely reduced in the context of enormous

Fig 3. LCNN-based bearing fault diagnosis process.

https://doi.org/10.1371/journal.pone.0256287.g003
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decrease of calculation amount. Besides, this novel convolution module is able to deploy larger

networks on low-capacity hardware, or improve the efficiency of existing models. Compared

with the traditional narrow models, the CNNs manifest excellent performance in the diagnosis

of bearing faults. The increase of model parameters, helps to improve the model’s ability, but

increases the overfitting risk with limited supervised training. For credible comparative

research, we have designed four types of LCNN architectures with 3–6 EffNet blocks, LCNN

overall framework as shown in Fig 4.

To achieve layered and abstract feature representation, the number of kernels increases

with depth increasing. The dropout layer is added to avoid overfitting. The final output layer

gives the diagnostic category for each sample. The activation function is ReLU, the batch size

is 16 to 64, and the learning rate of optimizer is 0.01. At the same time, the results of certain

typical DCNN models and stack auto-encoders are used for comparison. The impact of the

block numbers on the model is also studied. During the experiment, we have trained our

model with Keras (Tensorflow backend) on a machine that has a GeForce RTX 2060 GPU, an

Intel i7-8700 CPU and 16 gigabytes of RAM [28].

Experimental verification

Results on bearing fault dataset of Western Reserve University

As one of the most influential public datasets for mechanical fault diagnosis, Case Western

Reserve University Bearing fault dataset is regarded as a reference for research and verification

of the fault diagnosis performance of the proposed model. The test object of the CWRU bear-

ing center data acquisition system is the driving end bearing, and the bearing type is a deep

groove ball bearing SKF6205. The faulty bearing is made by electrical discharge machining

(EDM), and the sampling frequency is 12 kHz. The bearing has a single-point fault set by the

EDM process. The fault diameter includes four sizes, namely 0.178 mm, 0.356 mm, 0.533 mm,

and 0.711 mm.

In this paper, the driving end vibration signals are selected as the experimental data, includ-

ing the vibration signals in 4 different states, namely Normal (NOR), Ball Fault (BF), Outer

Race Fault (ORF), and Inner Race Fault (IRF). The signals collected in each state vary because

of the different fault diameters and loads. The load size is respectively 0W, 746W, 1492W, and

2238W. The 12k Drive End Bearing Fault Data is diagnosed by using 200 data points at a time.

In total, 10 types of signal data are constructed for experiment, which cover the 4 signal states.

Reference [19], the 10 types of data are 0.178mm BF (0), 0.178mm IRF (1), 0.178mm ORF (2),

0.356 BF (3), 0.711mm IRF (4), 0.356mm ORF (5), 0.533mm BF (6), 0.533mm IRF (7),

0.533mm ORF (8), NOR (9).

In this section, we focus on the performance of various methods on the Case Western Reserve

University Bearing fault dataset. First, the influence of the number of lightweight convolution

blocks on the recognition results is explored. Table 2 gives the fault diagnosis results of different

block numbers. When the number is 6, the diagnostic accuracy of the model has reached

99.91%. As the number increases further, the model accuracy increases slightly, but the parame-

ter amount increases exponentially, which brings difficulties to model training and deployment.

Fig 5 presents the training accuracy and cross-validation accuracy curves of the models con-

structed by block numbers. With the block number increasing, the training of LCNN takes

fewer iterations to be stable, indicating the robustness and high cross-validation accuracy of

the model. In this sense, this paper chooses the LCNN model constructed by six lightweight

convolution blocks as the best model for intelligent fault diagnosis of rotating machinery.

Fig 6 shows the confusion matrix results of the LCNN models with 4 different block num-

bers. From the confusion matrix, LCNN-3 has the lowest diagnostic accuracy on data type (0),
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Fig 4. The overall framework of four types LCNN architectures.

https://doi.org/10.1371/journal.pone.0256287.g004
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while the other LCNN models have low accuracy on type (3) and (4), and demonstrate high

accuracy on type (6). The confusion matrix results further prove that LCNN model with 6

lightweight convolutional blocks possesses the best accuracy performance.

Table 3 demonstrates the fault diagnosis results of the proposed method and the traditional

methods. The proposed LCNN model significantly outperforms in recognition accuracy. Lim-

ited by the data sample size, the LeNet and AlexNet models suffer severe overfitting or even

the vanishing gradient problem in the training process. Therefore, migration training is used

to achieve high accuracy.

Table 4 presents the parameters and weight storage of the proposed LCNN model and tra-

ditional CNN models. It is evident that the proposed LCNN demonstrates much more advan-

tages with significantly less parameters and storage. Fig 7 shows the training and testing curves

of the CNN models. Obviously, LeNet and AlexNet have suffered the overfitting and even van-

ishing gradient problem owing to the limited sample size.

Table 2. The fault diagnosis results of different lightweight convolution block.

Model Accuracy (%) Parameter (million) Storage (MB)

LCNN-6 99.91 7.061 27.845

LCNN-5 99.45 1.853 7.340

LCNN-4 97.94 0.626 2.590

LCNN-3 94.09 0.478 1.975

https://doi.org/10.1371/journal.pone.0256287.t002

Fig 5. The training curves of the LCNN models constructed by different number of lightweight convolution blocks.

(a) 3 blocks. (b) 4 blocks. (c) 5 blocks. (d) 6 blocks.

https://doi.org/10.1371/journal.pone.0256287.g005
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Since the CNNs are usually called as “black box”, TensorBoard is adopted to visualize the

extracted features of each convolutional layer of the LCNN model proposed in this paper. The

feature map is shown in Fig 8. Initially, the convolution mainly extracts edge features, and

then becomes increasingly abstract. And the feature map becomes growingly smooth, indicat-

ing that the feature representation is sufficient.

In order to provide an intuitive explanation of the model prediction, t-SNE is used to visu-

alize the learned features in a hidden fully connected layer [29,30]. The visualization results are

shown in Fig 9. In the flat hidden fully connected layer, the samples under the same fault con-

dition are clearly collected together and even separated, which indicates that the learned fea-

ture descriptors have good feature representation capabilities [31–33]. After performing non-

linear mapping in the classifier, the features under different fault conditions are well separated

in the last hidden fully connected layer, except for slight overlapping of single samples, which

is consistent with the findings in Figs 6 and 7. Furthermore, for data under invisible

Fig 6. Confusion matrices of the LCNN models with different numbers of lightweight convolutional blocks. (a) 6 blocks. (b)

5 blocks. (c) 4 blocks. (d) 3 blocks.

https://doi.org/10.1371/journal.pone.0256287.g006

Table 3. PD recognition results of different methods.

Model LCNN LeNet AlexNet ResNet DBN SAE SVM

Results(%) 99.91 99.56 99.63 87.96 87.20 92.15 87.88

https://doi.org/10.1371/journal.pone.0256287.t003

PLOS ONE Rotating machinery fault diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0256287 August 26, 2021 12 / 20

https://doi.org/10.1371/journal.pone.0256287.g006
https://doi.org/10.1371/journal.pone.0256287.t003
https://doi.org/10.1371/journal.pone.0256287


conditions, there is a larger overlapping area in the ResNet model, while the features learned

by LCNN have better separability.

Results on MFPT bearing fault dataset

The MFPT bearing fault dataset provided by the American Society for Mechanical Failure Pre-

vention Technology is a widely used open dataset in the current mechanical fault diagnosis

field and has representative significance for mechanical vibration signal fault diagnosis. The

dataset includes normal (Nor) data from the bearing test bench, outer race (OR) fault data and

inner race (IR) fault data under different loads, and three real fault cases.

In order to ensure the sample balance, the training samples are constructed under 3 Nor

conditions, 7 IR conditions, and 7 OR conditions, with the aim to verify the LCNN model pro-

posed in this paper. Among them, Nor is 757,808 data points, IR is 1,025,388 data points, OR

is 1,025,388 data points, and the data sampling rate is 97656. The number of picture waveforms

of Nor, IR, and OR are waveforms 1800, 2100, and 2100, and the time step in each waveform

diagram is 0.01 seconds, as shown in Fig 10.

Table 4. The compare results of the LCNN and traditional CNN models.

Index Model Parameter (Million) Weight storage (MB)

1 LCNN 3.06 12.522

2 ResNet 11.18 43.647

3 LeNet 14.43 56.396

4 AlexNet 24.72 96.695

https://doi.org/10.1371/journal.pone.0256287.t004

Fig 7. The training and testing curves of the CNN models. (a) LeNet. (b) AlexNet. (c) ResNet.

https://doi.org/10.1371/journal.pone.0256287.g007
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During the experiment, 80% failure samples are used for training (70% for training and

10% for validation), and 20% for model testing. The recognition results of different models are

shown in Table 5. It can be seen from Table 5 that LCNN-6 has the highest recognition accu-

racy, followed by LCNN-5 and ResNet, while LCCN-3 model has the lowest performance in

accuracy, especially in the OR fault recognition. When trained directly, the LeNet and AlexNet

models demonstrate poor recognition effect, the AlexNet model in particular as a result of van-

ishing gradient. Therefore, transfer learning is adopted to help models achieve better results in

mechanical fault diagnosis. The other performance indicators of the model are the same as in

4.1.2, so they will not be described.

The training process of the 4 LCNN models constructed in this paper is shown in Fig 11. As

the block number increases, the LCNN models become more and more robust. Besides, the

more the block number, the smaller the fluctuation of the training and verification accuracy of

the LCNN models, which indicates the better robustness of the models. Also, with the block

number increasing, it takes fewer iterations for the models to stabilize, thus reducing training

time. Figs 12 and 13 demonstrate the visualization results of the models’ convolution feature

and t-SNE results. From the figures, the classification boundary of the LCNN models is obvi-

ous, and the classification areas occupied by the three fault types are far apart, further verifying

the excellent performance of the proposed models on the accuracy index.

Conclusion

In order to improve the fault diagnosis accuracy, and reduce the model parameters and storage

for deployment, this paper proposes an LCNN-based intelligent fault diagnosis method for

rotating machinery. Instead of traditional convolution operations, lightweight convolution

Fig 8. The feature map of each convolutional layer of the LCNN model. (a) Layer 2. (b) Layer 13. (c) Layer 25. (d)

Layer 38.

https://doi.org/10.1371/journal.pone.0256287.g008
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Fig 9. The visualization results of t-SNE. (a) LeNet. (b) AlexNet. (c) ResNet. (d) LCNN.

https://doi.org/10.1371/journal.pone.0256287.g009

Fig 10. The MFPT bearing fault signals.

https://doi.org/10.1371/journal.pone.0256287.g010
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blocks are used to construct LCNN models for accurate, automatic, and robust fault diagnosis

of rotating machinery. Tensorboard and t-SNE are used to visualize the entire network. The

superiority of the proposed method is also verified on the Case Western Reserve University

Bearing fault dataset and the MFPT bearing fault dataset. The main conclusions are as follows:

1. The block number is in a proportion to the model accuracy. When the number increases to

6, the accuracy has reached more than 99.9% and become stable with the number further

Table 5. The recognition results of models.

Model Fault type Overall accuracy(%)

Nor(%) IR(%) OR(%)

LCNN-3 100.00 90.95 65.00 77.86

LCNN-4 100.00 97.61 94.05 97.22

LCNN-5 100.00 99.76 100.00 99.92

LCNN-6 100.00 100.00 100.00 100.00

LeNet 100.00 97.14 98.09 98.41

AlexNet 100.00 99.05 100.00 99.68

ResNet 100.00 99.52 100.00 99.84

DBN 100.00 90.71 84.04 91.61

SAE 100.00 96.43 87.85 94.76

SVM 100.00 90.47 86.90 92.46

https://doi.org/10.1371/journal.pone.0256287.t005

Fig 11. Training process curves of four LCNN models. (a) 6 blocks. (b) 5 blocks. (c) 4 blocks. (d) 3 blocks.

https://doi.org/10.1371/journal.pone.0256287.g011
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Fig 12. Visualization results of convolution features of the LCNN models. (a) Layer 2. (b) Layer 13. (c) Layer 25. (d)

Layer 38.

https://doi.org/10.1371/journal.pone.0256287.g012

Fig 13. Visualization results of t-SNE. (a) LeNet. (b) AlexNet. (c) ResNet. (d) LCNN.

https://doi.org/10.1371/journal.pone.0256287.g013
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increasing. But the substantial increase in the parameter amount makes it difficult to train

and deploy the model.

2. With the block number increasing, the model training curve becomes more robust, which

indicates the model robustness. Meanwhile, it takes fewer iterations for the model to be sta-

ble, thus reducing the training time.

3. Compared with traditional methods, the LCNN model proposed in this paper has the high-

est diagnostic accuracy, with significantly less parameter amount and storage space. Thus,

the proposed model is conducive to the deployment.

4. The entire network is visualized through Tensorboard and t-SNE. Initially, the proposed

model mainly extracts signal contours, and then becomes abstract. The smoothness of the

feature map shows that the automatic feature extraction in this paper is sufficient. The fault

boundary of the fully connected layer is clearly separable, which proves the feasibility of the

proposed method.

In the future, we plan to start with optimization methods to automatically reduce the mod-

el’s parameters and storage while automatically exploring the optimal LCNN architecture for

fault diagnosis of rotating machinery. Considering the demands for real-time and fast data

processing in the IIoT context, the processing speed of the model needs further improving.
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