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Abstract

Non-invasive fetal electrocardiography appears to be one of the most promising fetal moni-

toring techniques during pregnancy and delivery nowadays. This method is based on

recording electrical potentials produced by the fetal heart from the surface of the maternal

abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are

other interference signals in the abdominal recording that need to be filtered. The biggest

challenge in designing filtration methods is the suppression of the maternal electrocar-

diographic signal. This study focuses on the extraction of fetal electrocardiographic signal

from abdominal recordings using a combination of independent component analysis, recur-

sive least squares, and ensemble empirical mode decomposition. The method was tested

on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference

Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was

performed by the assessment of the accuracy of fetal QRS complexes detection and the

quality of fetal heart rate determination. The effectiveness of the method was measured by

means of the statistical parameters as accuracy, sensitivity, positive predictive value, and

F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct

and Abdominal with Reference Heartbeats Annotations database, accuracy higher than

80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75%

[95% confidence interval: 91.19–93.88%], sensitivity 95.09% [95% confidence interval:

93.68–96.03%], positive predictive value 96.36% [95% confidence interval: 95.05–97.17%]

and F1-score 95.69% [95% confidence interval: 94.83–96.35%]. When testing on the Physi-

onet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25

recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44–

81.85%], sensitivity 81.79% [95% confidence interval: 76.59–85.43%], positive predictive

value 87.16% [95% confidence interval: 81.95–90.35%] and F1-score 84.08% [95% confi-

dence interval: 80.75–86.64%]. Moreover, the non-invasive ST segment analysis was car-

ried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with
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Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total

of 12 records (mean values μ < 0.1 and values of ±1.96σ < 0.1).

Introduction

Fetal monitoring is an integral part of modern maternal and fetal care, used mainly to prevent

fetal hypoxia. Hypoxia is a life-threatening condition characterized by insufficient oxygen sup-

ply to the body or individual tissues. If hypoxia is diagnosed, it is necessary to terminate the

pregnancy by caesarean section as soon as possible [1]. Currently, several methods for moni-

toring fetal cardiac activity are known. The oldest technique is listening to heart sounds with a

stethoscope [2]. Newer monitoring methods include, for example, a non-invasive, low-cost,

and completely passive method called phonocardiography. This method is based on recording

acoustic heart sounds, vibrations and murmurs of the fetus using an acoustic sensor located on

the maternal abdomen [3, 4]. Magnetocardiography based on the measurement of magnetic

fields generated by electric currents of the fetal heart is an alternative method. Magnetic fields

are detected using highly sensitive superconducting quantum interference device sensors. The

advantage of this method is the quality of the signals due to absence of biological noise. Unfor-

tunately, this is a very expensive method requiring a shielded room [5, 6].

Therefore, in clinical practice, a very simple and fast cardiotocography (CTG) method,

based on the principle of Doppler ultrasonography, is used for fetal monitoring. This method

allows continuous monitoring of fetal heart rate (fHR) and uterine contractions [7, 8]. The

first commercially available cardiotocograph model was introduced in 1968 [2]. Since then,

there has been a marked decrease in the number of fetal deaths during childbirth, but, subse-

quently, there has also been an increase in the number of caesarean sections performed [9].

This phenomenon is attributed to the poor reliability and accuracy of this method [10–13].

For example, studies [14, 15] point to this problem and the research [16] confirms the hypoth-

esis that, with the development of fetal monitoring using CTG, the number of caesarean births

has increased. An acute caesarean section is a very invasive surgical procedure and, compared

to the natural mode of delivery, is thus a great burden for both the mother and the fetus [17].

Hence, although CTG is beneficial in fetal monitoring, this method appears to be insufficient

to accurately diagnose the risk of hypoxia.

Invasive monitoring by means of fetal electrocardiography (fECG) is currently used to

increase the accuracy of the fetal diagnosis. Invasive monitoring is based on recording the elec-

trical potentials of the fetal heart using a scalp electrode, which is applied to the fetal head [18].

This method also allows, in addition to fHR determination, a morphological analysis of the

fECG signal (e.g. to determine the T/QRS ratio also known as ST analysis), which can improve

hypoxia detection. The advantage of invasive fECG, compared to its non-invasive version, is

the acquisition of a signal containing a low level of noise, which provides accurate information

about the health of the fetus. However, the disadvantages are the possibility of performing it

only during delivery and the risk of developing infection [14, 18]. For these reasons, many

authors are currently focusing on improving the non-invasive version of fECG.

Non-invasive fECG appears to be the most promising technique that could become a com-

monly used alternative to CTG in clinical practice [19]. In the case of non-invasive fECG mon-

itoring, the electrical potentials of the fetal heart are recorded from the surface of the mother’s

abdominal wall using transabdominal electrodes [20, 21]. A non-invasive fECG is then safer

compared to the invasive version and can be used during pregnancy and delivery. The
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disadvantage of non-invasive monitoring is the difficult detection of fQRS complexes, because,

in addition to the useful signal, interferences are recorded at the same time, including the

maternal ECG signal (mECG) [22]. Moreover, the maternal and fetal components overlap in

both the time and frequency domains, and the choice of the appropriate filtration technique

and its setting is a challenging task [23].

State-of-the-art methods for fECG signal extraction

Many of the filtration techniques proposed so far for the purpose of fECG extraction were

summarized in the studies [3, 5, 24]. The most commonly used methods, [25–27], benefit

from independent component analysis (ICA) that decomposes the input signal into statistically

independent source components. Also, principal component analysis (PCA), based on the

principle of finding the most statistically significant components in the input signal, was

applied [27, 28]. The wavelet transform (WT) method that enables to obtain a time-frequency

description of the signal was used to extract fECG in [29, 30]. In [31, 32], the empirical mode

decomposition (EMD) method, which decomposes the signal into intrinsic mode functions,

was applied. The least mean squares and recursive least squares (RLS) algorithms, based on

minimization and calculation of the error function between the desired output and the real

output of the adaptive algorithm, were also investigated [1, 33]. Studies [34, 35] presented an

application of the adaptive neuro-fuzzy interference system (ANFIS) that uses a combination

of fuzzy logic and neural network theory. Finally, a prediction-estimation method based on

Kalman filtering, which aims to estimate the waveform of the signal using the present input

values and the previously calculated state, was proposed in [36].

Recent studies [31, 32, 37–45] show that the use of a single algorithm is not as promising as

a combination of multiple algorithms. The research efforts are, therefore, aimed at testing vari-

ous combinations of two or more algorithms that would overcome the limitations of individ-

ual methods while combining their advantages. Combinations of the methods presented in

previous studies will be summarized in the following subsections.

Single channel methods

The study [31] presented a combination of the EMD and correlation analysis. The main idea

was to decompose the abdominal ECG (aECG) signal into individual oscillatory functions

using the EMD and then determine the correlation between the reference fECG signal and the

oscillatory functions of the aECG signal. Subsequently, the oscillatory functions that correlated

with the reference signal the most, were found. The sum of the oscillatory functions provided

the enhanced fECG. The authors tested the method on real data and achieved an average accu-

racy of 100% when detecting the fQRS complexes.

A single channel method combining singular value decomposition and the ICA method

was tested in [37]. The objective was to project the input signal onto higher dimensions and,

thanks to the statistical independence between the source signals, separate them from each

other in order to estimate the fECG. When testing on synthetic data, they did not perform any

statistical evaluation, but based on visual comparison, they stated that the algorithm achieved

effective fECG extraction.

A combination of singular value decomposition and polynomial classifiers was introduced

in [38]. The mECG signal was estimated using the singular value decomposition and subse-

quently mECG and aECG signals were fed to the input of the polynomial classifiers. The fECG

signal was extracted using the dynamics and nonlinearities of the estimated mECG signal.

The method was tested on real and synthetic data. They evaluated the extraction quality of
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synthetic data using the signal-to-noise ratio (SNR) parameter and real data by means of visual

comparison. The method was evaluated as suitable for single-channel fECG extraction.

The authors of the study [39] tested a combination of the extended Kalman smoother

(EKS) and ANFIS. In the first step, the maternal component was estimated from the aECG sig-

nal using the EKS. Subsequently, the estimated component was centred with the aECG signal

using the ANFIS. The fECG signal was extracted based on subtracting the estimated mECG

from the aECG. The evaluation of filtration efficiency was performed using SNR in synthetic

records whereas in real records, it was evaluated by the accuracy of fQRS detection achieving

an accuracy of 90.20%.

Multichannel methods

The multichannel method combining ICA, ensemble empirical mode decomposition (EEMD)

and wavelet shrinkage (WS), was tested in [32]. In the first step, the ICA method, which sepa-

rated the fECG signal from the aECG signals, was applied. Since the fECG signal still contained

residues of the mECG component, it had to be further filtered using the EEMD method. In the

last step, the residual high-frequency noise was removed using the WS method. The authors

evaluated the effectiveness of the method using SNR and mean squared error (MSE) and stated

that the limitation of the method was its low computational speed and the fact that it causes

changes in signal morphology.

Another multichannel method, based on a combination of periodic component analysis

and generalized eigenvalue decomposition was tested in the study [40]. The detection of R-

peaks was based on the idea of time-varying periodicity. The cross-correlation between time-

delayed samples in different channels represented by a constant time variable was replaced

with a calculated phase variable. The method was tested on real aECG recordings. No statistical

results were presented in the study, but the proposed algorithm was, according to the authors,

effective and time-efficient in fECG extraction.

The combination of ICA and WT was presented in the study [41]. The method is based on

the principle of separating the fECG component from the aECG signals using the ICA and the

subsequent removal of the residual noise in the fECG signal using WT. The evaluation of the

results was performed by visual comparison and authors stated that in addition to the efficient

extraction of fECG, the morphology of the signal was preserved.

In the study [42], the FastICA and the quality index optimization (QIO) methods were

combined. First, the FastICA, which decomposed the signal into individual components, was

applied. Since the fECG contained residues of the mECG signal, the mECG component was

subtracted from the fECG. In the last step, the quality of the fECG signal was improved using

the QIO method. When evaluating the accuracy of fQRS detection using the F1-score, an accu-

racy of 99.38% was achieved when tested on real records and an accuracy of 98.78% when

tested on synthetic records.

The authors of the study [43] dealt with a machine learning approach integrating an echo

state network (ESN) with dynamic programming. The idea was based on the detection of

fQRS complexes using the recurrent ESN. The resulting positions of the fQRS complexes were

obtained by dynamic programming interpreting the outputs of the ESN. The algorithm was

tested on real records, in which it was able to effectively suppress the maternal component and

the extraction of fECG was thus efficient. The method was relatively fast, but further improve-

ment should be possible by increasing the ESN contribution.

An artificial neural network and correlation-based technique were combined in study [44].

First, the mECG component was extracted from the aECG signals using the artificial neural

network. Based on the correlation, the mECG component was centred with the aECG signals.
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Finally, the mECG component was subtracted from the aECG signals, and the fECG signal

was obtained. The method was tested on real records and an accuracy of 93.75% was achieved

in the detection of fQRS complexes.

Finally, a combination of correlation analysis and the FastICA was presented in [45]. First,

the self-correlation analysis was applied to reduce the temporal correlation. Subsequently, the

FastICA method was applied, which decomposed the input signal into individual components,

one of which was the resulting fECG signal. The authors did not use any statistical parameters

to evaluate the extraction efficacy, but according to the visual evaluation, the extracted fECG

signals contained almost no maternal residues.

This work is based on the methods we proposed in our previous studies. In [46], we

presented the ICA-ANFIS-WT and ICA-RLS-WT procedures and, in [47], we tested the

ICA-EMD, ICA-EMD-WT and ICA-RLS-EMD approaches. When determining the fHR, all

methods provided better results than using its individual components separately. However,

the disadvantage of the methods, which includes the WT, was the deformation of the fQRS

complexes, which would not allow the subsequent morphological analysis of the signal, such as

the ST analysis. The goal of this study is to introduce an algorithm composed of ICA, RLS and

EEMD methods, which could provide better results in determining the fHR than the previ-

ously presented approaches, it would be effective in a wide range of signals and would allow

the subsequent morphological analysis of the fECG.

ST segment analysis

In addition to fHR, which is the main parameter assessing the fetal well-being, new techniques

focusing on the changes of the fECG waveform (P-R interval, QT interval, T/QRS ratio and ST

segment) caused by the hypoxic states have been developed and presented in the literature [41,

48–55]. However, the STAN1Method (Neoventa Medical, Sweden) is the only analysis tool

that is available in the clinical practice. The combination of ST-Analysis provided by the

STAN1 device and standard CTG parameters (the trace of both fHR and uterine contractions)

provides extended and more accurate assessment of fetal well-being during the labor than

CTG alone.

The principle: The analysis of the fECG using STAN1 is possible only during the labor

(after membrane rupture) since it requires the scalp electrode to be placed on the fetal body.

The STAN device analyses 30 consecutive ECG complexes and compares them with the ‘base-

line value’, which was calculated over the first four to five minutes for each fetus. Each analysis

is marked by ‘X’ on the lower part of the monitor (see Fig 1). In the presence of an ‘ST event’

(value differing significantly from the “baseline value”), it is necessary to classify the CTG trace

according to STAN guidelines and then to determine if any action is needed [56].

Material and methods

This section describes the component methods that were selected based on the literature

review and the results of our previous research. Within the system, the following methods

were implemented: ICA, RLS and EEMD. The databases on which the algorithm was tested,

and the description of statistical parameters used to determine the effectiveness of the filtration

method in fQRS complexes detection, are also described.

Independent component analysis

Independent component analysis is a statistical method based on separation of mixed

independent signals and extraction of the original source components [57]. In order to

provide good results, when using ICA, two assumptions must be met: the source signals must
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be independent, and only one original component can have a Gaussian distribution. If the

method is applied to signals where there are multiple Gaussian sources, then it cannot extract

these sources [27, 58]. In recent years, many improved ICA algorithms have been proposed

[26, 59–62]. One of them, the FastICA algorithm, is widely used due to its fast convergence.

FastICA is a fixed-point iterative algorithm, minimizing mutual information between the esti-

mated components. There are various types of FastICA algorithms, including those based on

kurtosis, maximum likelihood, and maximum negentropy [25]. A detailed mathematical

description of the method can be found in studies [25, 27, 57, 58, 63].

Recursive least squares

Recursive least squares is an adaptive method based on minimizing the error defined as the

difference between the desired output and the real output of the adaptive algorithm. The mini-

mization of the error function is achieved by automatic adjustment of the adaptive filter coeffi-

cients [1]. The RLS algorithm is remarkable due to its fast convergence and provides excellent

results in time-varying environments [64]. Nevertheless, in its basic form it has higher compu-

tational demands and, in some cases, it may have stability problems [1]. To reduce the compu-

tational demands, the RLS algorithm uses “adaptation” or “forgetting” factor λ, whose task is

to decrease the contribution of “old” error values. The forgetting factor value ranges from zero

to one [1, 64]. To reduce the computational complexity, a filter order which indicates the final

number of the previous values processed, is also selected. Proper setting of the RLS algorithm

parameters has a great effect on the stability of the filter [1]. Further information about RLS

can be found in studies [1, 64–66].

Ensemble empirical mode decomposition

The ensemble empirical mode decomposition is an improved version of the empirical mode

decomposition (EMD) method. The EMD is based on the decomposition of the non-stationary

signal, such as the biomedical signal, into oscillatory functions called intrinsic mode functions

(IMFs) [67]. The EMD algorithm works on the principle of identifying local extremes of the

signal and creating the upper and lower envelopes of the signal. The mean of these envelopes is

subtracted from the input signal, thus obtaining the first IMF. The entire process is repeated,

Fig 1. Principle of fHR calculation and determination of ST analysis inspired by STAN devices.

https://doi.org/10.1371/journal.pone.0256154.g001
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but instead of the input signal, the residual signal which was obtained by subtracting the IMF

from the input signal, is used. The iterative process terminates when the final residual signal is

extracted [47, 68]. A more detailed description of the EMD method can be obtained in studies

[31, 32, 47, 67].

Despite many advantages, the EMD has a limitation called mode mixing, which can signifi-

cantly affect the decomposition efficiency. This phenomenon occurs when one of the IMFs

contains several components with very different frequencies, or when components with very

similar frequencies are contained in different IMFs [32]. To prevent this phenomenon, EEMD

was proposed in the study [69], based on adding different series of white noise into the input

signal in several trials [70]. Further information and a more detailed description of this

method can be found in studies [32, 67, 69–71]. A brief description of the method can be sum-

marized in the following steps:

1. Set the number of ensemble trials N and the standard deviation of the added noise series

Nstd.

2. Add a white noise series w(t) into the input signal s(t):

s1ðtÞ ¼ sðtÞ þ wðtÞ: ð1Þ

3. Decompose s1(t) signal using the EMD algorithm.

4. Repeat step 1. and 2. N-times, but with different white noise series each time.

5. The final IMFj(t) of the EEMD is obtained by averaging all IMFs related to N trials:

IMFjðtÞ ¼
1

N

XN

i¼1

IMFi;jðtÞ; ð2Þ

where i is a trial number and j is the IMF scale. The principle of the EEMD algorithm is

shown in Fig 2.

These methods were selected for following reasons:

1. ICA—the ICA method is a separation technique able to decompose a composite input sig-

nal, such as aECG, into its components, such as fECG, mECG, and noise [46, 47, 72]. The

advantage of the FastICA variant is that it requires little memory space, is conceptually sim-

ple and computationally efficient, as it uses a fixed iteration scheme [25, 73]. Previous stud-

ies [27, 46, 47, 74] have shown that when processing fECG, the ICA method could highlight

the fetal component in the aECG signal, but the maternal component was not sufficiently

eliminated. On the other hand, ICA was able to extract the mECG signal very accurately.

The advantage of the ICA application in fECG processing is that it requires only signals

from the abdominal electrodes as input and there is no need to record the reference mECG

signal by means of the chest electrodes [24]. This brings benefits, such as greater comfort

and mobility, especially for the mother. Compared to the PCA method, which is also often

used to estimate the maternal component, ICA is able to obtain a more accurate estimate,

and in addition, ICA produces both maternal component (mECG signal) and an aECG sig-

nal with an enhanced fetal component [27].

2. RLS—the advantage of the RLS algorithm is its adaptability and high performance in

time-varying environments which makes it suitable for processing fECG [5, 75]. How-

ever, its performance is highly dependent on the quality of the input signals. When high

quality aECG and mECG signals enter the algorithm, RLS usually achieves very promis-

ing results in fECG extraction. There are two different approaches to achieve the fECG
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extraction. The first approach uses an abdominal signal as a primary input, whereas the

signal is recorded using the chest electrode as reference. The second approach is based

on using solely abdominal recordings and an algorithm that is able to separate the mater-

nal reference from an aECG signal [5]. When using only the latter approach, the obtained

mECG reference is more similar to the maternal component in corresponding aECG sig-

nal, and thus the adaptive system can achieve better results. The thoracic signal may be of

poor quality, its continual measurement is uncomfortable for the mother, and change in

the sensor location leads to changes in the resulting signal’s morphology, which may dif-

fer from the maternal component than in the abdominal area and extraction by the RLS

algorithm is thus more difficult and less effective [1, 5]. Frequently used adaptive algo-

rithms also include the least mean squares methods, however, the experimental results

show that the RLS algorithm outperforms it [1, 76], although at the cost of higher compu-

tation time.

3. EEMD—the EEMD algorithm is suitable for processing non-stationary and non-linear sig-

nals, such as fECG [32, 67]. In most studies [32, 47, 77–79] that deal with the extraction of

fECG using EMD-based methods, these methods are used in combination with other meth-

ods, as they are not able to extract either fECG or mECG precisely enough. However,

EMD-based methods excel in the final smoothing of the residuals of the maternal compo-

nent in the fECG signal, which was previously extracted by another more efficient method

such as adaptive RLS. In addition, the methods allow the subsequent morphological analysis

of the resulting signal to be performed. This makes them suitable as part of diagnostic sys-

tems that, in addition to accurately determining fHR, require a more detailed morphologi-

cal analysis of the fECG waveform [47]. Compared to the EMD method, which is also very

often used for the final smoothing of the fECG signal, EEMD is more efficient because it is

less limited by the mode mixing problem. However, the disadvantage of EEMD is its lower

computing speed [80, 81].

Fig 2. Block diagram of the EEMD. The method works on the principle of adding white noise into the input signal and performing

N ensemble trials. The final IMFs are obtained by averaging the results of these trials, the rn(t) is a residual signal.

https://doi.org/10.1371/journal.pone.0256154.g002
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To achieve accurate results, this study proposed a combination of these three methods, by

incorporating them in a way that their aforementioned benefits are utilized:

• ICA alone is not able to estimate fECG accurately enough, but it can excellently estimate

mECG and aECG signal with an enhanced fetal component. At the same time, the ICA gen-

erates input signals for the RLS method, using solely aECG signals.

• As the RLS is prone to poorly scanned reference mECG signals, using high-quality input sig-

nals estimated by the ICA method, the RLS can extract high-quality fECG with minor mater-

nal residues.

• These maternal residues are eventually smoothed by the EEMD method, which as such is

not able to completely extract either fECG or mECG. In addition, it allows the subsequent

morphological analysis of the resulting signal to be performed.

Dataset

The study protocol was approved by the Ethical Committee of the Silesian Medical University,

Katowice, Poland (NN-013–345/02). Subjects read the approved consent form and gave writ-

ten informed consent to participate in the study.

In this study, two databases were used to test the performance of the ICA-RLS-EEMD

extraction method. The first one is called the Fetal Electrocardiograms, Direct and Abdominal
with Reference Heartbeats Annotations (FECGDARHA) and is available in the figshare reposi-
tory [82]. It contains 12 real recordings acquired from 12 different women, in 38–42 week of

pregnancy. The recordings contain four abdominal signals and one signal from the scalp elec-

trode forming the reference. The signals of five minutes length each were digitized with a

16-bit resolution at 500 Hz sampling frequency for abdominal signals and 1000 Hz for a direct

reference fECG [83]. The recordings were registered using the KOMPOREL system. This sys-

tem automatically detected and marked R-peaks, whose accuracy was verified offline by a

group of cardiologists, providing the reference annotations [82, 83]. A detailed description of

the database can be found in [83].

The second dataset considered is the Physionet Challenge 2013 database [84], from which

we analysed the first 25 out of 75 recordings. This database was created for the Computing in
Cardiology Challenge 2013 in order to improve the detection of fQRS complexes and the deter-

mination of the fQT interval from a non-invasive abdominal recording [85]. Each recording

contains four abdominal signals with a sampling frequency of 1000 Hz and annotations indi-

cating the positions of R-peaks. The length of each recording is one minute. The recordings

come from different sources and are acquired using a variety of devices with different resolu-

tions and configurations. The fetuses do not have the same gestational age and no attention

was paid to the placement of the electrodes [84].

Extraction system design

The ICA-RLS-EEMD algorithm was based on several steps. The first was the decomposition of

input aECG signals into three components using the ICA. However, only two components

were used for further processing. The first was the mECG component and the second was the

component in which the mECG signal was most suppressed and the fECG signal was most

enhanced. These two signals were used as the inputs of the adaptive RLS system. The RLS out-

put comprised an fECG signal which was still corrupted with residual noise. Therefore, the

EEMD method was applied in order to remove the noise and obtain an enhanced fECG�. The

block diagram of the algorithm and the output signals are shown in Fig 3.
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Algorithms settings—to obtain accurate results, it was necessary to select the most suitable

combination of aECG signals and optimal hyperparameters setting of the RLS (filter order)

and EEMD (N, Nstd, and IMFs combination) algorithms. The most suitable combination of

aECG signals and parameters setting was selected on the basis of an automated algorithm. It

compared all combinations of the input aECG signals and parameters setting and selected the

combination that provided the highest accuracy according to the ACC measure. The compari-

son was carried out using the reference annotations. The best parameters values of the RLS

and EEMD methods are presented in Tables 1 and 2, for each recording separately. Collumn n

Fig 3. Block diagram explaining the ICA-RLS-EEMD method: a) input aECG signals; b) input aECGFIR signals preprocessed by the FIR filter; c) three source

components extracted by the ICA method; d) ICA components assigned to the source signals, which were time and amplitude centred and served as inputs to the RLS

algorithm; the fECG signal was the output of the ICA-RLS algorithm; e) the first five IMFs that were obtained after the application of the EEMD method; f) a reference

scalp electrode recording and the resulting fECG�, which was extracted after applying the ICA-RLS-EEMD method.

https://doi.org/10.1371/journal.pone.0256154.g003
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represents For the sake of clarity, the principle of the extraction system is described in the fol-

lowing steps:

1. First, the most appropriate combination of the aECG signals was selected for each record-

ing. Since the ICA method is multichannel, at least two abdominal signals had to be

selected. For each recording, it was investigated which combination of electrodes gave the

best results based on the calculation of the ACC measure. Four abdominal signals were

available for each recording; thus, 11 combinations of signals were tested. If all four signals

were used for some recordings, less accurate extraction was achieved, because not all signals

were recorded in high quality.

2. Subsequently, the aECG signals were filtered using a bandpass finite impulse response filter

(FIR) with a range of 3–150 Hz and filter order of 500. The purpose of the filter was to

remove the fluctuations of isolines.

3. The ICA method was further applied to the aECG signals. The FastICA algorithm based on

kurtosis was used. The number of iterations was set to 20. The input abdominal signals

(aECG) were divided into three components. In most cases, one component corresponded

to the mECG signal, the second one to the aECG signal (denoted as aECG�) with the

enhanced fECG component, and the third one was noise (the assignment of the compo-

nents was based on the number of peaks detected). When using the ICA method, the polar-

ity of the individual components may be inverted, see mECG in Fig 4a). This problem was

Table 1. Statistical evaluation of the fQRS complexes detection obtained by using the ICA-RLS-EEMD method and the FECGDARHA database (the 95% confidence

interval is reported in parenthesis).

Rec. Comb. of elect. Filter order N Nstd IMFs n TP FP FN ACC (%) SE (%) PPV (%) F1-score (%)

r01 1, 3, 4 2 10 0.5 4+7 644 644 0 0 100 100 100 100

(99.43–100) (99.43–100) (99.43–100) (99.71–100)

r02 1, 4 16 10 0.4 3+4 660 660 0 0 100 100 100 100

(99.44–100) (99.44–100) (99.44–100) (99.72–100)

r03 2, 4 86 60 0.4 2+3+4+7 684 679 1 5 99.12 99.27 99.85 99.56

(98.10–99.68) (98.30–99.76) (99.18–100) (99.05–99.84)

r04 2, 3 46 30 0.8 2+3+5 632 577 26 55 87.69 91.30 95.69 93.44

(84.93–90.10) (88.82–93.38) (93.75–97.16) (91.91–94.76)

r05 1, 4 16 10 0.5 3+4 645 645 0 0 100 100 100 100

(99.43–100) (99.43–100) (99.43–100) (99.72–100)

r06 1, 2, 3, 4 98 30 0.9 2+4+7 674 648 22 26 93.10 96.14 96.72 96.43

(90.96–94.87) (94.40–97.47) (95.07–97.93) (95.29–97.36)

r07 1, 3, 4 46 60 0.6 2+5 627 591 17 36 91.77 94.26 97.20 95.71

(89.37–93.77) (92.14–95.95) (95.56–98.36) (94.42–96.77)

r08 1, 4 30 60 0.4 4+5 651 650 0 1 99.85 99.85 100 99.92

(99.15–100) (99.15–100) (99.43–100) (99.57–100)

r09 1, 4 16 10 0.4 2+3+4 657 656 0 1 99.85 99.85 100 99.92

(99.16–100) (99.16–100) (99.44–100) (99.85–100)

r10 1, 2, 3, 4 52 30 0.9 5+8 637 630 26 7 95.02 98.90 96.04 97.45

(93.08–96.55) (97.75–99.56) (94.25–97.40) (96.43–98.24)

r11 1, 2, 3, 4 80 60 0.2 3+7 705 460 169 245 52.63 65.25 73.13 68.97

(49.26–55.99) (61.60–68.76) (69.49–76.56) (66.41–71.44)

r12 1, 2, 3, 4 100 60 0.9 2+4+8 685 659 16 26 94.01 96.20 97.63 96.91

(91.99–95.65) (94.49–97.51) (96.18–98.64) (95.85–97.77)

https://doi.org/10.1371/journal.pone.0256154.t001
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Table 2. Statistical evaluation of the fQRS complexes detection obtained by using the ICA-RLS-EEMD method and the Challenge database (the 95% confidence

interval is reported in parenthesis).

Rec. Comb. of elect. Filter order N Nstd IMFs n TP FP FN ACC (%) SE (%) PPV (%) F1-score (%)

a01 1, 2, 3 10 30 0.5 2+4+5+6+7 145 137 3 8 92.57 94.48 97.86 94.14

(87.09–96.23) (89.42–97.59) (93.87–99.56) (93.20–98.06)

a02 1, 2, 4 2 30 0.5 4+5+8 160 81 39 79 40.70 50.63 67.50 57.86

(37.81–52.85) (42.62–58.61) (58.35–75.77) (51.84–63.71)

a03 1, 4 100 10 0.1 4+6+8 128 127 1 1 98.45 99.22 99.22 99.22

(94.51–99.81) (95.72–99.98) (95.72–99.98) (97.21–99.91)

a04 1, 2 64 10 0.1 3+5+6 129 129 0 0 100 100 100 100

(97.18–100) (97.18–100) (97.18–100) (98.58–100)

a05 1,3 32 10 0.1 3+4 129 129 0 0 100 100 100 100

(97.18–100) (97.18–100) (97.18–100) (98.58–100)

a06 2, 4 24 30 0.8 2+4+8 160 106 24 54 57.61 66.25 81.54 73.10

(50.12–64.85) (58.36–73.52) (73.79–87.80) (67.61–78.12)

a07 1, 2, 3, 4 66 10 0.3 2+3+6 130 70 48 60 39.33 53.85 59.32 56.45

(32.10–46.91) (44.89–62.62) (49.89–68.27) (50.03–62.71)

a08 1, 4 100 10 0.1 3 128 128 0 0 100 100 100 100

(97.16–100) (97.16–100) (97.16–100) (98.57–100)

a09 1, 4 94 30 0.1 6+10 130 40 50 90 22.22 30.77 44.44 36.36

(16.38–29) (22.98–39.46) (33.96–55.30) (30–43.10)

a10 2, 4 98 60 0.5 3 175 149 5 26 82.78 85.14 96.75 90.58

(76.45–87.99) (78.99–90.06) (92.59–98.94) (86.89–93.51)

a11 1, 4 24 60 0.6 4+5+6+9 140 77 24 63 46.95 55 76.24 63.90

(39.13–54.89) (46.37–66.74) (66.74–84.14) (57.49–69.97)

a12 1,3, 4 14 10 0.1 2+3+4 138 136 2 2 97.14 98.55 98.55 98.55

(92.85–99.22) (94.86–99.82) (94.86–99.82) (96.33–99.60)

a13 2, 4 36 60 0.7 2+3+5 126 124 1 2 97.64 98.41 99.20 98.81

(93.25–99.51) (94.38–99.81) (95.62–99.98) (96.55–99.75)

a14 1, 2, 3, 4 10 10 0.2 4+6+9 123 120 2 3 96 97.56 98.36 97.96

(90.91–98.69) (93.04–99.50) (94.20–99.80) (95.30–99.33)

a15 1, 4 94 10 0.1 3+4 134 134 0 0 100 100 100 100

(97.29–100) (97.29–100) (97.29–100) (98.63–100)

a16 1, 4 40 10 0.7 5 130 55 54 75 29.89 42.31 50.46 46.03

(23.38–37.07) (33.70–51.28) (40.72–60.18) (39.58–52.57)

a17 1, 4 100 10 0.1 3+4 132 132 0 0 100 100 100 100

(97.24–100) (97.24–100) (97.24–100) (97.78–100)

a18 1, 2, 3, 4 34 30 0.9 3+5+6+7 150 29 80 121 12.61 19.33 26.61 22.39

(8.61–17.60) (13.35–26.57) (18.60–35.93) (17.47–27.97)

a19 3, 4 42 10 0.9 5 127 126 1 1 98.44 99.21 99.21 99.21

(94.47–99.81) (95.69–99.98) (95.69–99.98) (97.19–99.91)

a20 1, 4 96 60 0.9 5 131 117 6 14 85.40 89.31 95.12 92.13

(78.36–90.85) (82.72–94.03) (89.69–98.19) (88.10–95.12)

a21 2, 3, 4 4 60 0.7 3+6+7 145 102 11 43 65.39 70.35 90.27 79.07

(57.36–72.81) (62.20–77.64) (83.25–95.04) (73.59–83.87)

a22 1, 4 32 10 0.1 4 126 126 0 0 100 100 100 100

(97.12–100) (97.12–100) (97.12–100) (98.55–100)

a23 1, 3 36 60 0.8 5+9 126 124 1 2 97.64 98.41 99.20 98.81

(93.25–99.51) (94.38–99.81) (95.62–99.98) (96.55–99.75)

(Continued)
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solved by means of an algorithm controlling the positive and negative maxima in the inter-

val of 50 samples from the detected R wave. In this way, the algorithm was able to detect

and adjust the polarity (see Fig 4b).

4. The mECG and aECG� signals, after time and amplitude centering, were fed to the RLS

system. The RLS algorithm adjusted the mECG component to the form of the parent com-

ponent contained in the aECG� signal. Finally, this RLS algorithm output (denoted as

mECGRLS) was subtracted from the aECG� signal. The output of the RLS algorithm com-

prised an fECG signal in which the mECG component was suppressed. The forgetting fac-

tor was set to one in order to optimize the RLS algorithm. For each recording, values from

2 to 100 with a step of two were tested to find the most appropriate filter order. Fig 5 shows

the RLS filter structure with examples of the input and output signals.

5. The EEMD method, which decomposed the signal into 12 IMFs, was applied to remove the

residual noise. An enhanced fECG� was obtained as the sum of the suitable IMFs. The value

of standard deviation of the added noise series Nstd was tested in the range of 0.1–0.9 with a

step of 0.1, and the number of ensemble trials N was set to 10, 30 and 60. Testing for higher

values of N was not necessary as there was no further improvement in the fECG extraction.

6. Finally, the fHR was determined by detecting R-peaks. The detection was done using an

R-peaks detector, which was based on the continuous WT [86]. The first derivative of the

Gaussian function was used as the mother wavelet. The comparison of fQRS complexes

detection accuracy was done using annotations containing precisely marked positions of

Table 2. (Continued)

Rec. Comb. of elect. Filter order N Nstd IMFs n TP FP FN ACC (%) SE (%) PPV (%) F1-score (%)

a24 1, 3 50 30 0.6 2+4+5 123 118 1 5 95.16 95.94 99.16 97.52

(89.77–98.20) (90.77–98.67) (95.41–99.98) (94.68–99.09)

a25 2, 3 94 30 0.8 2+3+5 125 125 0 0 100 100 100 100

(97.09–100) (97.09–100) (97.09–100) (98.54–100)

https://doi.org/10.1371/journal.pone.0256154.t002

Fig 4. Decomposition of the input aECG signal using the ICA method on three output components (mECG, aECG� and noise): a) inverted polarity of the mECG

component; b) mECG polarity correction using the proposed algorithm.

https://doi.org/10.1371/journal.pone.0256154.g004
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R-peaks. The following statistical parameters were used to evaluate the performance of the

method: false positive (FP), false negative (FN) and true positive (TP). A detected fQRS

complex was considered correct if its R-peak was found within 50 ms time frame before or

after the reference (annotated) R-peak position [42]. Using FP, FN and TP values, it was

possible to further determine the accuracy (ACC), indicating the correctness of the fQRS

complexes detection, the sensitivity (SE), the positive predictive value (PPV) and F1-score

indicating the overall accuracy of the filtration [27, 42]. The relevant equations are given

Fig 5. The RLS algorithm structure with examples of the input and output signals: a) aECG� signal, referred to as primary input or desired signal d(n),

b) mECG signal that needed to be adjusted by an adaptive filter, denoted as x(n). Example c) represents an mECGRLS component that has been adjusted

by the filter into a shape of the mECG component in the aECG� signal, denoted as y(n). This modified mECGRLS signal was subtracted from the aECG�

signal, thus generating the fECG signal, denoted as error signal e(n).

https://doi.org/10.1371/journal.pone.0256154.g005
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below:

ACC ¼
TP

TP þ FPþ FN
� 100ð%Þ: ð3Þ

SE ¼
TP

TP þ FN
� 100ð%Þ: ð4Þ

PPV ¼
TP

TPþ FP
� 100ð%Þ: ð5Þ

F1 � score ¼
2 � TP

2 � TP þ FPþ FN
� 100ð%Þ: ð6Þ

7. Bland-Altman plots were used to graphically evaluate the accuracy of fHR determination.

The results of the fHR determination were compared with the values in the annotations.

The 95% limits of agreement are most often used for this graph. This is an estimate of the

interval μ±1.96σ in which 95% of the difference values can be expected. If the values of the

differences determined lie within this interval, the difference between the methods com-

pared is negligible [87, 88]. Also, graphical evaluation using fHR traces was done to deter-

mine the accuracy of the fHR over time. To plot the traces, it was necessary to determine

the current heart rates between the individual R-peaks and to apply a moving average. The

most suitable size of the moving average window was 30 samples.

8. Finally, ST segment analysis was performed on records from the FECGDARHA database.

First, the signal magnitude was normalized according to the R-peak maximum, and then 30

individual cycles of fECG were averaged. This was inspired by the STAN device used in

clinical practice, which also averages the T/QRS values of thirty consecutive fECG cycles. A

fixed window of 600 ms (determined to cover all the physiological changes occurring) was

used for averaging, namely 190 ms from the R wave to the left and 410 ms from the R wave

to the right. Fig 6 shows an example of the averaging and T/QRS calculation procedure. Fig

6a shows examples of the individual fQRS complexes and their average acquired with good

accuracy with respect to the reference signal (recording r01); Fig 6b shows an example of

individual fQRS complexes and their average with insufficient accuracy (caused by a poor

quality of the input signals) with respect to the reference (recording r04).

To determine the T/QRS ratios, it was necessary to detect the R, S, and T waves. The begin-

ning and end of the fQRS complex were detected using the same continuous WT detector

that was used to detect R-peaks. The detector was set to four levels of decomposition and

first order Gaussian mother wavelet. A different approach was used for the T wave detec-

tion. The signal was first duplicated, then a Butterworth bandpass filter was applied at

frequencies of 0.5–10 Hz, (in this range, T wave has the most significant frequency repre-

sentation). Subsequently, the QRS complex was zeroed and the T wave was found by

thresholding. ST analysis was obtained by determining T/QRS ratios for each of the aver-

aged fECG cycles. Fig 7 provides a block diagram illustrating the ST segment analysis

process.
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Results

The results of the ICA-RLS-EEMD method are provided in this section. The evaluation of the

performance was conducted in terms of the correctness of the fQRS complexes detection and

the fHR determination on recordings from the FECGDARHA and Physionet Challenge 2013

database. Bland-Altman plots and fHR traces are also presented. This section also provides

the results of ST segment analysis, which was carried out on the recordings from the FECG-

DARHA database. In the last subsection, the results of the ICA-RLS-EEMD method are com-

pared with the results obtained in other studies.

Fig 6. Averaging of the fQRS complexes and T/QRS calculation of a) recording r01, which achieved high accuracy; b) for recording r04, which achieved poor results.

https://doi.org/10.1371/journal.pone.0256154.g006
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Detection of fetal QRS complexes

Statistical evaluation of the fQRS complexes detection accuracy was performed using annota-

tions. First, TP, FP and FN values were determined, and based on them, the ACC, SE, PPV

and F1-score indices were calculated. When testing the proposed method on the FECG-

DARHA database (see Table 1), the ACC higher than 95% was not noticed for recordings r04,

r06, r07, r11 and r12. The SE was higher than 95% for most of the recordings except r04, r07,

and r11, the PPV parameter exceeded the value of 95% for all recordings except r11, and, the

F1-score was over 95% for most of the recordings except r04 and r11. For all recordings except

r11, all considered quality indices exceeded the value of 80%. In the case of r01, r02 and r05

recordings, all fQRS complexes were extracted correctly and there were no false positive or

negative detections, consequently all quality parameters achieved a value of 100%.

When testing the method on the Challenge database (see Table 2), the limit value of 95%

was not achieved for the recordings a01, a02, a06, a07, a09, a10, a11, a16, a18, a20, and a21

when considering ACC, SE and F1-score, and for the recordings a02, a06, a07, a09, a11, a16,

a18, and a21, when taking into account PPV. Values of ACC, SE and F1-score higher than 80%

were achieved for most of the recordings except a02, a06, a07, a09, a11, a16, a18 and a21, and

the PPV higher than 80% was achieved for most of the recordings except a02, a07, a09, a11,

a16 and a18. For recordings a04, a05, a08, a15, a17, a22 and a25, all fQRS complexes were cor-

rectly detected, zero value of FP and FN were achieved, resulting in 100% value of all consid-

ered quality indices. For clarity and easier visualization, we provide a summary of the records

from both databases were reaching threshold values (80% and 95%), see Table 3.

Determination of fetal heart rate

Bland-Altman plots are used to show the differences between two measurements. The vertical

axis of the plot shows the differences between paired signal values, while the horizontal one

shows their arithmetic mean. The middle horizontal line indicates the mean μ of all differ-

ences. Based on this line, a 95% limits of agreement that lie in the interval μ ± 1.96σ, are plotted

[87]. The results can be interpreted as follows: the smaller the range of the limits of agreement,

the smaller the difference between the fHR, which is determined by the method, and the anno-

tated signal [88]. The mean values μ and the values of limits of agreement determined by the

Fig 7. Block diagram illustrating the ST segment analysis process.

https://doi.org/10.1371/journal.pone.0256154.g007
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ICA-RLS-EEMD method for recordings from the FECGDARHA and Challenge databases are

presented in Tables 4 and 5, respectively.

According to Table 4, it can be noticed, that the ICA-RLS-EEMD method was effective for

all recordings included in the FECGDARHA database except the recording r11, since high val-

ues of μ and limits of agreement were achieved. Based on the results from Table 5, it can be

concluded that the method was effective for most of the recordings (except a02, a06, a09, a10,

a11, a16, a18, a20, and a21) when considering values of μ. For the recordings a01, a04, a07 and

Table 4. Mean values μ and values of limits of agreement determined by the ICA-RLS-EEMD method for record-

ings from the FECGDARHA database (the 95% confidence interval is reported in parenthesis).

Rec. μ (bpm) Upper limit of agreement (bpm) Lower limit of agreement (bpm)

r01 -0.18 5.14 -5.50

(-0.39 to 0.03) (4.78 to 5.50) (-5.85 to -5.14)

r02 -0.02 7.62 -7.66

(-0.32 to 0.28) (7.11 to 8.13) (-8.16 to -7.15)

r03 -0.21 2.49 -2.91

(-0.31 to -0.10) (2.32 to 2.67) (-3.01 to -2.73)

r04 -1.57 6.03 -9.17

(-1.87 to -1.27) (5.51 to 6.55) (-9.69 to -8.65)

r05 0.02 3.94 -3.90

(-0.14 to 0.18) (3.68 to 4.21) (-4.17 to -3.64)

r06 0.09 4.25 -4.07

(-0.07 to 0.25) (3.98 to 4.53) (-4.35 to -3.80)

r07 -1.13 3.99 -6.25

(-1.33 to -0.92) (3.63 to 4.33) (-6.58 to -5.89)

r08 -0.40 6.77 -7.57

(-0.68 to -0.12) (6.29 to 7.26) (-8.06 to -7.09)

r09 -0.07 2.64 -2.78

(-0.18 to 0.03) (2.45 to 2.82) (-2.96 to -2.60)

r10 -0.13 6.63 -6.89

(-0.40 to 0.14) (6.17 to 7.09) (-7.35 to -6.43)

r11 -8.85 15.27 -32.97

(-9.76 to -7.94) (13.71 to 16.83) (-34.53 to -31.42)

r12 -0.77 6.92 -8.46

(-1.06 to -0.47) (6.42 to 7.43) (-8.96 to -7.95)

https://doi.org/10.1371/journal.pone.0256154.t004

Table 3. Summary of records from both databases, which reached threshold values (80% and 95%).

Threshold values Dataset

FECGDARHA Challenge 2013

ACC > 95% r01, r02, r03, r05, r08, r09, r10 a03, a04, a05, a08, a12, a13, a14, a15, a17, a19, a22, a23, a24, a25

ACC > 80% r01, r02, r03, r04, r05, r06, r07, r08, r09, r10, r12 a01, a03, a04, a05, a08, a10, a12, a13, a14, a15, a17, a19, a20, a22, a23, a24 a25

SE > 95% r01, r02, r03, r05, r06, r08, r09, r10, r12 a03, a04, a05, a08, a12, a13, a14, a15, a17, a19, a22, a23, a24, a25

SE > 80% r01, r02, r03, r04, r05, r06, r07, r08, r09, r10, r12 a01, a03, a04, a05, a08, a10, a12, a13, a14, a15, a17, a19, a20, a22, a23, a24 a25

PPV > 95% r01, r02, r03, r04, r05, r06, r07, r08, r09, r10, r12 a01, a03, a04, a05, a08, a10, a12, a13, a14, a15, a17, a19, a20, a22, a23, a24 a25

PPV > 80% r01, r02, r03, r04, r05, r06, r07, r08, r09, r10, r12 a01, a03, a04, a05, a06, a08, a10, a12, a13, a14, a15, a17, a19, a20, a21, a22, a23, a24 a25

F1-score> 95% r01, r02, r03, r05, r06, r07, r08, r09, r10, r12 a03, a04, a05, a08, a12, a13, a14, a15, a17, a19, a22, a23, a24, a25

F1-score> 80% r01, r02, r03, r04, r05, r06, r07, r08, r09, r10, r12 a01, a03, a04, a05, a08, a10, a12, a13, a14, a15, a17, a19, a20, a22, a23, a24 a25

https://doi.org/10.1371/journal.pone.0256154.t003
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Table 5. Mean values μ and values of limits of agreement determined by the ICA-RLS-EEMD method for record-

ings from the Challenge database (the 95% confidence interval is reported in parenthesis).

Rec. μ (bpm) Upper limit of agreement (bpm) Lower limit of agreement (bpm)

a01 -1.51 9.84 -12.86

(-2.47 to -0.56) (8.20 to 11.47) (-14.49 to -11.23)

a02 -23.32 -7.88 -38.76

(-24.55 to -22.08) (-9.99 to -5.77) (-40.87 to -36.64)

a03 0.35 8.00 -7.30

(-0.33 to 1.04) (6.83 to 9.18) (-8.48 to -6.13)

a04 -0.06 16.45 -16.57

(-1.54 to 1.41) (13.93 to 18.98) (-19.10 to -14.05)

a05 -0.01 1.62 -1.64

(-0.15 to 0.14) (1.37 to 1.87) (-1.88 to -1.38)

a06 -16.35 2.54 -35.24

(-17.86 to -14.84) (-0.05 to 5.13) (-37.83 to -32.66)

a07 1.62 21.60 -18.36

(-0.16 to 3.40) (18.55 to 24.64) (-21.40 to -15.32)

a08 0.05 1.86 -1.76

(-0.11 to 0.21) (1.58 to 2.14) (-2.04 to -1.48)

a09 -22.34 -4.30 -40.38

(-23.94 to -20.73) (-7.04 to -1.55) (-43.13 to -37.63)

a10 -9.77 12.26 -31.80

(-11.45 to -8.09) (9.38 to 15.14) (-34.68 to -28.92)

a11 -18.97 -3.23 -34.71

(-20.32 to -17.61) (-5.45 to -0.81) (-37.13 to -32.48)

a12 0.53 5.40 -4.34

(0.11 to 0.95) (4.68 to 6.11) (-5.06 to -3.62)

a13 -0.17 4.45 -4.79

(-0.59 to 0.25) (3.74 to 5.17) (-5.50 to -4.07)

a14 0.16 7.06 -6.74

(-0.47 to 0.79) (5.98 to 8.14) (-7.82 to -5.66)

a15 0.06 12.30 -12.18

(-1.01 to 1.13) (10.46 to 14.13) (-14.01 to -10.34)

a16 -4.32 11.47 -20.11

(-5.72 to -2.91) (9.07 to 13.88) (-22.51 to -17.70)

a17 0.07 5.67 -5.53

(-0.43 to 0.56) (4.82 to 6.52) (-6.38 to -4.69)

a18 -35.92 -22.15 -49.69

(-37.06 to -34.78) (-24.10 to -20.21) (-51.64 to -47.74)

a19 0.30 2.53 -1.93

(0.10 to 0.50) (2.19 to 2.87) (-2.27 to -1.58)

a20 -4.79 9.14 -18.72

(-6.02 to -3.55) (7.03 to 11.26) (-20.83 to -16.60)

a21 -14.34 1.12 -29.80

(-15.64 to -13.04) (-1.11 to 3.35) (-32.02 to -27.57)

a22 0.05 2.09 -1.99

(-0.13 to 0.24) (1.78 to 2.41) (-2.31 to -1.68)

a23 -0.57 2.84 -3.98

(-0.88 to -0.26) (2.32 to 3.37) (-4.51 to -3.45)

(Continued)
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a15, small values of μ were achieved as well, however, accompanied with high values of limits

of agreement. Fig 8 shows Bland-Altman plots for recordings from the FECGDARHA data-

base. Plot a) presents a recording characterized by high quality of fHR determination, while

plot b) shows an example of the recording for which the ICA-RLS-EEMD method was not

effective. Fig 9 illustrates Bland-Altman plots for recordings from the Challenge database. As

in the previous case, plot a) presents a recording of high quality of fHR determination, whereas

plot b) is an example of recording in which the ICA-RLS-EEMD method was not effective.

In order to plot fetal heart rate traces, it is necessary to determine the fHR value between

the consecutive R-peaks. Based on the moving averages, fHR traces were created and com-

pared with annotations of R-peaks determined by experts. The graphical representation used

is inspired by FIGO classification [89]. The interval of fHR physiological values (110–150

bpm) is marked in white, the intervals of fHR with an increased risk of hypoxia (90–110 bpm

and 150–180 bpm) are marked in yellow and the area of fHR with a high risk of hypoxia

(below 80 bpm and above 180 bpm) is marked in pink [46].

A comparison of fHR traces for both databases is shown in Fig 10. The top arrows indicate

the names of the recordings related to the given section of the graph. With the FECGDARHA

Table 5. (Continued)

Rec. μ (bpm) Upper limit of agreement (bpm) Lower limit of agreement (bpm)

a24 -1.75 2.73 -6.23

(-2.16 to -1.34) (2.03 to 3.43) (-6.93 to -5.53)

a25 0.08 3.23 -3.07

(-0.21 to 0.36) (2.74 to 3.72) (-3.57 to -2.59)

https://doi.org/10.1371/journal.pone.0256154.t005

Fig 8. Comparison of reference and estimated values using the ICA-RLS-EEMD method when determining the fHR a) for recording r09 and b) for recording r11

based on the Bland-Altman plots.

https://doi.org/10.1371/journal.pone.0256154.g008
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database, all 12 recordings having a length of five minutes were displayed, i.e. 60 minutes of

recordings are shown in total. With the Challenge database, 25 recordings having a length of

one minute were analysed, i.e. 25 minutes of the analysis are shown in total. Fig 10a) shows

the fHR traces determined using the signals from the FECGDARHA database. It can be

stated that all of the signals except the recording r11 copy the trend of the reference trace,

and thus the determination of fHR was accurate. On the other hand, for the recording r11,

the deviation of the resulting fHR trace from the reference one can be noticed, which means

that the determination of fHR was not accurate. Moreover, based on the analysis of Fig 10b)

we can state that the traces representing recordings a02, a06, a07, a09, a10, a11, a16, a18, and

a21 from the Challenge database do not copy the trend of the reference trace and the method

was thus not effective in determining the fHR for these recordings. For the recordings a01

and a20, a slight deviation of the resulting curve from the reference one can be noticed,

which means that the fHR was not determined accurately using this method in some parts of

these recordings.

ST segment analysis

For evaluation of the ST segment analysis accuracy, we compared the T/QRS ratios estimated

using the method with those determined using the reference signals acquired by means of fetal

scalp electrode. For the comparison, we used the mean values μ and values of limits of agree-

ment which are summarized in Table 6. Low mean values μ and values of limits of agreement

were obtained for recordings r01, r02, r03, r05, r08, r09, and r10, showing a high accuracy

of ST segment analysis. Contrary, in recordings r04, r06, r07, r11, and r12, the mean values μ
and values of limits of agreement reached high values and thus the ST segment analysis was

inaccurate.

Fig 9. Comparison of reference and estimated values using the ICA-RLS-EEMD method when determining the fHR a) for recording a05 and b) for recording a18

based on the Bland-Altman plots.

https://doi.org/10.1371/journal.pone.0256154.g009
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These results were confirmed by plotting the estimated and reference T/QRS ratios of the

averaged fECG complexes over time, see Fig 11. Accurate ST segment analysis was achieved in

7 of the 12 records tested (r01, r02, r03, r05, r08, r09 and r10). For the remaining five records

(r04, r06, r07, r11, and r12), the ST segment analysis was not effective—the estimated values

significantly differ from the reference ones. For records r06, r07, r11, and r12, the deviations of

the estimated T/QRS ratios from the reference T/QRS ratios were so large that most of the red

data points in these records were outside the y-axis range and are therefore not visible.

Comparison of the results

In this part, the results provided using the ICA-RLS-EEMD method are compared with the

results of other methods reported in other studies. Such a comparison is very difficult, as a

large number of various databases and different recordings are used for testing. They include,

for example, the Database for the Identification of Systems (DaISy) [90], used in [29, 33, 39, 40],

the Fetal ECG Synthetic Database (FECGSYNDB) [50], used in [91, 92], or the Non-Invasive
Fetal ECG Database (NIFECGDB) available on the PhysioNet website [84], applied in [36, 44,

67]. There are also studies [26, 37], in which the authors do not specify on which data they

tested their methods, and, in some studies, i.e. [38], authors use their own set of signals. In

Fig 10. Comparison of fHR traces extracted using the ICA-RLS-EEMD method with annotation a) for all recordings from the FECGDARHA

database and b) for 25 recordings from the Challenge database.

https://doi.org/10.1371/journal.pone.0256154.g010
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terms of evaluating the effectiveness of the method, various quality indices are applied. In [38]

the SNR was used, in [93] the MSE was applied, while in [94] authors used the correlation coef-

ficient. In addition, a number of studies [28, 29, 35, 67, 95], do not use any statistical evaluation

of the effectiveness, presenting examples of extracted signals only. Other studies, like [31], test

their methods only on a limited number of signal samples. For these reasons, we made both an

objective and a subjective comparison of the results summarized in Table 7.

• A database containing the same recordings as the FECGDARHA is called Abdominal and
Direct Fetal ECG Database (ADFECGDB) and is available in Physionet [84], but contains

only five recordings (r01, r04, r07, r08 and r10). In [96], the authors tested a combination of

compressive sensing (CS) and the ICA method. The method was tested only on these five

recordings from the ADFECGDB database and the SE, PPV and F1-score were used to eval-

uate the extraction quality. The study achieved 92.20% average accuracy of R-peaks detection

according to F1-score parameter. This is a worse result compared to the ICA-RLS-EEMD

when tested on the FECGDARHA database, but better when tested on the Challenge

database.

• In [97], the authors applied a combination of WT and a clustering-based technique (CT).

The effectiveness of the method was also tested only on the recordings from the ADFECGDB

database (whereas we used seven additional signals published later in [83]), and on 26

recordings from the Challenge 2013 database, where 12 of those records were the same as in

Table 6. Mean values μ and values of limits of agreement determined for ST segment analysis (the 95% confidence

interval is reported in parenthesis).

Rec. μ (-) Upper limit of agreement (-) Lower limit of agreement (-)

r01 0.0320 0.0408 0.0232

(0.0299 to 0.0340) (0.0372 to 0.0443) (0.0196 to 0.0267)

r02 0.0389 0.0615 0.0163

(0.0338 to 0.0440) (0.0526 to 0.0703) (0.0074 to 0.0251)

r03 0.0121 0.0241 0.0001

(0.0094 to 0.0149) (0.0194 to 0.0288) (-0.0045 to 0.0049)

r04 0.2027 0.4688 -0.0634

(0.1409 to 0.2645) (0.3614 to 0.5761) (-0.1707 to 0.0439)

r05 0.0277 0.0588 -0.0034

(0.0205 to 0.0350) (0.0463 to 0.0713) (-0.0159 to 0.0092)

r06 1.2173 2.4592 -0.0246

(0.9364 to 1.4983) (1.9716 to 2.9468) (-0.5122 to 0.4630)

r07 1.5565 3.4169 -0.3039

(1.1122 to 2.0007) (2.6446 to 4.1890) (-1.0761 to 0.4683)

r08 -0.0126 0.0051 -0.0303

(-0.0167 to -0.0085) (-0.0020 to 0.0122) (-0.0374 to -0.0231)

r09 0.0167 0.0285 0.0049

(0.0139 to 0.0194) (0.0237 to 0.0332) (0.0001 to 0.0096)

r10 0.0137 0.0262 0.0012

(0.0108 to 0.0166) (0.0212 to 0.0312) (-0.0039 to 0.0062)

r11 5.7123 14.0104 -2.5858

(3.8815 to 7.5431) (10.8350 to 17.1857) (-5.7611 to 0.5895)

r12 2.3200 4.0628 0.5772

(1.9258 to 2.7143) (3.3786 to 4.7470) (-0.1070 to 1.2615)

https://doi.org/10.1371/journal.pone.0256154.t006
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Fig 11. Comparison of estimated and reference T/QRS ratios of averaged fECG complexes over time.

https://doi.org/10.1371/journal.pone.0256154.g011

Table 7. Comparison of the results with other studies.

Author, source Algorithm Dataset Average accuracy of R-peaks detection according to

F1-score (%)

Advantages and limitations

Da Poian et al.

[96]

CS-ICA ADFECGDB 92.20 + the algorithm works in real time

- tested on a small number of records

Castillo et al. [97] WT-CT ADFECGDB

Challenge

2013

98.63 + allows use in automated applications in real time

94.77 - less effective for recordings with higher noise

levels

Su et al. [98] STFT-NM ADFECGDB

Challenge

2013

98.86 +single channel method

86.31 - P wave and T wave could not be extracted

Liu et al. [32] ICA-EEMD-WS ADFECGDB

FECGSYN

– + automated selection of suitable IMFs

- suppression of clinical information in the signal

- low computational speed

Gurve et al. [99] CS-NMF ADFECGDB

Challenge

2013

94.80 + single channel method

84 + the use of CS could lead to a low-power

monitoring system

- less effective for recordings with higher noise

levels

Panigrahy et al.

[100]

EKS-DE-ANFIS Challenge

2013

NIFECGDB

91.82 + single channel method

95.12 + does not require parameters initialization

- lower performance for at lower sampling

frequency

Billeci et al. [42] ICA-QIO Challenge

2013

FECGSYNDB

99.38 + effective even for very noisy signals

98.78 - low computational speed

- unsuitable for a twin pregnancy

Li et al. [45] ICA-SCA ADFECGDB – + high computational speed

- tested on a small number of records

Azbari et al. [31] EMD-CA ADFECGDB 100 + effective on signals of different quality

- tested on a small number of records

- tested on very limited signal lengths

Proposed

algorithm

ICA-RLS-EEMD FECGDARHA

Challenge

2013

95.69 + allows deeper morphological analysis

84.08 - computational complexity

https://doi.org/10.1371/journal.pone.0256154.t007
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our study. The effectiveness of the method was evaluated using ACC, SE, PPV, and F1-score

parameters. The authors of the study achieved an average accuracy of 98.63% in the R-peak

detection according to F1-score when tested on the ADFECGDB database, and 94.77%

when tested on the Challenge database, which is a better result in both cases than we

achieved. In general, however, the WT-CT method was less effective for recordings with

higher noise levels.

• In [98], a combination of de-shape short time Fourier transform (STFT) and nonlocal

median (NM) was investigated. The method was tested on recordings r01, r04, r07, r08 and

r10 from the ADFECGDB database and on 75 recordings from Challenge 2013 database

(including 25 records that we used herein). The authors achieved and average accuracy of

98.86% in R-peaks detection according to F1-score when tested on the ADFECGDB data-

base; when tested on the Challenge database, they achieved an average accuracy of 86.31%,

both slightly outperforming our method. However, the authors state that the P and T waves

“were buried in the noise” when using the STFT-NM and thus their extraction would be

nearly impossible.

• In [32], the authors tested the combination of ICA-EEMD-WS on five real recordings from

the ADFECGDB database and on 500 synthetic recordings generated using the Fetal ECG
Synthetic (FECGSYN) generator introduced in [101]. Unfortunately, the authors used other

parameters (SNR, MSE) to evaluate the accuracy of the extraction. However, according to

the visual evaluation, it can be stated that the ICA-EEMD-WS was as effective as the method

we proposed. According to the authors, the limitations of the ICA-EEMD-WS method

include low computational speed and significant noise suppression affecting the morphology

of the output signal, which can affect the clinical information contained in it.

• In [99], the authors introduced a combination of CS and non-negative matrix factorization

(NMF). The method was tested on five recordings from the ADFECGDB database and 60

recordings from the Challenge 2013 database (including 25 records that we used for testing).

The effectiveness of the method was evaluated using the parameters SE, PPV, and F1-score.

The authors achieved an average accuracy of 94.80% in R-peaks detection according to

F1-score when tested on the ADFECGDB database; when tested on the Challenge database,

they achieved an average accuracy of 84%, which is the same result we achieved.

• The combination of EKS, ANFIS and differential evolution (DE) was tested in [100]. The

authors tested the method on 75 records from the Challenge 2013 database and 55 records

from the NIFECGDB database. The effectiveness of the method was evaluated according to

the parameters ACC, SE, PPV, and F1-score. When testing on the Challenge database, the

authors achieved an average accuracy of 91.82%, which is a better result than ours, and when

testing on the NIFECGDB database, the average accuracy was 95.12%. According to the

authors, the limitation of the method is that it may perform worse in the extraction of the

fECG at lower sampling frequency compared to the extraction of the fECG at higher sam-

pling frequency.

• Authors of the study introduced in [42] tested the combination of ICA a QIO methods.

They used records from the Challenge database and from the FECGSYNDB database for

testing. They used the parameters SE, PPV, and F1-score to evaluate the quality of extraction.

The authors achieved an average accuracy of 99.38% according to the F1-score when testing

on the Challenge database and an average accuracy of 98.78% when testing on the FECG-

SYNDB database, thus outperforming our method. However, the authors state that this is a

low computational speed algorithm that cannot extract fECG signals in multiple pregnancy.
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• In [45] the authors tested the combination of ICA and self-correlation analysis (SCA) meth-

ods on the recordings from the ADFECGDB database. The authors did not use any statistical

parameters for the evaluation, and in addition, they tested the method on only five signals.

However, according to the visual comparison of the extracted signals, it can be stated that

our method was able to suppress the mECG component better.

• The combination of the EMD and correlation analysis (CA) was introduced in [31] and

tested on signals from the ADFECGDB database. The authors evaluated the effectiveness of

the method using the ACC, SE, and PPV parameters. However, since they reached 100% for

all parameters, it can be assumed that the F1-score would also acquire an accuracy of 100%.

In this case, however, these are very inconclusive results, as the method was tested only on

four signals with a length of ten seconds.

We also compared the results obtained using the conventional ICA method alone, for all

recordings from both the FECGDARHA and Challenge databases were better results achieved

using the proposed procedure. Using the ICA-RLS-EEMD method and the FECGDARHA

database, ACC >80% was achieved for 11 out of 12 recordings with an average value of

ACC = 92.75% [95% confidence interval: 91.19–93.88%], SE = 95.09% [95% confidence

interval: 93.68–96.03%], PPV = 96.36% [95% confidence interval: 95.05–97.17%] and

F1-score = 95.69% [95% confidence interval: 94.83–96.35%], while, using the conventional

ICA method, ACC >80% was achieved for 3 out of 12 recordings with an average value of

ACC = 47.77% [95% confidence interval: 45.38–50.12%], SE = 57.68% [95% confidence

interval: 55.04–60.23%], PPV = 57.59% [95% confidence interval: 54.39–60.76%] and

F1-score = 57.37% [95% confidence interval: 55.92–59.38%]. Using the proposed method and

the Physionet Challenge 2013 database, ACC>80% was achieved for 17 out of 25 recordings

with an average value of ACC = 78.24% [95% confidence interval: 73.44–81.85%], SE = 81.79%

[95% confidence interval: 76.59–85.43%], PPV = 87.16% [95% confidence interval: 81.95–

90.35%] and F1-score = 84.08% [95% confidence interval: 80.75–86.64%], while, using the con-

ventional ICA method, ACC>80% was achieved for 6 out of 25 recordings with an average

value of ACC = 38.72% [95% confidence interval: 31.88–41.25%], SE = 48.26% [95% confi-

dence interval: 40.37–52.66%], PPV = 49.35% [95% confidence interval: 42.41–53.78%] and

F1-score = 48.32% [95% confidence interval: 41.94–50.51%].

Finally, we performed a further comparison using methods which were presented in our

previous studies. In [46], we introduced the ICA-ANFIS-WT and ICA-RLS-WT methods and,

in [47], we tested the ICA-EMD, ICA-EMD-WT and ICA-RLS-EMD procedures. We applied

the same testing routine as presented in this work, i.e. using the FECGDARHA and Challenge

databases, and the same set of quality indices i.e., ACC, SE, PPV and F1-score. Using the

ICA-RLS-EEMD method, we achieved higher values of considered indices for most of the

recordings. The exceptions are the recording a07 from the Challenge database, where better

results were provided for the ICA-ANFIS-WT method, and the recording a21, for which the

ICA-ANFIS-WT and ICA-RLS-WT methods provided better results. The average values of the

ACC, SE, PPV and F1-score parameters, which were obtained using all our previous methods

along with results of the conventional ICA, are summarized in Table 8 (the FECGDARHA

database) and Table 9 (the Challenge database). The second column of the tables shows the

number of recordings for which the ACC parameter value was higher than 80%.

Discussion

The results presented in the previous section demonstrate the ICA-RLS-EEMD method capa-

bility to extract high-quality fECG signals. For most of the recordings tested, the method
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eliminated the maternal component very effectively and determined the fHR with high accu-

racy. The maternal component was eliminated mainly with the help of the RLS method, and

the subsequent application of the EEMD further improved the resulting filtration. Unfortu-

nately, for some signals we were not able to sufficiently suppress the maternal component.

In this section we discuss the reasons behind the differences in the quality of the extraction

outcomes.

Studies [1, 102, 103] demonstrated a significant impact of electrode placement and data

acquisition quality on the final fECG extraction. An example of such influence is shown in Fig

12. Example a) shows the recording r08 from the FECGDARHA database and example c) is an

illustration of recording a15 from the Challenge database. In both of them, it can be seen that

the magnitude of the fetal component is sufficient compared to the maternal one. In these

cases, extraction by the system was highly effective, and, in both cases, ACC>99% was

achieved when detecting the fQRS complexes. Example b) illustrates the recording r11 from

the FECGDARHA database being an example of aECG signals of lower quality. In this case,

Table 8. Comparison of performance of the methods when extracting the fECG signals from the FECGDARHA database. Second column provides the number of

recordings for which ACC>80% was achieved. Columns three to six show average values calculated for all 12 recordings from the database (the 95% confidence interval is

reported in parenthesis).

Methods ACC >80% ACC (%) SE (%) PPV (%) F1-score (%)

ICA 3 47.77 57.68 57.59 57.37

(45.38–50.12) (55.04–60.23) (54.39–60.76) (55.92–59.38)

ICA-EMD 5 48.22 52.66 60.02 55.71

(46.11–50.28) (50.12–55.16) (57.01–62.95) (53.80–57.60)

ICA-EMD-WT 5 51.91 58.05 64.08 61.03

(49.51–54.25) (55.27–60.75) (61.81–67.64) (59.02–62.99)

ICA-ANFIS-WT 6 64.34 71.05 76.30 73.29

(62.06–65.04) (68.51–73.38) (73.58–78.75) (71.48–74.98)

ICA-RLS-EMD 9 84.73 87.99 92.72 90.10

(82.76–86.34) (86.08–89.52) (90.96–94.01) (88.85–91.16)

ICA-RLS-WT 9 85.92 89.70 92.41 90.99

(83.85–87.64) (87.76–91.24) (90.69–93.68) (89.73–92.04)

ICA-RLS-EEMD 11 92.75 95.09 96.36 95.69

(91.19–93.88) (93.68–96.03) (95.05–97.17) (94.83–96.35)

https://doi.org/10.1371/journal.pone.0256154.t008

Table 9. Comparison of performance of the methods when extracting the fECG signals from the Challenge database. Second column provides the number of record-

ings for which ACC>80% was achieved. Columns three to six show average values calculated for 25 recordings from the database (the 95% confidence interval is reported

in parenthesis).

Methods ACC >80% ACC (%) SE (%) PPV (%) F1-score (%)

ICA 6 38.72 48.26 49.35 48.32

(31.88–41.25) (40.37–52.66) (42.41–53.78) (41.94–50.51)

ICA-ANFIS-WT 7 59.51 67.09 72.76 69.44

(51.41–62.81) (58.68–71.30) (64.53–77.53) (63.27–72.25)

ICA-RLS-EMD 12 64.95 69.34 79.62 72.74

(60.29–70.99) (64.44–75.70) (74.52–85.82) (70.58–78.50)

ICA-RLS-WT 13 68.25 72.60 81.31 75.68

(62.70–72.76) (66.87–77.12) (74.77–86.15) (71.65–79.06)

ICA-RLS-EEMD 17 78.24 81.79 87.16 84.08

(73.44–81.85) (76.59–85.43) (81.95–90.35) (80.75–86.64)

https://doi.org/10.1371/journal.pone.0256154.t009
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Fig 12. Examples of input aECG signals with different quality and the corresponding outcomes of the ICA-RLS-EEMD method. Subfigures a) and b) show the

examples of the high- (r08) and low-quality (r11) recordings from the FECGDARHA database, for which, respectively, high and low accuracy of the ICA-RLS-EEMD

extraction was noticed. Subfigures c) and d) show examples of high- (a15) and low-quality (a18) recordings from the Challenge database, from which fECG was and

was not successfully extracted using the ICA-RLS-EEMD, respectively.

https://doi.org/10.1371/journal.pone.0256154.g012
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the magnitude of the fetal component is very low compared to the maternal component and,

in addition, the signal contains noise. From such input signals, it is difficult to extract a good

quality fECG signal and to accurately detect the fQRS complexes. As a result, the reported

ACC was less than 53%. Finally, example d) of recording a18 from the Challenge database is

presented. Here, the ICA-RLS-EEMD method completely failed to extract the fECG as the

ACC of the QRS detection and the determination of the fHR was below 13%. In such aECG

signals the magnitude of the fetal component is almost negligible and hence, the fECG extrac-

tion is difficult or practically impossible. Such input aECG signals are not usable for the meth-

ods of NI-fECG extraction.

Fig 13 shows the influence of the quality of aECG on the extracted signal by comparing the

fHR traces determined using the ICA-RLS-EEMD method with the reference fHR signal

derived from the scalp electrode. Examples of abdominal, extracted and reference ECG signals

from the scalp electrode are also presented. To best illustrate this effect, the recording r10,

characterized by an overall high-quality extraction (ACC >95%), was selected from the FECG-

DARHA database. Examples a), b) and c) correspond to the signal sections where the fHR

determination achieved high accuracy. These parts of aECG signals contain well recorded fetal

component. Examples d), e) and f) correspond to sections where the estimated fHR trace devi-

ates slightly from the annotation curve and where, as a result, the fHR determination was less

accurate. This could be due to the noise which caused a slight decrease in the quality of the

extraction. However, these are insignificant deviations that do not affect the final accuracy of

fetal hypoxia determination.

Fig 14 shows another example of the impact of the quality of the aECG signals on the

resulting extraction quality and the subsequent fHR determination. The recording a16, for

which unsatisfactory results were obtained (ACC <30%), was selected from the Challenge

database. In this case, only the aECG signal and the signal extracted using the ICA-RL-

S-EEMD method are presented, as the scalp electrode reference recording is not available.

Only the annotation used to plot the fHR trace is included. Subfigures a), b) and c) corre-

spond to sections where the method curve deviates the least from the annotation curve, but,

even in these sections, sufficient extraction quality was not achieved. This is due to the very

low magnitude of the fetal component. In examples d), e) and f), the complete failure of the

proposed extraction method can be seen, as the fetal component is almost invisible in the

aECG signal. Again, it is clear that such signals are not suitable for fECG extraction and their

filtration is not feasible.

As shown, the quality of aECG signals is one of the most important factors affecting the

resulting filtration quality and the accuracy of fHR determination. It can be stated that the

extraction is effective if the ratio between the fetal and maternal component in the aECG

record is sufficiently high and the amount of noise in the recording is low. One of the factors

in aECG signal quality is the electrode placement. It affects the signal’s polarity, morphology,

ratio between the maternal and fetal component or even the ability of the system to suppress

the unwanted signals (e.g. movement and muscle artifacts). Unfortunately, there is currently

no standardization for non-invasive fECG measurement in terms of the number, location of

electrodes, or system configuration, as is the case of conventional ECG. The recordings in the

publicly available databases (including the FECGDARHA and Challenge 2013) differ in the

number and location of the electrodes on the maternal body. As a result, the quality of the sig-

nals may differ significantly. This effect can be observed especially in the case of the results

achieved using the data from the Challenge 2013 database, which differ significantly from case

to case (e.g. for the record a04 ACC = 100% whereas for a18, ACC = 12.61%). These significant

differences may be caused by the fact that this database is known to be very inconsistent; it

includes records of different quality, from different sources and acquired using a variety of
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devices with different resolutions, configurations and electrode placements. Large amount

of the records are also synthetic. In addition, almost no information on the setting of the mea-

suring system, gestational age or the position of the fetus for individual records is publicly

available.

Fig 13. Illustration of the influence of the quality of aECG recordings on the final extraction and the fHR determination. As an example, the recording r10 from the

FECGDARHA database was selected, which was characterized with the overall high-quality extraction. Traces obtained using the ICA-RLS-EEMD method are

compared with the annotation. Examples a), b) and c) correspond to sections where high accuracy was achieved in the fHR determination, and examples d), e) and f)

correspond to sections where the fHR determination was less accurate.

https://doi.org/10.1371/journal.pone.0256154.g013
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The future research should therefore aim to find the optimal number and location of elec-

trodes, which would be standardized with respect to the position and gestational age of the

fetus. It can be assumed that the more electrodes used for sensing, the more likely it is that

high quality aECG signals will be captured. However, this assumption is only theoretical, as

Fig 14. Illustration of the influence of the quality of aECG recordings on the final extraction and the fHR determination. As an example, the recording a16 from

the Challenge database was selected, which was characterized by an overall low-quality extraction. Examples a), b) and c) correspond to signal sections where very low

accuracy was achieved in the fHR determination, and examples d), e) and f) correspond to sections where the method failed completely when extracting the fHR.

https://doi.org/10.1371/journal.pone.0256154.g014
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from a practical point of view, recording many signals simultaneously is both clinically and

technically demanding. In addition, for the signals to be of high quality, the patient’s skin

needs to be properly cleaned and the sensor attached well, which is not only time consuming

in the case when many electrodes are used, but also stressful and uncomfortable for the preg-

nant woman. The electrodes can be placed on the abdominal area (for aECG measurement) or

also on the chest (to obtain mECG). Purely abdominal sensing is beneficial for the clinical staff

due to decreased requirements for preparation but also for the mother since it offers greater

comfort and mobility. On the other hand, the combination of abdominal and thoracic elec-

trodes allows easier interpretation of mECG and fECG signals. However, the effectiveness of

the combined electrode placement is strongly dependent on the quality of the chest signals,

which is often insufficient in clinical practice. In addition, change in the location of the sensor

leads to variations in the morphology of the mECG signal which can then differ from the

maternal component obtained in the abdominal area. Thus, the extraction may not be a suffi-

ciently accurate [1, 5]. This is especially true for adaptive algorithms such as RLS, which are

very susceptible to the quality of input signals, especially mECG.

The influence of the performance of the ICA, RLS, EEMD individual algorithms and selec-

tion of a combination of aECG signals on the resulting quality of the outcome signal is also

presented. Fig 15 shows an example of the effect of the input aECG signal selection on the

resulting signal quality. Example a) presents the optimal selection of input aECG signals

(aECG2 and aECG4), when the resulting extracted signal was of very high quality and

ACC> 99% was achieved, while b) shows an example of inappropriate combination of input

signals (aECG2 and aECG3) causing the method to fail to extract fECG signals (ACC < 30%).

In addition to the subjective evaluation of the input aECG waveforms and their influence

on the resulting extraction quality, we also performed an objective statistical evaluation, see the

summary in Table 10. We have introduced four objective parameters and evaluated their influ-

ence on the accuracy of fQRS complex detection:

Fig 15. An example of the effect of the input aECG signal selection on the resulting signal quality: a) optimal selection of input aECG signals (aECG2 and aECG4), the

resulting extracted signal is of a high quality; b) inappropriate combination of input signals (aECG2 and aECG3) causing the method to fail to extract fECG signals.

https://doi.org/10.1371/journal.pone.0256154.g015
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1. Number of input channels—this factor was related to the theoretical assumption that the

quality of the resulting extraction does not depend on the number of channels used, but on

their quality and suitability in terms of ECG curve morphology. The resulting correlation

coefficient was -0.28 [95% confidence interval: -0.55 to 0.05], indicating a very low negative

correlation between the number of input aECG signals and the resulting accuracy in

Table 10. Analysis of the influence of four factors (number of input aECG signals, average ratio between mR and fR oscillations, average value of sSQI and kSQI) on

the resulting extraction quality. The influence of each factor on the accuracy was evaluated using a correlation coefficient (the 95% confidence interval is reported in

parenthesis).

Recordings Number of input aECG signals (-) mR:fR ratio (-) sSQI (-) kSQI (-)

r01 3 1.90 (1.40 to 2.86) -0.15 (-2.66 to 1.37) 12.71 (10.00 to 17.35)

r02 2 2.05 (1.37 to2.73) -0.60 (-2.42 to 1.23) 13.31 (10.35 to 16.28)

r03 2 2.63 (2.29 to2.96) -1.37 (-1.63 to -1.11) 14.16 (12.87 to 15.46)

r04 2 2.42 (2.35 to 2.48) 0.49 (-0.36 to 1.33) 12.82 (12.22 to 13.42)

r05 2 1.94 (1.21 to2.67) -0.64 (-2.35 to 1.07) 12.84 (9.78 to 15.90)

r06 4 2.46 (1.98 to 2.83) -1.33 (-2.13 to -0.30) 16.60 (11.88 to 25.75)

r07 3 2.66 (2.25 to 3.12) 1.23 (-0.95 to 3.37) 14.57 (10.75 to 20.35)

r08 2 1.83 (1.07 to2.59) -0.60 (-2.24 to 1.03) 12.55 (9.58 to 15.52)

r09 2 1.89 (1.09 to 2.68) -0.61 (-1.93 to 0.72) 10.73 (8.29 to 13.18)

r10 4 2.41 (2.03 to 3.05) -1.37 (-2.09 to -0.80) 11.99 (8.79 to 13.91)

r11 4 2.15 (1.91 to 2.45) -0.73 (-1.13 to -0.39) 15.15 (7.53 to 21.74)

r12 4 2.90 (2.16 to 3.49) -1.42 (-2.26 to -0.40) 19.16 (17.96 to 27.28)

a01 3 5.96 (3.84 to 8.85) -1.71 (-2.81 to -0.45) 15.72 (13.73 to 17.49)

a02 3 5.33 (4.18 to 6.36) -2.32 (-3.36 to -0.33) 21.70 (19.49 to 23.25)

a03 2 2.52 (2.19 to 2.85) -1.47 (-2.00 to -0.94) 13.03 (12.57 to 13.49)

a04 2 1.83 (0.72 to 2.94) -0.99 (-2.84 to 0.85) 12.64 (8.82 to 18.46)

a05 2 1.99 (1.24 to 2.73) -0.85 (-2.58 to 0.88) 12.68 (8.93 to 16.42)

a06 2 5.87 (5.38 to 6.35) -3.11 (-3.15 to -3.07) 18.35 (17.91 to 18.80)

a07 4 4.74 (3.43 to 7.05) -1.60 (-2.63 to -0.57) 13.49 (11.88 to 15.78)

a08 2 1.85 (0.93 to 2.76) -0.71 (-2.45 to 1.02) 13.10 (9.32 to 16.87)

a09 2 4.89 (4.09 to 5.69) -2.42 (-4.06 to -0.78) 26.11 (22.88 to 29.34)

a10 2 4.79 (4.20 to 5.37) -3.15 (-3.20 to -3.10) 18.20 (17.78 to 18.62)

a11 2 4.64 (4.17 to 5.10) -2.34 (-4.01 to -0.67) 25.56 (22.38 to 28.74)

a12 3 2.76 (2.25 to 3.45) -1.55 (-2.24 to -1.08) 13.02 (9.28 to 15.10)

a13 2 3.39 (2.87 to 3.91) 1.46 (-0.48 to 3.40) 17.56 (14.62 to 20.51)

a14 4 2.24 (1.85 to 2.84) -1.20 (-1.99 to -0.60) 11.06 (8.49 to 12.73)

a15 2 1.79 (0.97 to 2.62) -0.56 (-2.19 to 1.06) 13.10 (9.05 to 17.15)

a16 2 4.83 (4.38 to 5.27) -2.33 (-3.87 to -0.79) 24.80 (22.03 to 27.57)

a17 2 1.73 (1.09 to 2.37) -0.51 (-2.00 to 0.99) 11.39 (9.29 to 13.49)

a18 4 9.78 (6.87 to 12.50) -3.01 (-4.29 to -0.41) 26.18 (20.88 to 32.44)

a19 2 2.93 (2.21 to 3.66) 2.32 (1.24 to 3.40) 16.79 (12.41 to 21.16)

a20 2 3.46 (3.15 to 3.78) 1.04 (-1.21 to 3.30) 15.56 (11.67 to 19.46)

a21 3 4.40 (3.95 to 4.89) -2.17 (-3.03 to -0.62) 16.21 (12.94 to 18.56)

a22 2 2.02 (1.27 to 2.78) -0.75 (-2.72 to 1.22) 13.63 (9.55 to 17.71)

a23 2 2.74 (2.27 to 3.22) 0.19 (-0.93 to 1.31) 11.20 (10.05 to 12.35)

a24 2 2.73 (2.32–3.15) 0.10 (-1.09 to 1.29) 12.45 (11.64 to 13.25)

a25 2 2.30 (2.25 to 2.36) 0.52 (-0.48 to 1.51) 13.24 (12.51 to 13.98)

Correlation coefficient (-) -0.28 (-0.55 to 0.05) -0.79 (-0.89 to -0.62) 0.59 (0.32 to 0.76) -0.82 (-0.90 to -0.67)

https://doi.org/10.1371/journal.pone.0256154.t010
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detecting fQRS complexes. For this reason, it was also necessary to qualitatively evaluate the

input aECG channels using objective evaluation parameters.

2. mR:fR ratio—this parameter assessed whether the fetal component in a given abdominal

lead reaches a sufficient level compared to the maternal component. For each record, we

calculated the average ratio of the voltage levels of the detected mR and fR peaks.

• First, all mR and fR peaks were detected in each aECG signal for each recording and their

voltage levels were determined.

• The average amplitude of the mR and fR oscillations was determined and the average mR:
fR ratio was calculated for each aECG signal.

• The resulting ratio was determined as the average of the ratios of all aECG signals used.

The value of the correlation coefficient was -0.79 [95% confidence interval: -0.89 to -0.62],

indicating a high negative correlation between the average mR:fR ratio and the resulting

accuracy in detecting fQRS complexes according to ACC (i.e. the smaller the ratio between

mR and fR peaks, the higher the ACC value).

3. Skewness signal quality index (sSQI)—this parameter is often used in the ECG signal quality

evaluation in adults, see [104, 105]. The resulting value for a given record was determined

as the average value of all aECG signals used. In the case of sSQI, a slight positive correlation

was observed with the ACC values with a correlation coefficient value of 0.59 [95% confi-

dence interval: 0.32 to 0.76].

4. Kurtosis signal quality index (kSQI)—similarly to sSQI, this parameter is used to assess the

quality of ECG signal in adults. Both parameters were designed as indices to identify outli-

ers in the ECG that are equivalent to noise, see [104, 105]. In the case of kSQI, a high nega-

tive correlation was observed with ACC values with a correlation coefficient value of -0.82

[95% confidence interval: -0.90 to -0.67].

Based on the statistical results, it can be stated that the number of input signals does not

affect the final quality of extraction, but the quality of input aECG signals plays an important

role, especially in terms of noise presence and the ratio between the maternal and fetal

components.

For the RLS algorithm, the quality of the mECG and aECG� components extracted using

the ICA method is crucial. These components, forming the reference and primary inputs to

the RLS system, and also the output fECG signal extracted using the ICA-RLS method, are

shown in Fig 16. Examples of well-extracted fECG signals are presented for the recordings: a)

r01 and c) r05 from the FECGDARHA database. It can be seen that if the ratio between the

maternal and fetal components is sufficient, the algorithm is able to extract a high quality

fECG. However, if the fetal component is of insufficient magnitude, and, in addition, the

mECG component estimated using the ICA method contains fECG residues or noise, then the

extraction by means of the RLS algorithm is less accurate, see example b) for recording r04 and

d) for recording r11.

With the RLS algorithm, it is very important to choose the appropriate filter order so that

the input mECG signal resembles as closely as possible the mECG component in the aECG�

signal. It is then possible for the RLS method to subtract the modified mECGRLS component

from the aECG� signal to obtain the fECG with the suppressed maternal component. The

influence of the optimal filter order on the RLS algorithm is presented in Fig 17. Example a)

shows the aECG� and mECG signals that were used as inputs to the algorithm in recording

r05. Example b) demonstrates too low filter setting (sixth order), which led to an insufficient
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adjustment of the mECG component to the desired shape in the aECG� signal. The resulting

fECG thus contained unnecessarily significant residues of the parent component. Example c)

shows the ideal setting (16th order filter), which was able to sufficiently suppress the maternal

component. Example d) shows a too high filter order (100th order filter), which was able to

suppress the parent component. In addition, the fECG component was also suppressed, which

affected the resulting fHR trace.

Moreover, for the same record, we demonstrate the effect of different RLS-based filter set-

ting on the quality of the extraction using a 3D graph, see Fig 18. This graph takes into account

Fig 16. The influence of the mECG and aECG� components determined with the help of the ICA on the resulting quality of the fECG signal extracted using the

ICA-RLS method. The recordings: a) r01 and c) r05 are examples of well extracted mECG and aECG� components. The recording b) r04 and d) r11 represent a less

accurate extraction of the fECG. This is a result of the low magnitude of the fetal component and the presence of noise and residues of the fetal component in the mECG

signal.

https://doi.org/10.1371/journal.pone.0256154.g016
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the effect of the filter order M and the forgetting factor λ on the resulting accuracy of detection

of fQRS complexes according to the ACC parameter. The working area of the algorithm, cor-

responding to the red area in the graph, was defined as a system setting in which the filter is

stable and achieves sufficient accuracy (ACC> 90%). It can be noted that for the record r05,

the working area of the algorithm lies in the interval {M 2 (1;17) \ λ 2 (0.98;1)} [ {M 2
(1;100) \ λ 2 (0.994;1)}, where the global maximum (i.e. the optimal system setting) was

reached for the ICA-RLS method with setting M = 16 and λ = 1 (ACC = 95.93%). Setting the

system by values outside the working area led to a deterioration in accuracy in the detection of

fQRS complexes (for example, at M = 100 and λ = 0.98, the resulting ACC = 58.86%). There-

fore, although the input signals for this recording were of a high quality, improper setting of

the RLS filter caused poor outcomes.

When using the EEMD method, the optimal setting of the N and Nstd parameters is crucial.

The influence of these parameters on the resulting extraction quality is shown in Fig 19. The

upper signal in all examples is the result of the most unsuccessful setting of the EEMD algo-

rithm, while the lower signal represents the setting of the EEMD algorithm for which the best

extraction results and most accurate fHR determination were achieved. Examples a) and b)

represent the influence of the optimal setting of parameter N, while keeping Nstd constant. If

10 ensemble trials were used for the recording a13, then the EEMD method failed to suppress

the residues of the maternal component and produced worse results (ACC < 71%) comparing

to N = 60 ensemble trials (ACC > 97%). When using 60 ensemble trials the method was able

Fig 17. Influence of the filter order setting on the quality of the extracted fECG signal: a) aECG� and mECG signals used as the inputs to the RLS algorithm; b) low

filter order settings, c) optimal filter order settings d) too high filter order settings.

https://doi.org/10.1371/journal.pone.0256154.g017

Fig 18. Illustration of the influence of parameter settings (filter order M and forgetting factor λ) in the RLS method on the resulting quality of the extracted signal a)

using the front view 3D graph and b) top-down view.

https://doi.org/10.1371/journal.pone.0256154.g018
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to filter the residues, and consequently, it was possible to detect the fQRS complexes more

accurately. The same influence can be seen for the recording a19. However, in this case worse

results were obtained using 60 ensemble trials (ACC< 75%), while better were achieved for

N = 10 (ACC> 98%). Examples c) and d) present the influence of the optimal setting of Nstd,

while keeping the same value of N. For the recording a22, the EEMD method failed to suppress

some maternal components (ACC < 47%) when assuming Nstd = 0.9. The use of Nstd = 0.1 for

the added noise series was more appropriate in this case, leading to the highest level of the

Fig 19. The influence of the EEMD parameters (N and Nstd) on the resulting quality of the fECG signal extraction. Examples a) and b) present the influence of the

parameter N, while keeping a constant value of Nstd. Examples c) and d) present the influence of the parameter Nstd, while keeping the N unchanged.

https://doi.org/10.1371/journal.pone.0256154.g019
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extraction accuracy (ACC = 100%). On the contrary, for the recording a25, setting Nstd = 0.1

produced worse results (ACC<86%), while the best extraction accuracy (ACC = 100%) was

achieved using Nstd = 0.8.

Fig 20 provides illustration of the effect of the EEMD-based filter settings (N and Nstd) on

the resulting accuracy of the fQRS detection according to the ACC for the case of record a13.

The working area of the algorithm, corresponding to the red area in the graph, lies in the inter-

val {N 2 (26;60) \ Nstd 2 (0.4;0.9)}, while the global maximum was reached for the ICA-RL-

S-EEMD method at the setting N = 60 a Nstd = 0.7 (corresponding to ACC = 97.64%). Setting

the algorithm outside the working area led to a deterioration in accuracy in the detection of

fQRS complexes (for example, when N = 10 a Nstd = 0.7, ACC = 70.56% was achieved).

In addition to the optimal setting of the N and Nstd parameters, the correct selection of

extracted IMFs plays an important role since they are used to compose the resulting fECG sig-

nal. An example of the optimal selection of IMFs (IMF3 + IMF4) for r02 recording, in which

ACC = 100% was achieved in the detection of fQRS complexes, is shown in Fig 21a). Example

Fig 21b) presents an inappropriate selection of IMFs (IMF2 + IMF4), where the selected com-

ponent IMF2 corresponds to the noise. This noise contained in the resulting signal led to an

impaired detection of fQRS complexes (ACC < 92%). Example c) represents an inappropriate

selection of IMFs (IMF3 + IMF5) in terms of insufficient removal of mECG residues, which

also affected the accuracy of R wave detection (ACC< 94%). The last example d) demonstrates

the effect of inappropriate selection of IMFs (IMF5 + IMF6), where both IMFs do not contain

a well-extracted useful signal and there is a complete loss of information about the fECG sig-

nal. It is almost not recognizable even visually and accurate detection of fQRS complexes is

nearly impossible (ACC< 45%).

Another important factor besides the quality of the aECG recordings is the filter setting.

Improper setting of the methods either led to insufficient suppression of the interference or,

on the other hand, the interference was effectively removed, however, a part of the useful signal

was also filtered out along with it. Nevertheless, the functionality of the method and finding

the optimal setting were demonstrated only in physiological records. It would be appropriate

to verify the effectiveness of the method also on pathological records. Unfortunately, there are

currently very few publicly available databases with real records that contain annotations with

reference positions of fQRS complexes, and no dataset with pathological fECG records exists.

Future research should therefore focus on creating a comprehensive database containing rec-

ords from clinical practice. The ideal database should contain hundreds of well-scanned

Fig 20. Illustration of the influence of parameter settings (N and Nstd) for the EEMD method on the resulting quality of the extracted signal a) using the front view

of the 3D graph and b) the top-down view.

https://doi.org/10.1371/journal.pone.0256154.g020
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multichannel aECG records with a reference scalp fECG record, annotations indicating the

positions of fQRS complexes, and annotations with reference T/QRS ratios. The database

should contain records that have been obtained from both normal and pathological fetuses of

different gestational age and different maternal health conditions. The database should include

a description of how the signals were captured, information on electrode placement, gesta-

tional age of the fetus, fetal position, maternal age, maternal health, genetic predisposition,

information on whether the pregnancy is at risk and whether it is single or multiple pregnancy.

Fig 21. Influence of the IMF selection on the final fECG signal quality: a) the optimal selection of IMFs, b) inappropriate selection of IMF2 component representing

noise, c) inappropriate selection of both IMFs leading to insufficient suppression of mECG residues, d) inappropriate selection of IMFs, where both signals contain very

little information on fECG signal.

https://doi.org/10.1371/journal.pone.0256154.g021
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Such a database would be used for further research on extraction methods, which could be

compared with each other both in terms of fHR determination and for deeper morphological

analysis.

As we tried to obtain the most accurate fECG extraction in order to perform a morphologi-

cal analysis, a relatively wide range of parameters was tested (11 combinations of aECG signals,

50 values of RLS filter order, nine values of Nstd parameter, three values of N parameter, and

250 combinations of IMFs). In order to simplify the search for optimal parameters and reduce

the number of algorithm runs, the number of parameters could be decreased. Such range of

parameters could be chosen, for which we know that the method works relatively correctly

and is sufficient for a reliable determination of fHR (e.g. four combinations of aECG signals,

nine values of the RLS filter order, two values of the Nstd parameter, one value of the N parame-

ter, and 12 combinations of IMFs would be tested, see Table 11).

Reducing the computational time of the algorithm can be achieved by optimizing the

hyperparameters using a shorter section of the signal and applying this setting to the entire sig-

nal. A similar approach can then be used in clinical practice. Therefore, we performed the test-

ing on signals from the FECGDARHA database using three variants, where a signal section of

15, 30, and 60 seconds was used for optimization. Subsequently, the whole five minute record-

ing was filtered using the method with these set of parameters and a statistical evaluation of

the accuracy of detection of fQRS complexes for the whole recording was performed, see

Table 12. A signal section of 15 and 30 seconds cannot be considered sufficient, as poor results

were achieved in the statistical evaluation of the whole record. Optimization using a 60-second

signal proved to be the most suitable and accurate variant, as the subsequent statistical evalua-

tion of the detection of fQRS complexes for the whole recording achieved almost as accurate

results as in the case of parameter optimization for the whole recording length (five minutes).

According to ACC, for eight records (r01, r02, r03, r05, r06, r08, r09 and r10), the accuracy dif-

ference was less than 1%. For recording r07 the value of ACC differed by 1.17%, for recording

r11 by 2.63%, for recording r12 by 2.24% and the most significant difference was for recording

r04, where the value of ACC differed by 5.56%.

Another variant, the advantage of which is to maintain the efficiency of filtration in the case

of fetal or maternal movement, is optimization at regular intervals. The filter would be opti-

mized for 60 seconds, following 60 seconds would be then filtered with these optimized param-

eters, followed by further optimization lasting 60 seconds. In clinical practice, parameter

optimization based on fHR evaluation would also be beneficial. The parameters would be

again first optimized for 60 seconds and with these set of parameter values the signal would

be filtered. The algorithm would monitor whether the fHR is in the expected interval. If not,

the optimization would be performed again. Of course, a combination of both mentioned

Table 11. Selection of the optimal parameters of the method tested.

Input/algorithm Parameter Optimal settings

aECG Combination of electrodes 1, 4

2, 4

1, 3, 4

1, 2, 3, 4

rLS Filter order 2, 16, 32, 42, 50, 64, 86, 94, 100

EEMD N 10

Nstd 0.1, 0.9

IMFs 3, 4, 5, 2+4, 3+4, 2+3, 2+5, 3+5, 4+5, 2+3+4, 2+3+5, 2+4+5

https://doi.org/10.1371/journal.pone.0256154.t011
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Table 12. Statistical evaluation of the detection of fQRS complexes for the whole recording, while optimizing the

method only on the signal section with a length of 15, 30 and 60 seconds (the 95% confidence interval is reported

in parenthesis).

Rec. 15 seconds used for optimization

ACC (%) SE (%) PPV (%) F1-score (%)

r01 97.98 (96.58–98.92) 98.14 (96.77–99.03) 99.84 (99.12–100.00) 98.98 (98.27–99.46)

r02 96.54 (94.86–97.80) 97.27 (95.72–98.38) 99.23 (98.21–99.75) 98.24 (97.37–98.88)

r03 98.69 (97.52–99.40) 98.98 (97.90–99.59) 99.71 (98.94–99.96) 99.34 (98.75–99.70)

r04 73.88 (70.44–77.12) 81.01 (77.73–84.00) 89.35 (86.54–91.76) 84.98 (82.84–86.95)

r05 96.77 (95.10–97.99) 97.52 (96.00–98.58) 99.21 (98.17–99.74) 98.36 (97.50–98.98)

r06 91.13 (88.77–93.13) 94.51 (92.51–96.11) 96.22 (94.48–97.54) 95.36 (94.09–96.42)

r07 76.06 (73.21–80.33) 83.09 (79.16–86.59) 89.98 (86.72–91.65) 86.40 (84.03–88.47)

r08 99.69 98.90–99.96) 99.85 (99.15–100.00) 99.85 (99.15–100.00) 99.85 (99.45–99.98)

r09 96.39 (94.67–97.67) 97.41 (95.89–98.49) 98.92 (97.78–99.56) 98.16 (97.27–98.82)

r10 92.53 (90.27–94.40) 97.17 (95.57–98.32) 95.08 (93.13–96.61) 96.12 (94.91–97.11)

r11 39.65 36.44–42.92) 50.78 (47.02–54.53) 64.39 (60.25–68.37) 56.78 (53.99–59.54)

r12 79.35 (76.18–82.28) 81.90 (78.81–84.71) 96.23 (94.34–97.62) 88.49 (86.60–90.19)

Rec. 30 seconds used for optimization

ACC (%) SE (%) PPV (%) F1-score (%)

r01 97.98 (96.58–98.92) 98.14 (96.77–99.03) 99.84 (99.12–100.00) 98.98 (98.27–99.46)

r02 99.55 (98.68–99.91) 99.70 (98.91–99.96) 99.85 (99.16–100.00) 99.77 (99.34–99.95)

r03 96.68 (95.06–97.88) 97.95 (96.59–98.88) 98.68 (97.50–99.39) 98.31 (97.48–98.93)

r04 68.83 (65.24–72.27) 75.48 (71.93–78.78) 88.66 (85.67–91.22) 81.54 (79.19–83.72)

r05 99.69 (98.88–99.96) 99.69 (98.88–99.96) 100.00 (99.43–100.00) 99.85 (99.44–99.98)

r06 87.59 (84.92–89.94) 91.10 (88.69–93.14) 95.79 (93.93–97.21) 93.38 (91.90–94.67)

r07 48.20 (44.64–51.78) 59.81 (55.85–63.67) 71.29 (67.22–75.12) 65.05 (62.22–67.80)

r08 99.69 (98.90–99.96) 99.85 (99.15–100.00) 99.85 (99.15–100.00) 99.85 (99.45–99.98)

r09 96.39 94.67–97.67) 97.41 (95.89–98.49) 98.92 (97.78–99.56) 98.16 (97.27–98.82)

r10 91.94 (89.61–93.89) 96.70 (95.00–97.95) 94.92 (92.93–96.47) 95.80 (94.56–96.83)

r11 48.60 (45.27–51.93) 61.42 (57.71–65.03) 69.95 (66.17–73.54) 65.41 (62.78–67.97)

r12 87.41 (84.74–89.77) 90.22 (87.75–92.34) 96.56 (94.84–97.83) 93.28 (91.80–94.57)

Rec. 60 seconds used for optimization

ACC (%) SE (%) PPV (%) F1-score (%)

r01 99.69 (98.88–99.96) 99.85 (99.14–100.00) 99.85 (99.14–100.00) 99.85 (99.44–99.98)

r02 99.70 (98.91–99.96) 99.85 (99.16–100.00) 99.85 (99.16–100.00) 99.85 (99.45–99.98)

r03 98.40 (97.15–99.20) 98.68 (97.52–99.40) 99.71 (98.94–99.96) 99.19 (98.56–99.60)

r04 82.13 (79.03–84.94) 87.98 (85.18–90.41) 92.51 (90.11–94.49) 90.19 (88.39–91.79)

r05 99.69 (98.88–99.96) 99.69 (98.88–99.96) 100.00 (99.43–100.00) 99.85 (99.44–99.98)

r06 92.25 (90.01–94.13) 95.40 (93.53–96.85) 96.55 (94.86–97.80) 95.97 (94.77–96.96)

r07 90.60 (88.09–92.73) 93.78 (91.59–95.54) 96.39 (94.59–97.73) 95.07 (93.71–96.21)

r08 99.69 (98.90–99.96) 99.85 (99.15–100.00) 99.85 (99.15–100.00) 99.85 (99.45–99.98)

r09 98.94 (97.82–99.57) 99.09 (98.02–99.66) 99.85 (99.15–100.00) 99.47 (98.90–99.78)

r10 94.16 (92.10–95.82) 98.74 (97.54–99.46) 95.30 (93.40–96.79) 96.99 (95.91–97.85)

r11 50.00 (46.66–53.34) 63.12 (59.44–66.69) 70.64 (66.91–74.17) 66.67 (64.07–69.19)

r12 91.77 (89.49–93.69) 94.45 (92.46–96.04) 97.00 (95.41–98.16) 95.71 (94.49–96.73)

https://doi.org/10.1371/journal.pone.0256154.t012
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approaches is also possible, i.e. optimization at regular intervals and optimization based on the

deviation of fHR from the expected interval.

This approach also solves the problem that arises in practical use, when we do not have

annotations with reference positions of fQRS complexes. The algorithm would receive both

mHR information (which can be easily obtained from the aECG record) and fHR information.

Based on the information on the mR-mR positions and the estimated fR-fR, the algorithm

would check whether the fHR is in the expected interval or whether it has deviated and optimi-

zation is needed. A limitation of this approach is its use in pathological records, where fHR

and mHR may vary.

The problem of the absence of information on the position of fetal heart beats can be fur-

ther solved by combining NI-fECG with fetal phonocardiograph. It is possible to detect fS1

fetal heart sounds in the fetal phonocardiographic signal, which correlate with R-peaks with a

slight time delay.

Based on the results presented, one can notice that the ICA-RLS-EEMD method was able to

extract the fECG better and to determine the fHR more accurately than the conventional ICA

method as well as all the approaches presented in our previous studies. Inaccurate extraction

was the result of processing aECG recordings that were not well recorded and thus contained

the fetal component of too low magnitude. Therefore, in the case of clinical application, it is

essential to obtain high quality aECG signals. The extraction results can be negatively influ-

enced, in particular, by insufficient adhesion of the measuring electrodes and their placement,

fetal position and maternal movements. If the aECG signals contain fetal components with a

sufficient magnitude, and do not contain a large amount of noise, it will be possible to perform

a highly accurate determination of a non-invasive fHR. In addition, very promising results

were achieved when performing non-invasive ST segment analysis. However, the computa-

tional complexity and the need to individually set the parameters of the RLS and EEMD algo-

rithms for each recording, are disadvantages of the ICA-RLS-EEMD algorithm. If uniform

parameters were used for all recordings, extraction would be less efficient.

Conclusion

This study develops our previous ideas on the ICA-RLS-EMD method introduced for extract-

ing the NI-fECG from abdominal recordings. Promising results were observed, however the

applied EMD method is burdened with the intrinsic limitation called mode mixing, signifi-

cantly affecting the decomposition results. To prevent this phenomenon, an extended EEMD

method was applied in this study. Our investigations focused on the possibility of improving

extraction results using the ICA-RLS-EEMD procedure, based on the appropriate settings of

the EEMD parameters. The comparison with the ICA-RLS-EMD and the other previously pre-

sented methods was shown. The evaluation was carried out by examining the ability to accu-

rately detect the fQRS complexes and to determine the high-quality fHR. Two benchmark

databases (FECGDARHA and PhysioNet Challenge 2013) were applied and the evaluation of

the considered algorithms was performed using statistical parameters such as ACC, SE, PPV

and F1-score. When testing the proposed ICA-RLS-EEMD on the FECGDARHA database an

overall accuracy of over 80% was achieved for 11 out of 12 recordings, with an average value

of ACC = 92.75% [95% confidence interval: 91.19–93.88%], SE = 95.09% [95% confidence

interval: 93.68–96.03%], PPV = 96.36% [95% confidence interval: 95.05–97.17%], and

F1-score = 95.69% [95% confidence interval: 94.83–96.35%]. For the Physionet Challenge

2013 database the overall accuracy above 80% was obtained for 17 out of 25 recordings, the

average values of ACC = 78.24% [95% confidence interval: 73.44–81.85%], SE = 81.79% [95%

confidence interval: 76.59–85.43%], PPV = 87.16% [95% confidence interval: 81.95–90.35%]

PLOS ONE A novel algorithm based on EEMD for NI-fECG extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0256154 August 13, 2021 42 / 49

https://doi.org/10.1371/journal.pone.0256154


and F1-score = 84.08% [95% confidence interval: 80.75–86.64%] were achieved. The ICA-

RLS-EEMD method provided better results than the conventional ICA method and the previ-

ously presented approaches, including the ICA-RLS-EMD. In addition, the effectiveness of the

method was also demonstrated for the ST segment analysis, which was highly accurate in 7 of

12 records. However, the main disadvantage of the ICA-RLS-EEMD method is its computa-

tional complexity and the need to individually set the parameters of the RLS and EEMD algo-

rithms for each recording. Future research will include tests and optimization of the algorithm

on signals captured using our proposed NI-fECG system. All relevant data (extracted signals

from both used databases) are in S1 File named Extracted signals.

Supporting information

S1 File. Extracted signals by ICA-RLS-EEMD method.
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for Single-Channel Fetal Heart Rate Monitoring. PLOS ONE. 2018; 13(6):e0199308. https://doi.org/

10.1371/journal.pone.0199308 PMID: 29933366

98. Su L, Wu HT. Extract Fetal ECG from Single-Lead Abdominal ECG by De-Shape Short Time Fourier

Transform and Nonlocal Median. Frontiers in Applied Mathematics and Statistics. 2017; 3. https://doi.

org/10.3389/fams.2017.00002

99. Gurve D, Krishnan S. Separation of Fetal-ECG From Single-Channel Abdominal ECG Using Activation

Scaled Non-Negative Matrix Factorization. IEEE Journal of Biomedical and Health Informatics. 2020;

24(3):669–680. https://doi.org/10.1109/JBHI.2019.2920356 PMID: 31170084

100. Panigrahy D, Sahu PK. Extraction of Fetal ECG Signal by an Improved Method Using Extended Kal-

man Smoother Framework from Single Channel Abdominal ECG Signal. Australasian Physical & Engi-

neering Sciences in Medicine. 2017; 40(1):191–207. https://doi.org/10.1007/s13246-017-0527-5

PMID: 28210991

101. Behar J, Andreotti F, Zaunseder S, Li Q, Oster J, Clifford GD. An ECG Simulator for Generating Mater-

nal-Foetal Activity Mixtures on Abdominal ECG Recordings. Physiological Measurement. 2014; 35

(8):1537–1550. https://doi.org/10.1088/0967-3334/35/8/1537 PMID: 25071094

102. Marchon N, Naik G. Electrode Positioning for Monitoring Fetal ECG: A Review. In: 2015 International

Conference on Information Processing (ICIP). Pune, India: IEEE; 2015. p. 5–10.

103. Rooijakkers MJ, Song S, Rabotti C, Oei SG, Bergmans JWM, Cantatore E, et al. Influence of Electrode

Placement on Signal Quality for Ambulatory Pregnancy Monitoring. Computational and Mathematical

Methods in Medicine. 2014; 2014:1–12. https://doi.org/10.1155/2014/960980 PMID: 24639888

PLOS ONE A novel algorithm based on EEMD for NI-fECG extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0256154 August 13, 2021 48 / 49

https://doi.org/10.1038/s41597-020-0538-z
https://doi.org/10.1038/s41597-020-0538-z
http://www.ncbi.nlm.nih.gov/pubmed/32587253
https://doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.3233/THC-181375
http://www.ncbi.nlm.nih.gov/pubmed/30562910
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.11613/BM.2015.015
http://www.ncbi.nlm.nih.gov/pubmed/26110027
https://doi.org/10.5001/omj.2011.118
https://doi.org/10.5001/omj.2011.118
http://www.ncbi.nlm.nih.gov/pubmed/22253962
https://doi.org/10.1007/s11517-018-1862-8
http://www.ncbi.nlm.nih.gov/pubmed/29938302
https://doi.org/10.3390/s16071020
http://www.ncbi.nlm.nih.gov/pubmed/27376296
https://doi.org/10.1016/j.procs.2015.10.093
https://doi.org/10.1109/10.841326
https://doi.org/10.1109/10.841326
http://www.ncbi.nlm.nih.gov/pubmed/10851798
https://doi.org/10.1109/TBME.2015.2493726
http://www.ncbi.nlm.nih.gov/pubmed/26513775
https://doi.org/10.1371/journal.pone.0199308
https://doi.org/10.1371/journal.pone.0199308
http://www.ncbi.nlm.nih.gov/pubmed/29933366
https://doi.org/10.3389/fams.2017.00002
https://doi.org/10.3389/fams.2017.00002
https://doi.org/10.1109/JBHI.2019.2920356
http://www.ncbi.nlm.nih.gov/pubmed/31170084
https://doi.org/10.1007/s13246-017-0527-5
http://www.ncbi.nlm.nih.gov/pubmed/28210991
https://doi.org/10.1088/0967-3334/35/8/1537
http://www.ncbi.nlm.nih.gov/pubmed/25071094
https://doi.org/10.1155/2014/960980
http://www.ncbi.nlm.nih.gov/pubmed/24639888
https://doi.org/10.1371/journal.pone.0256154


104. Orphanidou C. In: Quality Assessment for the Electrocardiogram (ECG). Cham: Springer Interna-

tional Publishing; 2018. p. 15–40.

105. Behar J, Oster J, Qiao Li, Clifford GD. ECG Signal Quality During Arrhythmia and Its Application to

False Alarm Reduction. IEEE Transactions on Biomedical Engineering. 2013; 60(6):1660–1666.

https://doi.org/10.1109/TBME.2013.2240452 PMID: 23335659

PLOS ONE A novel algorithm based on EEMD for NI-fECG extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0256154 August 13, 2021 49 / 49

https://doi.org/10.1109/TBME.2013.2240452
http://www.ncbi.nlm.nih.gov/pubmed/23335659
https://doi.org/10.1371/journal.pone.0256154

