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Abstract

The distributive power of the arithmetic operators: multiplication, division, addition, and sub-

traction, gives the arithmetic optimization algorithm (AOA) its unique ability to find the global

optimum for optimization problems used to test its performance. Several other mathematical

operators exist with the same or better distributive properties, which can be exploited to

enhance the performance of the newly proposed AOA. In this paper, we propose an

improved version of the AOA called nAOA algorithm, which uses the high-density values

that the natural logarithm and exponential operators can generate, to enhance the explor-

atory ability of the AOA. The addition and subtraction operators carry out the exploitation.

The candidate solutions are initialized using the beta distribution, and the random variables

and adaptations used in the algorithm have beta distribution. We test the performance of the

proposed nAOA with 30 benchmark functions (20 classical and 10 composite test functions)

and three engineering design benchmarks. The performance of nAOA is compared with the

original AOA and nine other state-of-the-art algorithms. The nAOA shows efficient perfor-

mance for the benchmark functions and was second only to GWO for the welded beam

design (WBD), compression spring design (CSD), and pressure vessel design (PVD).

1. Introduction

Optimization techniques are popular for solving real-world problems. Finding solution to

these complex, nonlinear, and multimodal real-world problems usually requires reliable opti-

mization techniques, such as metaheuristic algorithms, which have proved to be a reliable opti-

mization technique for such problems. The popularity of metaheuristic algorithms hinges on

their ease of use and implementation, their being gradient-free, and having the ability to by-

pass local optima. Metaheuristic algorithms have been successfully applied to solve problems

in engineering, medicine, and many other areas.

Nature has inspired many metaheuristic algorithms; they solve optimization problems by

mimicking natural phenomena. These phenomena cover a range of natural processes from

such areas as biology, physics, chemistry and swarms (population-based) [1,2]. The bio-
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inspired metaheuristic algorithms are frequently inspired by the laws of natural evolution. The

randomly generated search agents are evolved by combining the best individuals after every

iteration during the search process. Examples of these bio-inspired metaheuristic algorithms

include genetic algorithms (GA) [3], the artificial algae algorithm (AAA) [4], and the evolution

strategy (ES) [5]. The physics- and chemistry-based based metaheuristic algorithms mimic

some physical rules in the universe, for example the simulated annealing (SA) [6], gravitational

search algorithm (GSA) [7,8], and the artificial chemical reaction optimization algorithm

(ACROA) [8]. The swarm-based algorithms are population-based; they mimic the social

behavior of animals in groups. Popular swarm algorithms include the particle swarm optimiza-

tion (PSO) [9] and the ant colony optimization (ACO) [10].

The arithmetic optimization algorithm (AOA) is a recently proposed population-based

metaheuristic algorithm. The algorithm is based on the distributive behavior of the arithmetic

operators of multiplication (M), division (D), subtraction (S), and addition (A). The perfor-

mance of the AOA was investigated using twenty-three benchmark functions, six hybrid com-

posite functions, and several real-world engineering design problems. The AOA experimental

results showed promising results when compared against results from eleven other well-

known optimization algorithms [11].

The distributive power of the arithmetic operators gives the AOA its unique ability to find

the global optima for optimization problems used to test its performance. However, several

other mathematical operators exist, which have the same or better distributive properties,

which could be exploited to enhance the performance of AOA. This motivated us to use the

high-density values that the natural logarithm and exponential operators can generate to

enhance the exploratory ability of AOA. The addition and subtraction operators are still used

for exploitation. The major contribution of our work can be summarized as follows:

• We propose a new advanced arithmetic optimization algorithm which we refer to as the

nAOA.

• The nAOA improves the exploratory ability of original AOA by using the high-density num-

bers generated by the natural logarithm and exponential operators.

• The candidate solutions are initialized using the beta distribution instead of the default ran-

dom number initialization scheme.

• The random variables and adaptations used in the algorithm have beta distribution.

The rest of the paper is organized as follows. In Section 2, the literature is review and dis-

cussed. We presented the proposed algorithm in Section 3. Section 4 covers the experimental

setup, results, and discussion. Finally, Section 5 presents the concluding remarks and suggests

future research directions.

2. Literature review

The sine cosine algorithm (SCA) uses a mathematical model based on sine and cosine func-

tions to achieve an optimal solution [12]. Research results proved the algorithm’s ability to

explore different search space regions, to avoid being stuck in local optima, and to converge

towards the global optimum. Furthermore, the SCA algorithm showed promising abilities in

solving real-world problems by obtaining a smooth shape for the airfoil problem with very low

drag.

A comparative study of recent algorithms, including the arithmetic optimization algorithm

(AOA), the salp swarm algorithm (SSA), the slime mould optimization algorithm (SMA), and

the marine predators algorithm, was carried out [13]. Based on the study, a new hybrid of the
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slime mould algorithm and the simulated annealing algorithm (HSMA-SA) was proposed to

strengthen the exploitation and exploration abilities of the hybrid algorithm. The hybrid was

applied to structural engineering design problems, where it showed promising results.

The arithmetic optimization algorithm was used to boost the artificial neural network in

the proposed (IANN-AOA) where it was applied in solving the damage quantification problem

[14]. The main idea is for the improved indicator to eliminate the healthy elements from the

numerical model. The data for the damaged elements collected from an improved indicator’s

damage index is used as input with the damage level as output. The results for the IANN-AOA

showed that the damaged elements are predicted with higher precision by the improved indi-

cator. The result is the same for damage quantification, but the results for IANN-AOA are

more accurate than those for IANN-BCMO.

Premjumar et al. [15] proposed the multi-objective version of the arithmetic optimization

algorithm (MOAOA). The algorithm was used for solving real-world constrained multi-objec-

tive optimization problems (RWMOPs) found in mechanical engineering, chemical engineer-

ing processes and syntheses, and power electronics systems. The performance of the MOAOA

was tested on a set of 35 constrained RWMOPs and five ZDT unconstrained problems and

compared with four other state-of-the-art multi-objective algorithms. The superiority of the

MOAOA over the other algorithms considered is confirmed by its high accuracy and coverage

across all objectives [15].

An improved arithmetic optimization algorithm (dAOA) was proposed, which used a mod-

ified version of the extreme learning machine (ELM) model for the identification of the proton

exchange membrane fuel cells (PEMFCs) [16]. The configurations of the ELM were optimized

by the improved algorithm, which in turn minimized the sum of the square error between the

output voltage of the real PEMFC data and the output voltage. Their simulation showed that

the proposed dAOA provided accurate parameters of the PEMFC stack system.

3. The proposed nAOA

In our proposed improvements for the AOA, the optimization process starts with initializing

the candidate solutions using the beta distribution. This was chosen because so many

authors have used many other distributions besides the random number to generate the

initial population, with varying levels of success [17–20]. The candidate solutions are improved

after every iteration according to the optimization rules. Stochastic processes are used to find

optimal solutions, so the probability of getting the optimal solution increases with multiple

runs.

The optimization process goes through two phases: exploration and exploitation. Explora-

tion refers to scouring a new area/region within the search space for an optimal solution,

whereas exploitation refers to scouring the neighborhood of already visited areas for the opti-

mal solution. A good balance between exploration and exploitation can guarantee an optimal

solution. For our proposed nAOA, the natural log (L ’ln’) and the exponential (E ’e’) operators

are used to achieve the exploration, while the addition (A ’+’) and subtraction (S ’-’) operators

are used to achieve the exploitation.

3.1. Motivation

Arithmetic is an elementary branch of mathematics, and one of the oldest. It deals with the

study of numbers and properties of operators applied to them. The traditional operators are

addition, subtraction, division, and multiplication. However, it also involves advanced opera-

tors like logarithmic functions, exponentiation, computation of percentages, and square roots

[21]. Abualigah et al. [11] used addition, subtraction, division, and multiplication for
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optimization in AOA. The success of AOA as an optimizer greatly motivated us to consider

using other advanced arithmetic operators for our proposed nAOA. The logarithm and expo-

nential functions are used at the exploration phase to update the candidate solutions and the

addition and subtraction are used for the exploitation phase. The behavior of the optimization

operators during the optimization process is shown in Fig 1.

3.2. Optimization process

After the candidate solutions have been initialized, the optimizer needs to decide into

which optimization phase to go. The value of the math optimization accelerator (MOA) func-

tion, defined in Eq 1, determines that phase. The exploration phases are shown in Fig 2, as

used by our proposed algorithm. A detailed description of the phases is given in the next sub-

section.

MOA Cið Þ ¼ Minþ Ci �
Max � Min

M iter

� �

ð1Þ

where Ci is the current iteration, Max, Min are, respectively, the maximum and minimum val-

ues of the accelerator function, M_iter is the maximum number of iterations, and MOA(Ci) is

the value of the accelerator function at the ith iteration.

The exponential function is everywhere continuous and increasing. It is asymptotic around

the x-axis. It is one-to-one, and it can be shown to be mapped onto R+. The logarithmic func-

tion is the inverse of the exponential function, it is also continuous and increasing everywhere.

The exponential and logarithmic functions’ ranges are used to set the directions given in Fig 1,

which greatly influences the exploration ability of the proposed nAOA.

Fig 1. Effect of the optimization operators.

https://doi.org/10.1371/journal.pone.0255703.g001
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3.3. Exploration phase

The value of MOA is compared with a randomly generated beta distributed number (b1); this

determines the phase nAOA goes into. Exploration in nAOA is carried out by the natural log

and the exponential operators. The behavior of the two operators can be seen in Fig 1. The can-

didate solutions are updated using these two operators at this phase. The high dispersion of

values generated by the operators makes them ideal for exploration. They can search new

regions in the search space for an optimal solution; however, they are unable to converge to

the optimal solution, unlike the addition and subtraction operators. In essence, the ln and e
operators are complementary.

The nAOA exploration phase is based on the model given in Eq 2, given below. If

b1<MOA, the exploration phase is activated, executing either the "ln" or the e operator. A

second beta distributed random number (b2) is generated, if b2<0.5, the ln operator is

executed. While the ln operator is executing, the e operator is ignored. If b2�0.5, the e
operator is executed, while also ignoring the ln operator. We used a stochastic scaling

coefficient (μ) to increase the diversity of the exponential or logarithmic values so as to

explore more diverse regions of the search space. This helps nAOA avoid getting stuck in

local optima. Fig 3 is a model of how the candidate solutions are updated using the sim-

plest arithmetic rule as shown in Eq 2. The math optimization probability (MOP) is given

in Eq 3.

Xnewði; jÞ ¼
bestðjÞlogðabsððMOP þ �Þ � ððUBj � LBjÞ � mþ LBjÞÞÞ; b2 < 0:5

bestðjÞexpðMOP þ �Þ � ððUBj � LBjÞ � mþ LBjÞ; otherwise
ð2Þ

(

Fig 2. Exploration and exploitation phases of nAOA.

https://doi.org/10.1371/journal.pone.0255703.g002
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MOP Cið Þ ¼ 1 �
Ci

1
a

Miter
1
a

ð3Þ

where Xnew(i,j) is the new solution to be computed, best(j) is the best solution from the pre-

vious iteration, � is a very small integer, UBj and LBj are the upper and lower bound respec-

tively. μ = 0.5 and α = 5 [11] are, respectively, the stochastic scaling factor and the

exploitation accuracy over the iterations.

3.4. Exploitation phase

If b1>MOA, the exploitation phase is activated, executing either the ’+’ or the ’-’ operator. The

candidate solutions are updated using these two operators, which are modeled in Eq 4. The

high density of values generated by the operators makes them ideal for exploitation. The low

dispersion values can search the neighborhood of already visited regions in the search space

for optimal solutions. They are able to converge to the optimal solution, unlike the ’ln’ and ’e’
operators. In essence, the ’+’ and ’-’ operators are complementary.

A third beta distributed random number (b3) is generated, if b3<0.5, and the subtraction

operator is executed. While the subtraction operator is executing, the addition operator is

ignored. If b3�0.5, the addition operator is executed, while also ignoring the subtraction oper-

ator. We used a stochastic scaling coefficient (μ) to increase the diversity of the addition or the

Fig 3. The process of updating the candidate solutions.

https://doi.org/10.1371/journal.pone.0255703.g003
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subtraction values so as to explore more diverse regions of the search space. This helps nAOA

avoid getting stuck in the local optima. Fig 3 shows how the candidate solutions are updated

using the simple arithmetic rule, as shown in Eq 4.

Xnewði; jÞ ¼
bestðjÞ � ðMOPÞ � ððUBj � LBjÞ � mþ LBjÞ; b3 < 0:5

bestðjÞ þ ðMOPÞ � ððUBj � LBjÞ � mþ LBjÞ; otherwise
ð4Þ

(

3.5. Pseudocode and computational complexity of nAOA

In this section, we summarize the proposed improved arithmetic operator algorithm. The opti-

mization process randomly executes the natural log (ln), exponential (e), addition (+), and

subtraction (-) operators. The value of MOA is set between 0.2 to 0.9, which determines which

phase the algorithm goes into. The algorithm avoids converging towards the near-optimal

solution whenever r1>MOA and eventually stops after reaching a certain criterion as shown

in the pseudocode below. Algorithm 1 shows the steps of our proposed algorithm, and the

flow chart is given in Fig 4.

The main optimization processes of the algorithm are the initialization processes, evalua-

tion of fitness function, and updating candidate solutions. The population size is N; updating

the candidate solution depends on the iterations (I) and the different optimization problem

parameters (P). Therefore, the computational complexity of nAOA is O(N × (IP + 1)).
Algorithm 1. Pseudocode of the nAOA
Set the values for α,μ.
Use beta distribution to initialize the candidate solutions’ posi-
tions. (i = 1,. . .,N.)
Calculate the Fitness of each given solutions
Determined best solution so far
while (t < Maximum Iteration) do

Compute the MOA and MOP
for (i = 1 to number of Solutions) do

for (j = 1 to size of problem dimension) do
Generate b1,b2,b3 (beta distributed random values between [0,1]

Exploration phase: if b1 > MOA
if b2 > 0.5 then

Update the ith solutions’ positions using the log
operator (Eq 2).

else
Update the ith solutions’ positions using

the exp operator (Eq 2).
end if

else
Exploitation phase: if b3 > 0.5 then

Update the ith solutions’ positions
using the (S"+") in Eq (4).

else
Update the ith solutions’ positions using

the (A"+") in Eq (4).
end if

end if
end for

end for
Calculate the Fitness of each given solutions
Determined best so far
t = t+1
end while
Return the best solution (x).
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Fig 4. The nAOA flowchart.

https://doi.org/10.1371/journal.pone.0255703.g004
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4. Results and discussion

In this section, we present the results of experiments conducted to evaluate the performance of

nAOA. We used 20 benchmark test functions, 10 CEC 2020 test functions, and 3 engineering

problems to evaluate the nAOA. We compared the results of nAOA on the 20 benchmark test

functions, 10 CEC 2020 test functions, and engineering problems with the results from the

original AOA and the following algorithms:

• Constriction coefficient-based PSO and GSA (CPSOGSA) [22]

• Gravitational search algorithm (GSA) [7]

• Particle swarm optimization (PSO) [9]

• Biogeography-based optimization (BBO) [23]

• Differential evolution (DE) [24]

• Ant colony optimization (ACO) [10]

• Salp swarm algorithm (SSA) [25]

• Sine cosine algorithm (SCA) [12]

• Grey wolf optimizer (GWO) [26]

The algorithms and engineering design problems were implemented using MATLAB

R2020b; they were run on Windows 10 OS, Intel Core i7-7700@3.60GHz CPU, 16G RAM.

The number of function evaluations was set at 50,000, and the number of independent runs

was set at 30. The source codes are publicly available from the respective references. For a fair

comparison, all the algorithms were executed using 1000 iterations and a population size of 50.

The controlling parameters of the algorithms considered are given in Table 1. The test func-

tions used for our experiments are presented in Tables 2 and 3. The results are presented using

five (5) performance indicators: best, worst, average, standard deviation (SD), and median.

The algorithms are compared using mean, standard deviation, Friedman ranking (Rank) test,

and Wilcoxon signed-rank test.

4.1. Results for benchmark functions

The numerical efficiency of the proposed nAOA algorithm was tested by solving 30 mathemat-

ical optimization problems. The first 20 problems are classical benchmark functions, while the

remaining 10 problems are composite benchmark functions from the CEC 2020 test suite, fre-

quently used in the optimization literature. The benchmark functions can be divided into

unimodal, multimodal, fixed-dimension multimodal, and composite functions. The major dif-

ference between fixed-dimensional multimodal functions and multimodal functions is their

ability to tune the number of design variables. By contrast, the composite test functions make

finding global optima challenging by shifting the global optimum to random positions. Tables

4 and 5 give the results for the benchmark and composite test functions, respectively.

4.1.1. Evaluation of exploitation capability. We discuss the exploitation ability of nAOA

using unimodal functions F1–F7, since they have only one global optimum. It can be seen

from Table 4 that nAOA outperformed the original AOA and nine other state-of-the-art algo-

rithms considered for these functions. Though, all the algorithms were able to find the optimal

solution as the best results, the performance, superiority, and stability of nAOA is confirmed

by the value of the standard deviation, mean, and result of Friedman’s test. The mean values

were used for the Friedman’s test, and a p-value of 0.00 was returned, which is less than the
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tolerance level of 0.05 hence, we reject the null hypothesis (the distributions of the obtained

results for all the algorithms considered are the same). The nAOA returned the lowest mean

rank, which means it performed optimally when compared with the ten other algorithms. This

result also confirms nAOA’s ability to perform exploitation.

4.1.2. Evaluation of exploration capability. The multimodal functions have many local

optima and so provide a good test for the exploration capability of optimizers. Functions F8–

F20 are multimodal and fixed-dimension multimodal functions. The number of local optima

for each increase exponentially with the number of problem design variables. We can see from

Table 4 that nAOA performed optimally and, in most cases, returned the lowest mean value

and standard deviation. The stability of nAOA is also confirmed by the value of the standard

deviation and result of Friedman’s test. The p-value of 0.00 was returned, which is less than the

tolerance level of 0.05 hence, we reject the null hypothesis (the distributions of the obtained

results for all the algorithms considered are the same). Again, nAOA returned the lowest mean

rank of the Friedman’s test; indicating that it performed optimally when compared with 10

other algorithms. This also indicated that nAOA also has a good exploration capability.

4.1.3. Ability to escape from local minima. We used the composite functions found in

the CEC2020 suite to evaluate the ability of nAOA to escape local minima. A proper balance of

exploration and exploitation guarantees avoidance of local optima. The results presented in

Table 5 show that nAOA outperformed the original AOA, along with the nine algorithms con-

sidered for all the functions. It returned the lowest mean and standard deviation. The stability

of nAOA is also confirmed by the value of the standard deviation and result of Friedman’s test.

The p-value of 0.00 was returned, which is less than the tolerance level of 0.05 hence, we reject

the null hypothesis (the distributions of the obtained results for all the algorithms considered

Table 1. Controlling parameters for algorithms considered.

Algorithm Name of the parameter Value of the parameter

GSA Elitist check (number of fittest agents after stopping criterion) 1

Rpower (exponent of distance between agents) 1

Min_flag (1: minimum; 0: maximum) 1

ACO Pheromone update constant 1

Initial pheromone 10

Pheromone sensitivity 0.3

Visibility sensitivity 0.1

AOA α 5

μ 0.05

DE Lower bound of scaling factor 0.2

Upper bound of scaling factor 0.8

PCR (crossover probability) 0.8

PSO C1, C2 (personal and social constants) 2

Wmax (maximum inertia weight) 0.9

Wmin (minimum inertia weight) 0.2

CPSOGSA <p1, <f>2 (control parameters) 2.05

BBO nKeep (number of habitats retained after every generation) 0.2

Pmutation (mutation probability) 0.9

GWO a (area vector) [0,2]

r1f r2 (random vectors) [0,1]

SCA a (constant) 2

SSA c2, c3 (random numbers) [0,1]

https://doi.org/10.1371/journal.pone.0255703.t001
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Table 2. Classical test functions.

ID Type Function Dimension Bounds Global

F1 Unimodal
f ðxÞ ¼

Xn

i¼1

x2
i

30 [–100,100] 0

F2 Unimodal
f ðxÞ ¼

Xn

i¼0

jxij þ
Yn

i¼0

jxij
30 [–10,10] 0

F3 Unimodal
f ðxÞ ¼

Xd

i¼1

Xi

j¼1

xj

 !2 30 [–100,100] 0

F4 Unimodal f ðxÞ ¼ maxifjxij; 1 � i � ng 30 [–100,100] 0

F5 Unimodal
f ðxÞ ¼

Xn� 1

i¼1

½100ðxi � xiþ1Þ
2
þ ð1 � xiÞ

2
�

30 [–30,30] 0

F6 Unimodal
f ðxÞ ¼

Xn

i¼1

ð½xi � 0:5�Þ
2 30 [–100,100] 0

F7 Unimodal
f ðxÞ ¼

Xn

i¼0

ix4
1
þ rand½0; 1Þ

30 [–128,128] 0

F8 Multimodal
f ðxÞ ¼

Xn

i¼1

� xisinð
ffiffiffiffiffiffi
jxij

p
Þ

30 [–500,500] -418.9829×n

F9 Multimodal
f ðxÞ ¼ 10þ

Xn

i¼1

ðx2
i � 10cosð2pxiÞÞ

30 [-5.12,5.12] 0

F10 Multimodal

f ðxÞ ¼ � a exp � 0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1
Xn

i¼1

x2
i

s0

@

1

A � exp n� 1
Xn

i¼1

cosð2pxiÞ

 !

þ aþ e; a ¼ 20

30 [–32,32] 0

F11 Multimodal
f Xð Þ ¼ 1þ 1

4000

Xn

i¼1

x2
i �

Yn

i¼1

cos xiffi
i
p

� � 30 [–600,600] 0

F12 Multimodal
f xð Þ ¼ p

n f10sinðpyiÞg þ
Xn� 1

i¼1

ðyi � 1Þ
2

1þ 10sin2ðpyiþ1Þ þ
Xn

i¼1

uðxi; 10; 100; 4Þ

" #

Where yi ¼ 1þ
xiþ1

4
; u xi; a; k;mð Þ

Kðxi � aÞm if xi > a

0 � a � xi � a

Kð� xi � aÞm � a � xi

8
>><

>>:

30 [–50,50] 0

F13 Multimodal f ðxÞ ¼ 0:1ðsin2ð3px1Þ þ
Pn

i¼1
ðxi � 1Þ

2
½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ

2
1þ sin2ð2pxnÞÞ

þ
Pn

i¼1
uðxi; 5; 100; 4Þ

30 [–50,50] 0

F14 Fixed-

dimension

multimodal

f xð Þ ¼ 1

500
þ
X25

j¼1

1

jþ
P2

i¼1

ðxi � aijÞ

 !� 1 2 [–65,65] 1

F15 Fixed-

dimension

multimodal

f xð Þ ¼
X11

i¼1

ai �
x1ðb2

i þbix2Þ

b2
i þbix3þx4

h i2 4 [–5,5] 0.00030

F16 Fixed-

dimension

multimodal

f xð Þ ¼ ax2
1
� 2:1x4

1
þ 1

3
x6

1
þ x1x2 � 4x2

2
þ 4x4

2
2 [–5,5] -1.0316

F17 Fixed-

dimension

multimodal

f xð Þ ¼
�
x2 �

5:1

4p2 x2
1
þ 5

p
x1 � 6

�2

þ 10
�

1 � 1

8p

�
cosx1 þ 10

2 [–5,5] 0.398

F18 Fixed-

dimension

multimodal

f ðXÞ ¼ ½1þ ðx1 þ x2 þ 1Þ
2
ð19 � 14x1 þ 3x1

2 � 14x2 þ 6x1x2 þ 3x2
2Þ�

�½30þ ð2x1 � 3x2Þ
2
ð18 � 32x1 þ 12x1

2 þ 48x2 � 36x1x2 þ 27x2
2�

2 [–2,2] 3

F19 Fixed-

dimension

multimodal

f ðxÞ ¼ �
X4

i¼1

ciexp �
X3

i¼1

aijðxj � pijÞ
2

 !
3 [–1,2] -3.86

F20 Fixed-

dimension

multimodal

f ðxÞ ¼ �
X4

i¼1

ciexp �
X6

i¼1

aijðxj � pijÞ
2

 !
6 [0,1] -3.2

https://doi.org/10.1371/journal.pone.0255703.t002
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are the same). Once more, the nAOA returned the lowest mean rank, which means it per-

formed optimally when compared with 10 other algorithms. This proves that nAOA has a

good balance of exploration and exploitation. This ability can be attributed to the update

mechanism used by the proposed algorithm.

4.1.4. Convergence behavior. The convergence behavior of nAOA is compared with that

of the original AOA and nine other state-of-the-art algorithms in Fig 5. It can be seen that

nAOA tends to search extensively the areas with the likelihood of finding the global optima.

For F1-F4, the algorithms did not converge abruptly to the earliest found best solutions. This

behavior guarantees exploration and eventual convergence after multiple iterations. We can

also see that nAOA converged to the optimal solution for these functions. The second behavior

that can be noticed in the convergence is that, as iterations increase, the algorithms tend to be

accelerated quickly towards the best solution found so far. The adaptive mechanism of the

algorithms ensures they look for regions with a high likelihood of finding the optimal solution

and, as such, converge more rapidly towards the optimum early in the iterations. This behavior

is evident in F5, F12, F13, and F18. Another observed behavior is noticed in F16, F17, F19-F20,

where the convergence occurs towards the final iterations. This can be attributed to the efforts

of the algorithm to avoid local optima, so the search process continues till the end. The conver-

gence curve for the composite function F21-F30 clearly confirms nAOA’s ability to escape the

local minima. Accordingly, nAOA obtained superior and highly competitive results which are

characterized by nAOA’s being able to converge towards the best result for all functions.

4.2. Application to engineering problem

Applying optimization techniques to engineering problems is primarily intended to minimize

the values of design parameters and hence the overall design cost. The nAOA was applied to

three mechanical engineering design problems: the welded beam design problem (WBD), the

compression spring design problem (CSD), and the pressure vessel design problem (PVD).

The penalty method has been adopted for constraint handling, whereby the algorithm is penal-

ized for any constraint violation. Simple scalar penalty functions were adopted for this

experiment.

The result obtained for the application of nAOA to solve the engineering problem was com-

pared with 10 other metaheuristic algorithms: CPSOGSA, GSA, PSO, BBO, DE, ACO, GWO,

SCA SSA, and AOA. For a fair comparison, the algorithms and engineering design were

Table 3. Summary of the CEC2020 test suite.

Type Number Functions F�i
Unimodal Function F21 Shifted and rotated bent cigar function (CEC 2017[4] F1) 100

Basic Functions F22 Shifted and rotated Schwefel’s function (CEC 2014[3] F11) 1100

F23 Shifted and rotated Lunacek bi-Rastrigin function (CEC 2017[4] F7) 700

F24 Expanded Rosenbrock’s plus Griewangk’s function (CEC2017[4]f19) 1900

Hybrid Functions F25 Hybrid function 1 (N = 3) (CEC 2014[3] F17) 1700

F26 Hybrid function 2 (N = 4) (CEC 2017[4] F16) 1600

F27 Hybrid function 3 (N = 5) (CEC 2014[3] F21) 2100

CompositionFunctions F28 Composition function 1 (N = 3) (CEC 2017[4] F22) 2200

F29 Composition function 2 (N = 4) (CEC 2017[4] F24) 2400

F30 Composition function 3 (N = 5) (CEC 2017[4] F25) 2500

� Search range: [–100,100] D.

https://doi.org/10.1371/journal.pone.0255703.t003
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Table 4. Classical benchmark functions.

Function Value CPSOGSA GSA PSO BBO DE ACO SSA SCA GWO nAOA AOA

F1 Best 3.07E-20 3.95E-19 2.18E-54 4.66E-08 2.77E-43 385 1.56E-10 2.15E-40 3.40E-149 0 0

Worst 1.33E-19 2.48E-18 1.37E-46 2.72E-06 5.06E-41 385 1.01E-09 2.79E-29 3.80E-142 0 0

Average 8.39E-20 1.30E-18 6.10E-48 5.01E-07 5.73E-42 385 5.61E-10 9.40E-31 3.84E-143 0 0

SD 2.34E-20 5.34E-19 2.48E-47 5.50E-07 9.57E-42 0 2.09E-10 5.08E-30 9.78E-143 0 0

Median 7.76E-20 1.15E-18 2.64E-49 3.45E-07 2.61E-42 385 5.69E-10 1.67E-34 3.14E-145 0 0

F2 Best 4.23E-10 2.36E-09 2.70E-29 3.20E-05 2.58E-25 3.63E+06 4.72E-06 2.49E-24 1.28E-83 0 0

Worst 7.79E-10 5.30E-09 8.37E-26 0.000139 3.00E-24 3.63E+06 0.001054 2.05E-19 1.05E-79 0 0

Average 6.36E-10 3.59E-09 4.20E-27 7.18E-05 1.36E-24 3.63E+06 4.22E-05 1.60E-20 9.27E-81 0 0

SD 8.50E-11 7.93E-10 1.56E-26 2.96E-05 7.64E-25 0 0.000191 4.88E-20 2.28E-80 0 0

Median 6.30E-10 3.51E-09 5.63E-28 6.29E-05 1.23E-24 3.63E+06 6.70E-06 2.66E-22 9.53E-82 0 0

F3 Best 8.60E-20 1.76E-18 9.91E-17 0.001513 0.028491 7949 3.81E-10 2.05E-21 4.51E-75 0 0

Worst 4.91E-19 0.001491 8.97E-13 0.02492 0.68113 8097 2.61E-09 7.51E-13 3.96E-66 0 0

Average 1.85E-19 4.97E-05 9.20E-14 0.007328 0.20667 8007.7 1.24E-09 5.51E-14 2.86E-67 0 0

SD 8.25E-20 0.000272 2.11E-13 0.005159 0.14399 33.618 5.85E-10 1.56E-13 8.87E-67 0 0

Median 1.74E-19 3.57E-18 8.91E-15 0.005741 0.18277 8002 1.16E-09 2.14E-16 3.56E-71 0 0

F4 Best 1.10E-10 4.93E-10 8.30E-15 0.002213 7.12E-08 10 8.07E-06 1.99E-13 1.10E-48 0 0

Worst 2.18E-10 1.31E-09 4.30E-11 0.015541 3.78E-07 10 2.14E-05 2.38E-08 1.24E-44 0 0

Average 1.69E-10 8.79E-10 3.69E-12 0.008172 1.68E-07 10 1.43E-05 2.26E-09 1.21E-45 0 0

SD 3.11E-11 1.76E-10 8.60E-12 0.003127 6.67E-08 0 3.29E-06 5.70E-09 2.75E-45 0 0

Median 1.74E-10 8.68E-10 1.17E-12 0.008299 1.53E-07 10 1.38E-05 2.69E-10 9.14E-47 0 0

F5 Best 1.2284 5.0105 0.055761 0.056942 0.068386 1.11E+06 2.029 6.0283 5.1566 1.2284 4.4762

Worst 255.85 88.952 7.9865 14.874 6.6217 1.13E+06 244.94 8.0648 8.9099 5.1284 5.6396

Average 36.361 8.2091 3.3821 4.6772 1.8597 1.12E+06 21.494 6.8968 6.4561 4.6145 5.1135

SD 66.123 15.251 1.5961 4.0116 1.7585 5048.6 59.099 0.4814 0.69926 0.25943 0.28703

Median 3.4962 5.4142 3.8446 3.8241 1.2368 1.12E+06 6.3983 6.8113 6.224 4.6371 5.1389

F6 Best 2.23E-20 8.11E-19 0 3.02E-08 0 442.5 1.80E-10 0.098421 2.03E-07 2.23E-20 0.003032

Worst 1.46E-19 2.89E-18 0 2.44E-06 0 442.5 1.01E-09 0.54801 1.50E-06 0.003223 0.02523

Average 8.47E-20 1.72E-18 0 5.75E-07 0 442.5 5.85E-10 0.27283 6.54E-07 0.001717 0.012978

SD 2.96E-20 5.50E-19 0 5.72E-07 0 0 1.85E-10 0.1151 2.66E-07 0.000706 0.005789

Median 8.25E-20 1.78E-18 0 3.99E-07 0 442.5 5.83E-10 0.23292 5.80E-07 0.001759 0.012989

F7 Best 0.000495 0.001583 0.000315 0.000239 0.000754 57853 0.000461 3.23E-05 2.76E-05 0.000495 8.47E-07

Worst 0.012861 0.009237 0.002674 0.002435 0.004141 59858 0.011808 0.002274 0.0004708 0.000141 0.00013

Average 0.005171 0.004395 0.000968 0.000726 0.002438 58753 0.003754 0.000773 0.0001735 4.86E-05 2.30E-05

SD 0.003135 0.001793 0.000551 0.000478 0.00093 623.18 0.002704 0.000665 0.0001022 4.12E-05 2.59E-05

Median 0.004614 0.004343 0.000904 0.000578 0.002275 58815 0.003585 0.000544 0.0001648 4.25E-05 1.65E-05

F8 Best -3596.1 -2470.4 -3597.6 -3953 -4189.8 -24.036 -3479.2 -2619.9 -3527.1 -3596.1 -3850.5

Worst -2273.4 -1099.7 -2709.3 -3202.8 -4189.8 -24.036 -2463.4 -2021.6 -2348.8 -3608.4 -2866.2

Average -2985.5 -1570.5 -3102.4 -3596.3 -4189.8 -24.036 -2986.5 -2340.9 -2906 -3933.8 -3417.4

SD 328.71 327.61 195.88 206.06 2.78E-12 1.08E-14 274.03 152.5 359.28 170.26 264.6

Median -3003.1 -1513.7 -3122.4 -3617.4 -4189.8 -24.036 -3054.8 -2356.7 -2797.8 -3978.4 -3400.2

F9 Best 8.9546 0.99496 3.9798 3.9798 0 385 4.9748 0 0 8.9546 0

Worst 49.748 5.9698 21.889 14.924 0 385 27.859 7.46E-08 0 0 0

Average 19.866 3.1507 9.5848 7.8938 0 385 14.825 2.49E-09 0 0 0

SD 9.484 1.3847 3.9495 3.0904 0 0 5.6607 1.36E-08 0 0 0

Median 18.904 2.9849 9.4521 7.4622 0 385 14.427 0 0 0 0

(Continued)
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Table 4. (Continued)

Function Value CPSOGSA GSA PSO BBO DE ACO SSA SCA GWO nAOA AOA

F10 Best 2.00E-10 8.08E-10 4.44E-15 2.91E-05 4.44E-15 14.218 4.45E-06 8.88E-16 4.44E-15 2.00E-10 8.88E-16

Worst 4.87E-10 3.10E-09 7.99E-15 0.000599 4.44E-15 14.218 2.5799 4.44E-15 7.99E-15 8.88E-16 8.88E-16

Average 3.40E-10 1.89E-09 4.80E-15 0.000227 4.44E-15 14.218 0.45561 4.09E-15 4.56E-15 8.88E-16 8.88E-16

SD 6.83E-11 4.97E-10 1.08E-15 0.000123 0 5.42E-15 0.81522 1.08E-15 6.49E-16 0 0

Median 3.34E-10 1.86E-09 4.44E-15 0.000203 4.44E-15 14.218 1.05E-05 4.44E-15 4.44E-15 8.88E-16 8.88E-16

F11 Best 0.063978 0 0.024637 0.004278 0 0.43794 0.076242 0 0 0.063978 0

Worst 0.64029 0.31458 0.13046 0.090928 0 0.67057 0.70665 0.35098 0.08922 0.007483 0

Average 0.23818 0.030425 0.065862 0.044379 0 0.54745 0.23328 0.026039 0.01517 0.000249 0

SD 0.14922 0.060876 0.027713 0.021973 0 0.056981 0.12736 0.084842 0.020004 0.001366 0

Median 0.18445 0.013544 0.066433 0.041822 0 0.54653 0.20914 0 0.0090838 0 0

F12 Best 3.9329 2.12E-19 2.75E-06 0.015191 1.03E-05 2.18E+09 2.9526 3.1554 0.026973 3.9329 0.49795

Worst 18.832 1.2577 1.1423 0.030959 8.53E-05 2.18E+09 11.717 8.09E+06 0.11951 0.31117 0.67319

Average 7.9747 0.35845 0.1075 0.021195 2.70E-05 2.18E+09 7.2727 4.72E+05 0.068205 0.27296 0.59617

SD 3.5208 0.31492 0.22475 0.003743 1.75E-05 18.936 2.1124 1.50E+06 0.024278 0.023426 0.042977

Median 7.0873 0.30048 0.062208 0.020807 2.00E-05 2.18E+09 7.4269 4871.2 0.064053 0.27241 0.6007

F13 Best 1.02E-20 8.17E-20 1.35E-32 2.05E-09 1.35E-32 97929 1.14E-11 0.079397 3.99E-07 1.02E-20 0.46953

Worst 2.91E-20 3.26E-19 1.35E-32 3.66E-07 1.35E-32 97929 0.010987 0.35204 0.10037 0.76797 0.9949

Average 1.80E-20 1.75E-19 1.35E-32 4.22E-08 1.35E-32 97929 0.002198 0.22937 0.009578 0.26741 0.77032

SD 5.36E-21 7.10E-20 5.57E-48 6.69E-08 5.57E-48 0 0.00447 0.070419 0.029296 0.20027 0.16483

Median 1.71E-20 1.62E-19 1.35E-32 2.33E-08 1.35E-32 97929 3.37E-11 0.23362 1.01E-06 0.23147 0.75585

F14 Best -3596.1 -2470.4 -3597.6 -3953 -4189.8 -24.036 -3479.2 -2619.9 -3527.1 -3596.1 -3850.5

Worst -2273.4 -1099.7 -2709.3 -3202.8 -4189.8 -24.036 -2463.4 -2021.6 -2348.8 -3608.4 -2866.2

Average -2985.5 -1570.5 -3102.4 -3596.3 -4189.8 -24.036 -2986.5 -2340.9 -2906 -3933.8 -3417.4

SD 328.71 327.61 195.88 206.06 2.78E-12 1.08E-14 274.03 152.5 359.28 170.26 264.6

Median -3003.1 -1513.7 -3122.4 -3617.4 -4189.8 -24.036 -3054.8 -2356.7 -2797.8 -3978.4 -3400.2

F15 Best 0.000307 0.001277 0.000307 0.000308 0.000386 0.40836 0.00044 0.000337 0.0003075 0.000307 0.000346

Worst 0.020363 0.010464 0.020363 0.001355 0.000755 0.40836 0.001241 0.001429 0.020363 0.073329 0.02603

Average 0.003334 0.00397 0.00476 0.000632 0.000643 0.40836 0.000879 0.000914 0.0043187 0.009563 0.004905

SD 0.006795 0.002405 0.007946 0.000199 9.99E-05 1.13E-16 0.000282 0.000387 0.0081595 0.019043 0.008062

Median 0.000743 0.003055 0.001223 0.000634 0.000645 0.40836 0.00076 0.000771 0.0003075 0.000579 0.000484

F16 Best 1.02E-20 8.17E-20 1.35E-32 2.05E-09 1.35E-32 97929 1.14E-11 0.079397 3.99E-07 1.02E-20 0.46953

Worst 2.91E-20 3.26E-19 1.35E-32 3.66E-07 1.35E-32 97929 0.010987 0.35204 0.10037 0.76797 0.9949

Average 1.80E-20 1.75E-19 1.35E-32 4.22E-08 1.35E-32 97929 0.002198 0.22937 0.009578 0.26741 0.77032

SD 5.36E-21 7.10E-20 5.57E-48 6.69E-08 5.57E-48 0 0.00447 0.070419 0.029296 0.20027 0.16483

Median 1.71E-20 1.62E-19 1.35E-32 2.33E-08 1.35E-32 97929 3.37E-11 0.23362 1.01E-06 0.23147 0.75585

F17 Best 0.000495 0.001583 0.000315 0.000239 0.000754 57853 0.000461 3.23E-05 2.76E-05 0.000495 8.47E-07

Worst 0.012861 0.009237 0.002674 0.002435 0.004141 59858 0.011808 0.002274 0.0004708 0.000141 0.00013

Average 0.005171 0.004395 0.000968 0.000726 0.002438 58753 0.003754 0.000773 0.0001735 4.86E-05 2.30E-05

SD 0.003135 0.001793 0.000551 0.000478 0.00093 623.18 0.002704 0.000665 0.0001022 4.12E-05 2.59E-05

Median 0.004614 0.004343 0.000904 0.000578 0.002275 58815 0.003585 0.000544 0.0001648 4.25E-05 1.65E-05

F18 Best 3 3 3 3 3 2275 3 3 3 3 3

Worst 3 3.0274 3 30 3 2275 3 3.0001 3 84 30

Average 3 3.0009 3 4.8 3 2275 3 3 3 12.9 9.2535

SD 1.13E-15 0.004995 1.47E-15 6.8501 2.09E-15 0 7.31E-14 1.17E-05 2.96E-06 21.835 11.532

Median 3 3 3 3 3 2275 3 3 3 3 3
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implemented in MATLAB R2020b; they were run on Windows 10 OS, Intel Core i7-

7700@3.60GHz CPU, 16G RAM. The number of function evaluations was set at 50,000, and

the number of independent runs was set at 30. The source codes are publicly available in the

respective references. For a fair comparison, all the algorithms were executed using 1000 itera-

tions and population size of 50. The results for each engineering problem are presented using

five (5) performance indicators: namely, best, worst, average, standard deviation (SD), and

median. In addition, the algorithms are compared using mean, standard deviation, and Wil-

coxon signed-rank test.

4.2.1. The welded beam design problem. The welded beam design problem is a minimi-

zation problem, in which we used nAOA along with 10 other algorithms to reduce the

manufacturing cost of the design [27]. Fig 6 gives an illustration of the WBD. The WBD con-

straints are shear (τ) and beam blending (θ) stress, bar buckling load (Pc), beam end deflection

(δ), and side constraints.

The design variables for WBD are:

x1

x2

x3

x4

2

6
6
6
6
4

3

7
7
7
7
5
¼

h

l

t

b

2

6
6
6
6
4

3

7
7
7
7
5
with the length ðlÞ; height ðtÞ; thickness ðbÞ and weld thickness ðhÞ of the bar::

The WBD problem is formulated mathematically as follows [27]:

Given l
!
¼ ½l1l2l3l4� ¼ ½hltb� ¼ ½x1x2x3x4�

min f ð l
!
Þ ¼ l2

1
l21:10471þ 0:04811l3l4ð14:0þ l2Þ ð5Þ

subject to

s1ð l
!
Þ ¼ tð l

!
Þ � tmax � 0;

s2ð l
!
Þ ¼ sð l

!
Þ � smax � 0;

Table 4. (Continued)

Function Value CPSOGSA GSA PSO BBO DE ACO SSA SCA GWO nAOA AOA

F19 Best 2.00E-10 8.08E-10 4.44E-15 2.91E-05 4.44E-15 14.218 4.45E-06 8.88E-16 4.44E-15 2.00E-10 8.88E-16

Worst 4.87E-10 3.10E-09 7.99E-15 0.000599 4.44E-15 14.218 2.5799 4.44E-15 7.99E-15 8.88E-16 8.88E-16

Average 3.40E-10 1.89E-09 4.80E-15 0.000227 4.44E-15 14.218 0.45561 4.09E-15 4.56E-15 8.88E-16 8.88E-16

SD 6.83E-11 4.97E-10 1.08E-15 0.000123 0 5.42E-15 0.81522 1.08E-15 6.49E-16 0 0

Median 3.34E-10 1.86E-09 4.44E-15 0.000203 4.44E-15 14.218 1.05E-05 4.44E-15 4.44E-15 8.88E-16 8.88E-16

F20 Best 2.23E-20 8.11E-19 0 3.02E-08 0 442.5 1.80E-10 0.098421 2.03E-07 2.23E-20 0.003032

Worst 1.46E-19 2.89E-18 0 2.44E-06 0 442.5 1.01E-09 0.54801 1.50E-06 0.003223 0.02523

Average 8.47E-20 1.72E-18 0 5.75E-07 0 442.5 5.85E-10 0.27283 6.54E-07 0.001717 0.012978

SD 2.96E-20 5.50E-19 0 5.72E-07 0 0 1.85E-10 0.1151 2.66E-07 0.000706 0.005789

Median 8.25E-20 1.78E-18 0 3.99E-07 0 442.5 5.83E-10 0.23292 5.80E-07 0.001759 0.012989

p-value (0.000) Friedman mean rank 6.53 6.95 4.58 6.1 4.22 11 7.28 6.43 4.9 3.48 4.55

General mean rank 8 9 4 6 2 11 10 7 5 1 3

https://doi.org/10.1371/journal.pone.0255703.t004
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Table 5. Composite functions CEC 2020.

Function Value CPSOGSA GSA PSO BBO DE ACO SSA SCA GWO nAOA AOA

F21 Best 402.82 402.82 127.78 166.61 187.55 2.57E+10 110.88 3.37E+08 17636 100.14 4515.7

Worst 1.14E+09 10757 8865.3 6807.1 11957 2.58E+10 10897 2.26E+09 3.94E+08 2453.8 16717

Average 6.03E+07 7362.8 2693.4 1809 3092.9 2.58E+10 3546.4 9.25E+08 5.06E+07 539.16 7871.3

SD 2.53E+08 1802.8 2591.3 1787.1 3089.6 3.51E+07 3130.4 3.96E+08 1.20E+08 679.2 3089.7

Median 4820.3 7329.4 1584.6 1388.5 1909.6 2.58E+10 2584.2 8.53E+08 2.29E+05 310.32 7387.3

F22 Best 1708.3 1868.6 1140 1526.7 1361.5 3381.4 1591.5 2099.5 1239.2 1708.3 1341

Worst 3018.4 3244.1 1944.6 2694.1 1849.6 3579 2554.7 2858.3 2199.1 2265.3 2103.2

Average 2338.9 2331.9 1511.8 1897.3 1611.5 3475 2043.6 2446.2 1623.4 1852.9 1752.4

SD 381.52 335.1 205.63 306.62 136.62 58.291 303.72 188.77 265.72 252.97 193.19

Median 2338.4 2275.8 1474.2 1859.3 1602.4 3473 1928.9 2427.8 1628 1876.3 1709.5

F23 Best 747.51 712.78 713.81 716.63 718.45 816.31 718.4 762.05 715.27 747.51 761.19

Worst 907.69 735.69 733.18 748.02 730.52 835.57 769.78 796.06 760.41 834.84 813.97

Average 806.25 718.88 721.8 733.93 724.86 830 739.21 779.2 735.1 758.37 787.03

SD 41.133 5.4895 5.7184 8.9233 3.7642 4.1447 13.567 9.969 13.226 22.909 15.727

Median 792.59 717.26 720.8 732.52 725.34 830.38 737.89 778.89 736.24 756.92 791.24

F24 Best 1900.1 1900 1900.5 1900.3 1900.8 7.32E+05 1900.7 1907.2 1900.7 1900.1 1926.8

Worst 2254.3 1902.8 1902.5 1907.2 1902.3 7.43E+05 1904 2186.7 1991.1 1996.9 2008.9

Average 1935.6 1900.9 1901.4 1903 1901.7 7.37E+05 1901.7 1945.6 1907 1966.2 1960.2

SD 89.268 0.69602 0.63295 1.5195 0.36594 2895.3 0.81329 58.785 19.848 18.886 18.957

Median 1902.2 1900.7 1901.3 1903 1901.7 7.36E+05 1901.6 1931.7 1902.8 1964.9 1958.1

F25 Best 2409.8 1.84E+05 2334 3018.4 6937.4 2.34E+07 2787.2 13945 2983.8 2409.8 3901.9

Worst 3.77E+05 8.67E+05 12394 1.07E+06 2.03E+05 2.34E+07 31779 3.09E+05 6.12E+05 46382 22483

Average 99683 4.76E+05 5441.5 2.49E+05 54243 2.34E+07 7819.4 70448 1.37E+05 10929 10151

SD 1.25E+05 2.01E+05 2759.6 3.15E+05 53909 95.544 6853 71390 2.14E+05 9217 4529.9

Median 51320 4.56E+05 4730.2 44649 38270 2.34E+07 5275.5 39653 7666.8 8355.8 8534.4

F26 Best 1600.5 1611 1600 1600.6 1600 1861.5 1600 1600.8 1600.3 1600.5 1600.3

Worst 1980.8 1744 1659.5 1661 1601.3 1862 1602.8 1602.8 1658.5 1618.8 1617.8

Average 1667.2 1659.1 1625.7 1618.4 1600.4 1861.7 1601 1601.6 1606.9 1604.9 1604.6

SD 95.234 32.899 23.51 22.832 0.37058 0.25407 0.84072 0.57677 13.972 7.4591 6.9393

Median 1618.7 1659.3 1617.3 1610.8 1600.2 1861.5 1600.7 1601.5 1600.8 1601.1 1600.8

F27 Best 2546.9 12007 2429 3426.7 2281.3 1.39E+09 2331.8 4245.8 2975.4 2546.9 2349

Worst 32441 1.64E+06 9453.7 2.43E+05 11028 1.39E+09 24342 36162 23259 34207 12858

Average 10581 5.16E+05 4608.3 37405 5198.6 1.39E+09 7505.3 16337 11825 10471 5696.1

SD 9700.1 4.40E+05 2222.4 54643 2780.1 13.869 6447.9 8265 6001.3 9669.5 2760.1

Median 6283.6 4.32E+05 4156.7 20598 4349.5 1.39E+09 4252.2 15992 13426 7032.4 5658.8

F28 Best 2269.4 2300 2300.6 2301 2239.1 4551.9 2234 2307.1 2301.1 2269.4 2297.4

Worst 4161.1 2300.8 3030.6 2758.3 2303.3 4622.7 2308.9 2571.1 2948.5 2540.9 2547

Average 2593.2 2300.3 2367.4 2325.9 2297 4591 2296.8 2401.8 2356.8 2382 2412

SD 644.17 0.23812 202.83 101.79 15.279 17.025 20.63 60.899 155.2 69.982 75.162

Median 2306.2 2300.3 2301.9 2302.9 2301.5 4596.2 2302.6 2385 2306.6 2383 2408.2

F29 Best 2697.5 2500 2500 2500 2637.4 3337 2500 2563.2 2727.8 2697.5 2500.1

Worst 2841.3 2876.6 2762.6 2791.3 2755 3343 2779.1 2815.8 2790.5 2840.6 2824.5

Average 2786.4 2657.8 2712 2725.6 2737.2 3340 2739.3 2780.8 2751.2 2729.9 2696.8

SD 35.984 154.81 79.413 85.55 33.535 1.6637 57.41 52.117 18.302 119.78 120.7

Median 2790.9 2678.3 2742 2758.2 2749 3340.1 2751.8 2790.3 2744.8 2782.4 2760.3

(Continued)
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s3ð l
!
Þ ¼ dð l

!
Þ � dmax � 0;

s4ð l
!
Þ ¼ l1 � l4 � 0;

s5ð l
!
Þ ¼ P � Pcð l

!
Þ � 0;

s6ð l
!
Þ ¼ 0:125 � l1 � 0;

s7ð l
!
Þ ¼ 1:10471l2

1
þ 0:04811l3l4ð14:0þ l2Þ � 5:0 � 0:

The intervals for the design variables are as follows:

0:1 � l1 � 2;

0:1 � l2 � 10;

0:1 � l3 � 10;

0:1 � l4 � 2

where
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!
Þ ¼
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Table 5. (Continued)

Function Value CPSOGSA GSA PSO BBO DE ACO SSA SCA GWO nAOA AOA

F30 Best 2897.8 2899.6 2898.2 2897.7 2899 4650.7 2897.8 2940.7 2900.2 2897.8 2897.7

Worst 3024.3 2943.6 2950 2953.5 2947.1 4670.9 2949.4 3016.1 2984.8 2996.8 2989.4

Average 2939.4 2939.1 2925 2932.1 2926.1 4661.6 2917.9 2973.5 2934.4 2934.9 2927.4

SD 37.551 13.494 24.26 22.653 19.621 4.8539 24.314 22.44 19.854 34.674 31.083

Median 2945.5 2943.4 2944 2944.2 2930.2 4662.1 2899.4 2968.4 2941.1 2949.6 2913.4

p-value (0.000) Friedman’s mean rank 8.7 5.2 3.15 5.5 3.85 11 3.85 8 6.2 2.9 6.1

General mean rank 9 4 2 5 3 10 3 8 7 1 6

https://doi.org/10.1371/journal.pone.0255703.t005
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Fig 5. Convergence behavior of classical and composite benchmark test functions.

https://doi.org/10.1371/journal.pone.0255703.g005
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Pc l
!� �
¼

4:013E
ffiffiffiffiffi
l2
3
l6
4

36

q

L2
1 �

l3
2L

ffiffiffi
E
p

=4G
� �

:

The parameters for WBD are set as follows:

smax ¼ 3000psi; P ¼ 6000lb; L ¼ 14 in; dmax ¼ 0:25in; E ¼ 3� 106psi; tmax
¼ 13600 psi; and G ¼ 12� 106psi:

The results of the experiment conducted for WBD for our comparative analysis are given in

Table 6, which shows the results for nAOA and 10 other algorithms (GSA, PSO, BBO, DE,

ACO, CPSOGSA, GWO, SCA, SSA, and AOA). The results indicate that nAOA outperformed

the original AOA for the cost function of the WBD problem. Moreover, nAOA returned

Fig 6. Design of WBD problem [28].

https://doi.org/10.1371/journal.pone.0255703.g006

Table 6. Results for experiment conducted for WBD.

H l t b Best Worst Average SD Median p-values

CPSOGSA 0.201423 3.121684 9.850499 0.201999 1.6976 2.2841 1.8545 0.13711 1.816 0.000

GSA 0.163725 9.282428 7.109815 0.352461 2.12 3.6595 2.8397 0.41809 2.8412 0.002

PSO 0.785289 1.997506 2 2 1.09E+14 1.09E+14 1.09E+14 0.047676 1.09E+14 0.10

BBO 0.959489 1.611894 2 2 1.09E+14 1.09E+14 1.09E+14 0.14365 1.09E+14 0.22

DE 0.784177 2 2 2 1.09E+14 1.09E+14 1.09E+14 0.047676 1.09E+14 0.31

ACO 1 4 3 2 1.69E+05 1.69E+05 1.69E+05 2.96E-11 1.69E+05 0.1

SSA 0.185461 3.654591 9.037761 0.205724 1.7084 2.6689 2.1938 0.22237 2.2059 0.001

SCA 0.191322 3.28746 10 0.204763 1.7366 1.8905 1.8197 0.036758 1.8198 0.000

GWO 0.20542 3.263227 9.036302 0.205746 1.6957 1.703 1.6976 0.001619 1.6972 0.000

nAOA 0.125228 10 10 0.204985 1.6976 1.9963 1.7731 0.07421 1.7433 0.000

AOA 0.204292 4.111883 10 0.20342 1.8603 2.8294 2.3488 0.26637 2.4734 0.001

https://doi.org/10.1371/journal.pone.0255703.t006
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minimum values for mean and SD when compared with AOA. Looking at the values for the

design variables h, t, and b, we see that nAOA returned optimal values for all three variables.

However, the overall best performing algorithm in terms of the average and standard deviation

is GWO. Nevertheless, our proposed algorithm was very competitive as it returned the same

best cost value with GWO and came second to GWO for the mean and standard deviation.

The Wilcoxon signed-rank test indicates that PSO, BBO, DE, ACO simulation results are not

statistically significant because they have p-values greater than 0.05. Whereas those of SSA,

SCA, GWO, nAOA, AOA, CPSOGSA, and GSA are significant because they have p-values less

than 0.05.

The convergence curves at the 100th and 1000th iterations for nAOA and 10 other algo-

rithms used for the comparative analysis is shown in Fig 7. We used these two curves to evalu-

ate the algorithms’ behavior at both the early stage and later stage of the iterations. It shows

that nAOA has regular values at the start of the iterations; the same can be observed for the

other comparative algorithms. Since the algorithms were all able to find best results early in

the iteration process, they converged towards the best result and remained stable until the end

of the optimization iterations. The similar results at the different iteration phases show insensi-

tivity to the initialization scheme used by the initial candidate solution. On one hand we notice

that the convergence curves of nAOA, AOA, CGSA, GWO, SCA, SSA, and CPSOGSA lie close

to each other as they have nearly equal values for the cost function. On the other hand, the con-

vergence curve for PSO, BBO, and ACO lie together at the top of the figure because they all

have large values for the average, SD, and median, which translate into sub-optimal results for

the cost. We can see DE standing alone at the middle of the curves, where, although it returned

a suboptimal result, it was still better than PSO, BBO, and ACO.

4.2.2. Compression spring design problem. The compression spring design problem

(CSD), as shown in Fig 8, is a continuous constrained optimization problem. The goal is to

minimize the volume V of a coil spring under a constant tension/compression load. There are

three design variables:

• the number of spring’s active coils P = x1 2 [2, 15]

• the diameter of the winding D = x2 2 [0.25, 1.3]

• the diameter of the wire d = ox3 2 [0.05, 2]

The mathematical formulation of the CSD problem is as given in [29].Given

l ¼ ½l1l2l3� ¼ ½dDP�

Min f ð l
!
Þ ¼ ðl3 þ 2Þl2l

2

1
ð6Þ

subject to

s1ð l
!
Þ ¼ 1 �

l3
2
l3

7178514
� 0;

s2ð l
!
Þ ¼

4l2
2
� l1l2

12566ðl3l31 � l4
1
Þ
þ 1=5108l1

2
� 0;

s3ð l
!
Þ ¼ 1 �

140:45l1
l2
2
l3
� 0;
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s4ð l
!
Þ ¼

l1 þ l2
1:5

� 1 � 0:

The intervals for the design variables are:

0:05 � l1 � 2:00;

Fig 7. Convergence curves for WBD. Note: 100th iterations. Note: 1000th iterations.

https://doi.org/10.1371/journal.pone.0255703.g007
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0:25 � l2 � 1:30;

2:00 � l3 � 15:0

The results used for our comparative analysis for CSD are shown in Table 7 for nAOA and

10 other algorithms (GSA, PSO, BBO, DE, ACO, CPSOGSA, GWO, SCA, SSA, and AOA). It

can be seen that nAOA outperformed the original AOA for the cost function of the CSD prob-

lem. Moreover, nAOA returned smaller values for both mean and SD than did AOA. The

same can be observed for the design variables d, D, and P. However, the overall best perform-

ing algorithm in terms of the best, average, and standard deviation is again the GWO. And

once again, our proposed algorithm was very competitive in returning the same best cost value

as did GWO and came second to GWO for mean and standard deviation. The PSO, BBO,

ACO, and DE have large values for the average, SD, and median, translating to sub-optimal

results for the cost. The Wilcoxon signed-rank test indicates that PSO, BBO, DE, ACO simula-

tion results are not statistically significant because they have p-values greater than 0.05. The

results of SSA, SCA, GWO, nAOA, AOA, CPSOGSA, and GSA were significant because they

have p-values less than 0.05.

Fig 8. Compression spring design problem [27].

https://doi.org/10.1371/journal.pone.0255703.g008

Table 7. Results for experiment conducted for CSD.

D D P Best Worst Average SD Median p-values

CPSOGSA 0.138911 1.29213 12.02621 3.6619 3.7263 3.6668 0.015784 3.6619 0.001

GSA 0.124335 1.3 9.641125 3.7502 12.411 6.3644 2.4806 5.3726 0.021

PSO 2 2 2 409.77 409.77 409.77 2.89E-13 409.77 0.12

BBO 2.000056 2 2 409.78 409.83 409.79 0.016768 409.79 0.21

DE 2 2 2 409.77 410.59 409.8 0.14961 409.77 0.43

ACO 1 2 3 209.93 209.93 209.93 5.78E-14 209.93 0.24

SSA 0.136589 1.226449 13.14084 3.6619 3.7269 3.6884 0.020417 3.6885 0.003

SCA 0.138481 1.3 11.65668 3.6631 10.019 5.2877 1.2928 5.23 0.000

GWO 0.13916 1.3 11.8939 3.6619 3.6619 3.6619 5.00E-06 3.6619 0.000

nAOA 0.144392 1.271965 14.66017 3.6619 3.7554 3.6819 0.022807 3.6744 0.000

AOA 0.148662 1.3 15 4.0452 7.3439 6.1167 0.59017 6.1849 0.002

https://doi.org/10.1371/journal.pone.0255703.t007

PLOS ONE Advanced arithmetic optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0255703 August 24, 2021 22 / 29

https://doi.org/10.1371/journal.pone.0255703.g008
https://doi.org/10.1371/journal.pone.0255703.t007
https://doi.org/10.1371/journal.pone.0255703


The convergence curves for nAOA and 10 other algorithms used for the comparative analy-

sis in the compression spring design are shown in Fig 9 at the 100th and 1000th iterations, in

order to evaluate the algorithms’ behavior at both the early stage and later stage of the itera-

tions. The curves for all the algorithms show irregular values at the start of the iterations; indi-

cating that nAOA behaves similarly to the other algorithms. Since the algorithms were unable

Fig 9. Convergence curves of CSD. Note: 100th iterations. Note: 1000th iteration.

https://doi.org/10.1371/journal.pone.0255703.g009
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to find best results early in the iteration process, they searched the space for the optimal solu-

tion and were able to converge towards the best result and remain stable until the end of the

optimization iterations. The dissimilarities in behavior of the curve at the different iteration

phases show sensitivity to the initialization scheme used by the initial candidate solution.

Moreover, we see the efficient performance of nAOA, AOA, GSA, GWO, SCA, and SSA

because their curves lie together at the bottom of the figure. By contrast we note the sub-opti-

mal performance of PSO, BBO, GA, and DE, indicated by curves lie together at the top of the

figure because they show large cost function values.

4.2.3. Pressure vessel design problem. A pressure vessel design model (PVD) is shown in

Fig 10. The four decision variables are defined as follows: x1 is the thickness of the pressure

vessel Ts, x2 is the thickness of the head Th, x3 stands for the inner radius of the vessel R, and

x4 is the length of the vessel barring head L.

The PVD can be formulated mathematically as follows [30]:

Given

l ¼ ½l1l2l3l4� ¼ ½TsThRL�;

Min f ð l
!
Þ ¼ 0:6224l1l3l41:781l2l

2

3
þ 3:1661l2

1
l4 þ 19:84l2

1
l3 ð7Þ

s1ð l
!
Þ ¼ � l1 þ 0:0193l3 � 0;

s2ð l
!
Þ ¼ � l3 þ 0:00954l3 � 0;

s3ð l
!
Þ ¼ � pl2

3
l4 �

4

3
pl3

3
þ 1296000 � 0;

s4ð l
!
Þ ¼ l4 � 240 � 0:

The interval of the design variables are as follows:

0 � l1 � 99;

0 � l2 � 99;

10 � l3 � 200;

Fig 10. PVD problem [30].

https://doi.org/10.1371/journal.pone.0255703.g010

PLOS ONE Advanced arithmetic optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0255703 August 24, 2021 24 / 29

https://doi.org/10.1371/journal.pone.0255703.g010
https://doi.org/10.1371/journal.pone.0255703


10 � l4200:

The result for experiments for PVD is shown in Table 8, indicating the comparative analysis

of all the optimization techniques for PVD problem; that is, nAOA and 10 other algorithms

(GSA, PSO, BBO, DE, ACO, CPSOGSA, GWO, SCA, SSA, and AOA). The results show that

nAOA outperformed the original AOA for the cost function of the PVD problem. Moreover,

nAOA returned smaller values for mean and SD when compared with AOA, the same can be

observed for the design variables Ts, Th, R, and L. However, again, the overall best performing

algorithm in terms of the best, average, and standard deviation is GWO. Our proposed algo-

rithm was, nevertheless, very competitive as it returned the same best cost value as GWO and

came second to GWO for mean and standard deviation. The PSO, BBO, ACO, and DE have

large values for the average, SD, and median indicating sub-optimal results for the cost. The

Wilcoxon signed-rank test indicates that PSO, BBO, DE, and ACO simulation results are not

statistically significant because they have p-values greater than 0.05. The results of SSA, SCA,

GWO, nAOA, AOA, CPSOGSA, and GSA were significant because they have p-values less

than 0.05.

The comparative analysis at the 100th and 1000th iterations for nAOA and 10 other algo-

rithms used is shown by the convergence curves in Fig 11. The pairs of curves are shown to

evaluate the algorithms’ behavior at the early and later stages of the iterations. The figure

shows that nAOA has irregular values at the start of the iterations, as do the other compara-

tive algorithms. The irregular values imply that the algorithms were unable to find best

results early on, although as iterations progressed towards the later stages, the algorithms

converged towards the best result and remained stable to the end of the optimization itera-

tions. These results showing dissimilarities at the different iteration phases indicate the sensi-

tivity of the algorithms to the initialization scheme used by the initial candidate solution. As

can be seen, the convergence curves of nAOA, AOA, CGSA, GWO, SCA, SSA, and

CPSOGSA all lie close to each other at the bottom of the figure because their values for the

cost function are close. Then we note that the convergence curve for PSO, BBO, DE, and

ACO also lie together, but above those for the rest of the algorithms, where their large values

for the average, SD, and median indicate sub-optimal results for the cost. The efficient per-

formance of nAOA, GSA, GWO, SCA, ACO, and SSA is indicated by their position at the

bottom of the figure.

Table 8. Results for experiment conducted for PVD.

Ts Th R L Best Worst Average SD Median p-values

CPSOGSA 1.09357 0 65.22523 10 2302.5 3638.6 4113.4 1326.8 3873.3 0.001

GSA 0.700037 0 49.29101 104.0716 3323.4 9287.2 3858.4 1441.6 3495 0.021

PSO 10 10 53.69781 71.47073 2.04E+05 2.04E+05 2.04E+05 1.8838 2.04E+05 0.2

BBO 10 10 50.94534 91.02183 2.04E+05 2.09E+05 2.05E+05 1258.2 2.05E+05 0.31

DE 10 10 53.71582 71.35088 2.04E+05 2.04E+05 2.04E+05 0.14598 2.04E+05 0.53

ACO 2 1 4 3 1.68E+16 1.68E+16 1.68E+16 8.1368 1.68E+16 0.324

SSA 1.090893 0 65.22699 10 2302.5 3638.6 3517.7 276.54 3626.5 0.002

SCA 1.090893 0 65.22699 10 2309.7 6065.6 4942.6 1733.4 6056.6 0.000

GWO 1.090893 0 65.22699 10 2302.6 6058.9 2556.8 951.56 2302.8 0.000

nAOA 1.076654 0.003068 65.10835 10.61673 2302.5 6078.2 3303.1 519.16 3567.6 0.000

AOA 0.212887 0.002212 44.39755 183.4564 3599 6270.8 4440.8 875.52 3997 0.001

https://doi.org/10.1371/journal.pone.0255703.t008
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4.3. Overall simulation result’s discussion

This section gave overall analysis of the simulation results of all the 11 state-of-the-art algo-

rithms used in our experiments. The algorithms are the proposed nAOA, the original AOA,

and nine other state-of-the-art algorithms (CPSOGSA, GSA, PSO, BBO, DE, ACO, GWO,

Fig 11. Convergence curves for PVD. Note: 100th iteration. Note: 1000th iteration.

https://doi.org/10.1371/journal.pone.0255703.g011
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SCA, and SSA). The best performing algorithm overall is the GWO, because it returned best

values for WBD, CSD, and PVD problems, while nAOA provides optimal values for the fitness

function of WBD, CSD, and PVD (second only to GWO). In addition, the simulation results

of the classical and composite (CEC 2020) benchmark functions convey that nAOA performed

optimally, as can be seen from statistical results of average and SD values, which are very close

to the global minimum.

The WBD problem results, shown in Table 6, indicate that nAOA, GWO, and CPSOGSA

returned between 1.6957 and 1.6976 as best result, which is near the optimal cost value for

WBD (0.69). Their respective average results are 1.7731, 1.6976, and 1.8545, which are also

close to the global optimal for WBD. The GSA, AOA, and SSA have an average value of

2.8718, far from the best value (1.69). The algorithms PSO, BBO, GA, and DE all showed sub-

optimal results.

Furthermore, Table 7 shows the result for the CSD problem. This set of results conveys that

nAOA returned a best result of 3.6619, which is the same as that returned by GWO, SSA, and

CPSOGSA. This result is better than that for GSA (3.7502), PSO (409.7), BBO (409.7), GA

(409.7), DE (409.7), and ACO (209.9). The average results and standard deviations for nAOA,

GWO, SSA, and CPSOGSA show that the algorithms could find near-optimal results early in

the iteration process and quickly converge towards their best results. Nevertheless, these latter

’best’ results were still not as good as those for the nAOA, GWO, SSA, and CPSOGSA.

The results shown in Table 8 indicate that, for the PVD problem, nAOA, GWO, and

CPSOGSA all returned 2302.6 as their best result. Their respective average results are 3303.1,

2556.8 and 4113.4. The performance of nAOA is second to only GWO, which had the best per-

formance. The algorithms GSA, AOA, and SSA have average values between 3858.4 and

4440.8, which are not close to that returned by the best-performing algorithm. The algorithms

PSO, BBO, GA, and DE showed sub-optimal results.

This overall analysis of the results of our experiments conveys that nAOA showed promis-

ing results for optimizing the classical and composite (CEC 2020) benchmark functions. It

clearly outperformed the original AOA and was very competitive with the other 9 algorithms

used. The same conclusion is seen for optimizing the fitness function and design parameters of

the three mechanical engineering frameworks considered here, as indicated by comparing

nAOA with the other participating algorithms. Another observation is that nAOA, AOA,

GSA, GWO, SCA, SSA, and CPSOGSA provide better statistical results for the fitness function

of the mechanical engineering design frameworks. However, the performance of PSO, BBO,

GA, and ACO is suboptimal for all three engineering benchmarks.

5. Conclusion and future directions

In this paper, we proposed an improved nAOA algorithm that uses the high-density values

that the natural logarithm and exponential operators can generate to enhance the exploratory

ability of AOA. The addition and subtraction operators still carry out the exploitation phase.

We tested the performance of the nAOA with 33 benchmark functions and three engineering

design benchmarks. As a result, the nAOA has shown efficient performance for the WBD,

CSD, and PVD (being second only to GWO).

This research has opened future research direction; it will be interesting to see how

researchers can overcome the drawback of premature convergence and sensitivity in randomi-

zation. Researchers could use the stochasticity, ergodicity, and complex nonlinear motion

properties of chaotic maps to overcome this drawback. In addition, nAOA could be applied to

many other real-world problems, such as the economic load dispatch problems of electronic

PLOS ONE Advanced arithmetic optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0255703 August 24, 2021 27 / 29

https://doi.org/10.1371/journal.pone.0255703


science. Furthermore, nAOA has considerable potential for hybridization with other state-of-

the-art algorithms.
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