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Abstract

In this study, a network autoregressive model with GARCH effects, denoted by NAR-

GARCH, is proposed to depict the return dynamics of stock market indices. A GARCH filter

is employed to marginally remove the GARCH effects of each index, and the NAR model

with the Granger causality test and Pearson’s correlation test with sharp price movements is

used to capture the joint effects caused by other indices with the most updated market infor-

mation. The NAR-GARCH model is designed to depict the joint effects of nonsynchronous

multiple time series in an easy-to-implement and effective way. The returns of 20 global

stock indices from 2006 to 2020 are employed for our empirical investigation. The numerical

results reveal that the NAR-GARCH model has satisfactory performance in both fitting and

prediction for the 20 stock indices, especially when a market index has strong upward or

downward movements.

Introduction

The prediction of market trends has attracted much attention since the last century. Market

participants make investment decisions according to their prediction of market trends. Thanks

to the rapid development of information and communication technologies, market partici-

pants have opportunities to receive online information, such as the latest closing prices of

global stock indices, updates on significant world events, and the newest economic policies

announced by the most influential countries in the world. This real-time information has

affected financial market trends, especially causing large shocks in stock indices. For example,

Fig 1 presents an example to show the leading effect of the S&P500 index on the AORD index,

which is Australia’s major index. In Fig 1, the red line denotes the returns of the AORD index

from June 1, 2016, to Oct. 20, 2016, while the blue line presents the returns of the S&P500

from May 31, 2016, to Oct. 19, 2016, which are one day before the associated AORD trading

dates. As shown in Fig 1, the two return processes have similar patterns, which indicates that

the S&P 500 index returns did show their leading effects on the AORD returns, especially for

most of those returns having large volatilities, during this specific time period. Usually, this

type of relationship between different markets changes dynamically, which increases the diffi-

culty of implementing the latest and helpful information into the timely prediction of market
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trends. Therefore, this study aims to analyze nonsynchronous multiple time series. An effective

way is proposed to overcome the difficulty caused by the asynchronicity of major global indi-

ces for obtaining satisfactory predictions using the most updated information.

To achieve our objective, we have to address several challenges. The first task is to propose a

model to describe the important features inherent in each stock index return and capture the

joint effects among different return processes simultaneously. In addition, the proposed model

needs to accommodate the most updated market information effectively. Moreover, the pro-

posed model should be capable of avoiding the curse of dimensionality problems, and the esti-

mation of the proposed model should not rely on a heavy computational burden. For the

analysis of multivariate time series, the vector autoregression (VAR) model is a conventional

method used by researchers and market participants (see [1–3] and the references therein). In

addition, many empirical findings indicate that the return process of a stock index usually has

the features of potential autocorrelation, conditional heteroscedasticity, volatility clustering,

asymmetry, and heavy-tailed distribution. To characterize these features, GARCH-type models

are commonly used in economics, finance, and statistics (see [1, 4–8] and the references

therein). Therefore, to simultaneously consider the joint effects among multiple return pro-

cesses and the above features contained in each financial time series, a VAR model with the

de-GARCH technique is widely used for modeling multivariate time series (see [9–11] and the

references therein). Another popular method is to adopt copula-based approaches to describe

the dynamics of returns of multiple stock indices, where the marginal distribution of the

returns of each index is characterized by a GARCH-type model, and the joint distribution of

the returns of different indices are modeled by a copula function [12]. However, the computa-

tional costs of the above two approaches increase dramatically when the number of considered

time series increases due to the curse of dimensionality.

To tackle these challenges, a network autoregressive (NAR) model of [13] with the de-

GARCH technique, denoted by NAR-GARCH, is proposed in this study. Specifically, the

Fig 1. Log returns of the AORD and S&P500 indices from Jun. to Oct. in 2016.

https://doi.org/10.1371/journal.pone.0255422.g001
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NAR-GARCH model first filters out the GARCH effects contained in each return process.

Next, an NAR model is employed to capture the joint effects among the de-GARCH processes,

where a systematic scheme for accommodating the most updated market information is also

proposed under the framework of the Granger causality test [14] and Pearson’s correlation test

with sharp price movements. To investigate the performance of the proposed method, the

daily index values of 20 stock markets, including AORD (Australia), BSESN (India), BVSP

(Brazil), DAX (Germany), FCHI (France), FTSE (United Kingdom), GSPTSE (Canada), HSI

(Hong Kong), JTOPI (South Africa), KLSE (Malaysia), KS11 (South Korea), MERV (Argen-

tina), MXX (Mexico), N225 (Japan), RTSI (Russia), SSE (China), STI (Singapore), S&P500

(United States), TASI (Saudi Arabia), and XU100 (Turkey), from 2006 to 2020 are employed

for our empirical study. The numerical results reveal that the NAR-GARCH model is capable

of improving the prediction of market trends, especially when a market has sharp upward or

downward movements. We also propose a trading strategy based on the prediction of market

trends. The results indicate that the proposed trading strategy has better and more stable

investment performances than the associated index value with transaction costs.

The remainder of this paper is organized as follows. Section 2 illustrates the reasons for

how the proposed NAR-GARCH model is capable of describing the features of nonsynchro-

nous multiple financial time series. Section 3 introduces an easy-to-implement procedure to

estimate the proposed model. An empirical study based on 20 global stock indices is provided

to investigate the performance of the NAR-GARCH model in Section 4. Discussions are pre-

sented in Section 5.

Nonsynchronous multiple time series

To depict the dynamics of nonsynchronous multiple financial time series with GARCH effects,

we propose to adopt a de-GARCH technique for removing the GARCH effects of each time

series at first and capture the most updated cross effects by NAR models accordingly. In this

section, we briefly illustrate a de-GARCH method based on fitting a GARCH model for each

time series. The commonly used VAR models and the difficulty of using regular VAR models

to handle nonsynchronous multiple financial time series are also discussed.

DeGARCH method

Let F t denote the information set generated by the data up to time t. The following GARCH-

type model is considered to be used for describing the dynamics of the return process of the j-
th index, j = 1, . . ., N,

rj;t ¼ mðrj;s; aj;s; s ¼ t � 1; t � 2; . . . ;ψ jÞ þ aj;t;

aj;t ¼ sj;tεj;t;

s2
j;t ¼ gðsj;s; aj;s; s ¼ t � 1; t � 2; . . . ; βjÞ;

8
>>><

>>>:

ð1Þ

where rj,t denotes the log return of the j-th index at time t, μ(�) and g(�) are F t� 1-measurable

functions, {εj,t, t = 1, 2, . . .} is assumed to be a white noise process with zero mean and unit

variance, and (ψj, βj) denotes the unknown parameters for the j-th process and satisfies the sta-

tionary conditions. This type of model (1) is capable of describing many important features of

univariate financial time series, such as autocorrelation, conditional heteroscedasticity, volatil-

ity clustering and asymmetry, and is widely used by practitioners in the fields of economics,

statistics and finance (see [1, 4, 5, 8, 15] and the references therein). For example, the autore-

gressive-moving-average (ARMA) structure is one of the most popular settings for μ(�). The
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classical GARCH model proposed by [4] and the EGARCH model of [5] are both commonly

used setups for g(�).

Once the model (1) is employed to fit the return process of the j-th index, the correspond-

ing de-GARCH return process, denoted by f~rj;t; t ¼ 1; 2; . . .g, and standardized residual pro-

cess, denoted by fε̂ j;t; t ¼ 1; 2; . . .g, are obtained by

~rj;t ¼
rj;t
ffiffiffiffiffiffi
ĝ j;t

q ;
ð2Þ

and

ε̂ j;t ¼
rj;t � m̂ j;t

ffiffiffiffiffiffi
ĝ j;t

q ; ð3Þ

respectively, where m̂ j;t ¼ mðrj;s; âj;s; s ¼ t � 1; t � 2; . . . ; ψ̂ jÞ and

ĝ j;t ¼ gðŝ j;s; âj;s; s ¼ t � 1; t � 2; . . . ; β̂jÞ, in which ψ̂ j, β̂j, ŝ j;s and âj;s denote the estimates of

ψj, βj, σj,s and aj,s, respectively, and can be obtained under an iterative procedure with (1).

VAR-GARCH model

As mentioned above, a VAR model with the de-GARCH technique is widely used for model-

ing multivariate time series. We briefly illustrate its procedure in the following. The first step is

to obtain the de-GARCH returns, ~rj;t, of the j-th index by (2), j = 1, . . ., N. Next, the following

VAR model of order p is established for these ~rj;t, j = 1, . . ., N, t = 1, . . ., T, processes:

~rt ¼ cþ
Xp

k¼1

Ak~rt� k þ et; ð4Þ

where ~rt ¼ ð~r1;t; . . . ;~rN;tÞ
>

denotes the vector of de-GARCH returns of the N indices at time t,
c is an N-dimensional constant vector, Ak is an N × N matrix and denotes the lag-k coefficient

matrix associated with ~rt� k, k = 1, . . ., p, and et, t = 1, . . ., T, are i.i.d. N-dimensional Gaussian

random vectors with a zero mean vector and covariance matrix S. Herein, we denote model

(4) by VAR-GARCH. The parameter matrices c and Ak, k = 1, . . ., p, in (4) can be estimated

under the maximum likelihood or Bayesian framework. In this study, we adopted the R pack-

age ‘vars’ to estimate the VAR model. Let ĉ and Âk denote the estimates of c and Ak, respec-

tively. According to (4), the one-step-ahead prediction of rtþ1 ¼ ðr1;tþ1; . . . ; rN;tþ1Þ
>

conditional on F t , denoted by r̂tþ1 ¼ ðr̂1;tþ1; . . . ; r̂N;tþ1Þ
>

, is obtained by

r̂tþ1 ¼ Eðrtþ1jF tÞ ¼ ĉ þ
Xp

k¼1

Âk~rt� kþ1

 !

� ðŝ1;tþ1; . . . ; ŝN;tþ1Þ
>
; ð5Þ

where E(A|B) denotes the conditional expectation of A given B, and the operator ‘�’ denotes

the Hadamard product.

However, a VAR model has substantial coefficient dimensionality, which would cause

some computational problems for coefficient inference as N increases. To handle this problem,

many VAR studies have recently focused on reducing the coefficient dimensionality via vari-

able selection approaches based on some model-structure assumptions or adding sparsity con-

ditions to the coefficient matrices (see [2, 3] and the references therein). Although these

recently developed approaches do reduce coefficient dimensionality, the algorithms still

require substantial computational time.
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Another limitation of the VAR-GARCH model defined in (1)–(5) is that the model only

considers the information from other indices up to the trading date t for obtaining a one-step-

ahead prediction of rt+1 but cannot accommodate the most updated information from other

indices within the trading date t + 1. For example, on Aug. 13, 2020, the closing price of the

AORD index is already observed before the opening time of the S&P500 index. Hence, the

closing price of the AORD index on Aug. 13, 2020, may provide helpful information for the

prediction of the S&P500 index on the same trading date. Similarly, the closing price of the

N225 index on Aug. 13, 2020, may also provide helpful information for the prediction of the

S&P500 on the same date. However, this is not the case when using the AORD index for the

prediction of N225. The most updated closing price of AORD for the prediction of N225 on

Aug. 13, 2020, is observed on the previous trading date (Aug. 12, 2020). As shown in (4), to

model the return processes of the AORD, N225, and S&P500 indices in a VAR model and

make one-step-ahead predictions for the 3 indices on Aug. 13, 2020, one can only consider the

closing prices of the 3 indices up to the previous trading date (Aug. 12, 2020). This limitation

causes the regular VAR-GARCH model as defined in (4) to not accommodate the most

updated information and may miss potentially helpful information that occurred in AORD

and N225 on Aug. 13, 2020, for the prediction of the S&P500 on the same date. In other

words, the VAR-GARCH model defined in (4) may miss potentially helpful information when

modelling nonsynchronous multiple time series.

To deal with nonsynchronous multiple time series under the VAR-GARCH framework,

one feasible approach is to redesign the coefficient matrices in (4) and add some constraints

on the coefficient matrices. For example, consider the case of the AORD, N225 and S&P500

indices mentioned above, and let ~r1;t, ~r2;t and ~r3;t, respectively, denote their daily de-GARCH

returns. Since the most updated information for ~r1;t and ~r2;t from the three market indices are

~ri;t� 1, i = 1, 2, 3, while the most updated information for ~r3;t from the three market indices are

~r1;t, ~r2;t and ~r3;t� 1, a modified VAR-GARCH model of order 1 for reflecting these properties

can be represented as

~r1;t

~r2;t

~r3;t

0

B
B
B
@

1

C
C
C
A
¼

c1

c2

c3

0

B
B
B
@

1

C
C
C
A
þ

0 0 0

0 0 0

b31 b32 0

0

B
B
B
@

1

C
C
C
A

~r1;t

~r2;t

~r3;t

0

B
B
B
@

1

C
C
C
A

þ

b11 b12 b13

b21 b22 b23

0 0 b33

0

B
B
B
@

1

C
C
C
A

~r1;t� 1

~r2;t� 1

~r3;t� 1

0

B
B
B
@

1

C
C
C
A
þ

e1;t

e2;t

e3;t

0

B
B
B
@

1

C
C
C
A

where (e1,t, e2,t, e3,t)
>, t = 1, 2, . . ., are i.i.d. random vectors as defined in (4). The above model

is slightly different from the regular VAR-GARCH model of order 1 for modeling synchro-

nous 3-dimensional time series. The estimation of this modified VAR-GARCH model and

how to develop a suitable variable selection procedure for nonsynchronous multidimensional

time series are in need of further study, which is beyond the scope of this research.

According to the above discussion, we aim to propose an alternative, easy-to-implement

and effective procedure to avoid the estimation problem that occurs in the VAR model, espe-

cially when N is large.
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Methodology

To model nonsynchronous multiple time series with the most updated information in an easy-

to-implement way, this study proposes to employ network models to describe the relationships

between the nodes in a network cross time and accommodate the most updated information

from other indices simultaneously. For example, a network model can be used to model the

relationships between the users of Facebook or Twitter. In particular, the network autoregres-

sive (NAR) model proposed by [13] is employed to describe the relationships between the

returns of global stock indices in this study. Suppose that there are N nodes contained in a net-

work and denote the value of the j-th node in a network at time t by yj,t, j = 1, . . ., N and t = 1,

2, . . .. The NAR model describes the dynamics of yj,t by

yj;t ¼ bj;0 þ
Xp

‘¼1

bj;‘yj;t� ‘ þ
Xq

k¼1

gj;kn
� 1

j

XN

h¼1

aj;hyh;t� k þ Z>j tj þ dj;t; ð6Þ

where the term
Pp

‘¼1
bj;‘yj;t� ‘ denotes the AR structure of order p for the {yj,t, t = 1, 2, . . .} pro-

cess, Zj is a d-dimensional covariate vector with d being a nonnegative integer, τj is a coeffi-

cient vector associated with Zj, n� 1
j

PN
h¼1

aj;hyh;t� k represents the lag k network effect with aj,h =

0 or 1 being the (j, h)-th component of an adjacency matrix, nj ¼
PN

h¼1
aj;h, and δj,t’s are i.i.d.

random variables with zero mean and finite variance s2
j for j = 1, . . ., N and t = 1, 2, . . .. The

model parameters, βj,ℓ, ℓ = 0, . . ., p, γj,k, k = 1, . . ., q, τj, and s2
j , j = 1, . . ., N, can be estimated by

the classical least squares (LS) method. In [13], the asymptotic properties of the LS estimators

are derived for the NAR model, and the numerical results reveal that the NAR model is capable

of obtaining satisfactory performances.

The main advantage of the NAR model is that the autocorrelations and cross-correlations

of the nodes in a network are included simultaneously in the model. In particular, the cross-

correlations between the nodes are described by defining an adjacency matrix. However,

despite these good properties, the NAR model cannot be applied directly to the modeling of

the dynamics of global financial returns since the GARCH effects inherent in each return pro-

cess have not yet been included. In addition, how to define a suitable adjacency matrix by a

proper econometric method is still open. To address these situations, we propose extending

the NAR model to incorporate GARCH effects and employ the Granger causality test and

Pearson’s correlation test with sharp price movements to define a proper adjacency matrix.

Most importantly, the adjacency matrix is established by accommodating the most updated

closing prices of other indices. The details are illustrated in the following.

NAR-GARCH model

In this section, we introduce the procedure of establishing the proposed NAR-GARCH model.

1. For each return process of each index, we employ the following ARMA(pj,qj)-GARCH:

(~pj,~qj) model with standardized innovations being skewed-t distributed, which is a special

case of model (1) and denoted by ARMA-GARCH-ST, to describe its dynamics:

rj;t ¼ cj;0 þ
Ppj

k¼1 cj;krj;t� k þ aj;t þ
Pqj

k¼1 cj;pjþk
aj;t� k

aj;t ¼ sj;tεj;t

s2
j;t ¼ bj;0 þ

P~pj
k¼1 bj;ka2

j;t� k þ
P~qj

k¼1 bj;~pjþk
s2
j;t� k

8
>>>><

>>>>:

; ð7Þ

where εt’s are i.i.d. skewed-t random variables with zero mean and unit variance, pj, qj, ~pj
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and ~qj are nonnegative integers, and ψ j ¼ ðcj;0; . . . ;cj;pjþqj
Þ and βj ¼ ðbj;0; . . . ; bj;~pjþ~qj

Þ both

satisfy stationary conditions.

In this study, we adopt the R package ‘garchFit’ to estimate the parameters in an

ARMA-GARCH-ST model, where the probability density function of the skewed-t distri-

bution is defined by

f ðyÞ ¼ Cf1 þ ðy � mÞ2=ðns2Þ½1=g2Iðy � mÞ þ g2Iðy < mÞ�g
� ðnþ1Þ=2

ð8Þ

with location μ, scale σ, degrees of freedom ν, skewness parameter γ, and a positive constant

C such that
R1
� 1

f ðyÞdy ¼ 1 [16].

The ARMA-GARCH-ST model has been shown to be capable of depicting the dynamics of

financial time series well in the literature [8, 17–19]. In particular, the skewed-t distribution

defined in (8) is a special case of the skewed generalized t distribution, denoted as SGT,

which was proposed by [20], with a height parameter of 2. Nevertheless, the empirical

results in [19] reveal that the estimated height parameters of SGT distributions under a roll-

ing-window framework are quite stable at approximately 2. Therefore, the R package
‘garchFit’ is a suitable choice in practical implementation when fitting an ARMA-

GARCH-ST model.

Moreover, the orders ðpj; qj; ~pj; ~qjÞ can be determined by employing an information crite-

rion such as AIC or BIC. Consequently, the corresponding standardized residuals are

obtained via (3) with

m̂ j;t ¼ ĉ j;0 þ
Xpj

k¼1

ĉ j;krj;t� k þ
Xqj

k¼1

ĉ j;pjþk
âj;t� k

and

ĝ j;t ¼ b̂ j;0 þ
X~pj

k¼1

b̂ j;kâ
2

j;t� k þ
X~qj

k¼1

b̂ j;~pjþk
ŝ2

j;t� k:

2. Fit the following NAR model for the standardized residuals obtained in Step 1:

ε̂ j;t ¼
XQ

k¼1

gj;kn
� 1

j;k

XN

h¼1

cðkÞj;h ε̂h;t� djh� kþ1

( )

þ dj;t; ð9Þ

where Q is a predetermined integer, nj;k ¼
PN

h¼1
jcðkÞj;h j with cðkÞj;h ¼ 0, 1, or -1 being the (j, h)-

th component of a lag-k adjacency matrix, which is defined by (10) below, and δj,t’s are i.i.d.

random variables with mean zero and variance s2
d
. In addition, set dj

h ¼ 0 if the closing

time of the h-th index is earlier than the opening time of the j-th index at date t; dj
h ¼ 1, oth-

erwise. Moreover, ε̂h;t� djh � kþ1
denotes the corresponding lag-k standardized residual of the

h-th index for the j-th index at date t with the definition of dj
h.

The NAR model defined in (9) is a special case of model (6). Since the standardized residual

process of each index obtained in Step 1 has a mean of zero and does not have autocorrelation,

we remove the first two terms on the right-hand side (RHS) of (6). The 4th term on the RHS of

(6) is also removed since we did not include any covariate yet in this study. In particular, if

dj
h ¼ 0 and k = 1, we have ε̂h;t� djh � kþ1

¼ ε̂h;t, which allows us to reflect the most updated closing

prices of the h-th index for the j-th index within the same trading date t.
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It is worth mentioning that the parameter Q in (9) represents the upper bound of possibly

helpful information from other markets for the j-th index. From the perspective of the efficient

market hypothesis, the index value would reflect all information very quickly. Since the indices

considered in this study represent global markets and have high liquidity, Q should not be too

large. Therefore, we set Q = 2, which means that we collect possibly helpful information from

the last 2 trading days of other markets for a target index.

Next, we propose to adopt the Granger causality test and check whether the h-th index

would cause a sharp price movement of the j-th index to determine the value of cðkÞj;h in the lag-k
adjacency matrix in model (9). For example, to evaluate whether the h-th index has casual

influence on the j-th index, h 6¼ j, and if dj
h ¼ 0 for this pair of indices, we consider the follow-

ing regression,

ε̂ j;t ¼
XQ

k¼1

aj;kε̂h;t� kþ1 þ zt; ð10Þ

where Q is defined the same as in (9) and zt’s are i.i.d. random variables with mean zero and

variance s2
z
. Since ε̂ j;ts and ε̂h;ts are estimated standardized residuals of the j- and h-th indices,

respectively, they both have zero expectations, and thus, we do not have a constant term on the

RHS of (10). In addition, since ε̂ j;ts should not have autocorrelations, we do not consider auto-

regressive terms on the RHS of (10) and set cðkÞj;j ¼ 0 in (9). In view of (10), if there exists at

least one αj,k 6¼ 0 significantly, k 2 {1, . . ., Q}, we conclude that the h-th index has a causal

influence on the j-th index. Furthermore, let ρj,h(Aj) denote the conditional correlation of the

returns between the j-th and h-th indices given the event

Aj ¼ frj;s < qðtÞ or rj;s > qð1 � tÞg ð11Þ

with τ = 0.2, for instance, where q(τ) denotes the τ-th quantile of the distribution of {rj,s, s =

t − 249, . . ., t}. If αj,k and ρj,h(Aj) are both significantly nonzero for j 6¼ h, set

cðkÞj;h ¼ signðr̂ j;hðAjÞÞ; otherwise, set cðkÞj;h ¼ 0. The performance of this setting is thoroughly

investigated in our empirical study.

According to (7)–(11), the proposed one-step-ahead prediction of rt+1, denoted by

r̂�tþ1
¼ ðr̂�

1;tþ1
; . . . ; r̂�N;tþ1

Þ
>

, is obtained by

r̂�tþ1
¼ Eðrtþ1jF

�

tþ1
Þ ¼ μ̂tþ1 þ σ̂ tþ1 � ε̂tþ1; ð12Þ

where F �tþ1
denotes the set containing the most updated information up to date t + 1, μ̂tþ1 ¼

ðm̂1;tþ1; . . . ; m̂N;tþ1Þ
>

and σ̂ tþ1 ¼ ðŝ1;tþ1; . . . ; ŝN;tþ1Þ
>

are both F t-measurable and can be

obtained from (7) recursively, and ε̂tþ1 ¼ ðε̂1;tþ1; . . . ; ~εN;tþ1Þ
>

with

ε̂j;tþ1 ¼
XQ

k¼1

ĝ j;kn
� 1

j;k

XN

h¼1

cðkÞj;h ε̂h;t� djh � kþ2

( )

;

which is F �tþ1
-measurable since for any fixed j 2 {1, . . ., N} and k 2 {1, . . ., Q}, cðkÞj;h and

ε̂h;t� djh � kþ2
are determined prior to the opening time of the j-th index on date t + 1 if dj

h ¼ 0 for

some h 2 {1, . . ., N}.

The most different part for the one-step-ahead prediction of rt+1 via (5) or (12) is that the

two models use different information sets. Intuitively, the proposed r̂�tþ1
defined in (12) should

have better performance than the r̂tþ1 defined in (5) since F t � F �tþ1
, that is, F �tþ1

contains
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more updated information than F t . To investigate this conjecture, we provide an extensive

empirical study in the next section.

NAR-GARCH vs. VAR-GARCH

Since both the NAR-GARCH and VAR-GARCH models need to pass the GARCH filter in the

first step, we compare their computational burden after de-GARCHing. For the VAR-GARCH

model, the number of parameters for N-dimensional time series contained in c and Ak on the

RHS of (4) is N + pN2. For the NAR-GARCH model, since the number of parameters for the j-
th index, j = 1, . . ., N, on the RHS of (9) is Q + N − 1 because cðkÞjj ¼ 0, the total number of

parameters for the N-dimensional time series is (Q − 1)N + N2. In practice, the lags p and Q in

VAR-GARCH and NAR-GARCH, respectively, would be small due to the efficient market

hypothesis. In particular, if p = Q> 0, the NAR-GARCH model has fewer parameters than the

VAR-GARCH model for large N. In addition, some computational challenges of the VAR-

GARCH model have been mentioned in the previous sections. We focus on the details of the

computational complexity of the NAR-GARCH model in the following.

Although the number of parameters still has the order of O(N2) in the NAR-GARCH

model, the proposed estimation procedure can avoid the computational problem that occurred

in the VAR-GARCH model. The main reason is that most of the parameters in (9) are con-

tained in the adjacency matrix, where the components can be estimated pairwise. This study

employs the Granger causality test and Pearson’s correlation test for each pair of time series to

estimate the associated component in the adjacency matrix. These two tests can be done

quickly by existing packages and do not require a heavy computational burden. Once the adja-

cency matrix is obtained, the remaining Q coefficients, γj,k, in (9) are estimated by the com-

monly used LS method. In our empirical study with N = 20, the computational time of

constructing an NAR-GARCH model for an index with 250 returns is approximately 1.7 sec-

onds on a personal PC with an i7-10875H CPU and 8 GB RAM. Hence, the NAR-GARCH

model can effectively capture the joint effects caused by other indices with the most updated

market information.

Another advantage of the NAR-GARCH model is its high elasticity when including/exclud-

ing any index in/from the model. For example, suppose that one already established an NAR-

GARCH model for N indices and he/she suddenly plans to include one more index in the

model. In that case, he/she only needs to add one more row and column to update the adja-

cency matrix, where the components of the new row can be obtained by performing the

Granger causality test and Pearson’s correlation test on the new index with each of the previ-

ous N indices sequentially. The new column is the transpose of the new row. Next, update the

regression coefficients in (9) with the new adjacency matrix. In other words, only Q + N coeffi-

cients need to be re-estimated. Suppose he/she wants to exclude one index considered in the

model. In that case, he/she only needs to delete the associated row and column from the origi-

nal adjacency matrix and update the regression coefficients accordingly. Hence, only the Q
regression coefficients in (9) need to be re-estimated. However, in the regular VAR-GARCH

framework, every coefficient in (4) must be re-estimated when a user decides to include/

exclude any index in/from the system. Therefore, the NAR-GARCH model has better elasticity

and better accommodates re-estimation when including/excluding any index in/from the

model compared to a VAR model.

Empirical study

In this section, we investigate the fitting and prediction performances of the proposed NAR-

GARCH model. The classical AR and ARMA-GARCH models and the VAR-GARCH model
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defined in (4) are employed for comparison. Based on the prediction of market trends from

different methods, a trading strategy is proposed to investigate the corresponding investment

performances.

Prediction of market trends

The daily index values of 20 stock markets mentioned in Section 1 from 2006 to 2020 are

employed for our empirical study. The data were downloaded from Yahoo Finance (https://

finance.yahoo.com/) and Investing.com (https://www.investing.com/). A rolling-window

approach with a window size of 250 trading days is used for model fitting. For each index, we

employ model (7) with ~pj ¼ 1 and pj, qj, and ~qj 2 f0; 1g for the returns in every rolling time

interval. The model with the smallest AIC value is selected, and the corresponding standard-

ized residuals are obtained. Next, we apply the Granger causality test to the standardized resid-

uals of each pair of the 20 indices as in (10) with Q = 2, and apply Pearson’s correlation test to

the event defined in (11) for the construction of lag-k adjacency matrices, k = 1, 2, with cðkÞj;h

being the (j, h)-component in (9). Finally, we fit an NAR model defined in (9) for the standard-

ized residuals with the two adjacency matrices, and the one-step-ahead predictions for the 20

indices computed by the proposed NAR-GARCH model are obtained by (12).

For comparison, we fit AR, ARMA-GARCH, and VAR-GARCH models separately for each

index return. Among these 4 models, the AR model and ARMA-GARCH model are classical

time series models, but the AR model does not consider the GARCH effects. Moreover, neither

model captures the cross-correlations between indices. On the other hand, the VAR-GARCH

takes the cross-correlations between indices into consideration, but it cannot accommodate

the most updated information, as mentioned previously. Our objective is to investigate

whether the cross-correlations and the most updated information described by the proposed

NAR-GARCH model are capable of improving the prediction of market trends.

To evaluate the fitting performance, the following 3 types of measurements are applied to

each return process in every rolling time interval (denoted by rt, t = 1, . . ., 250, for simplicity):

1. Mean squared error (MSE):

MSE ¼
1

250

X250

t¼1

ðrt � r̂ tÞ
2
;

2. Mean absolute error (MAE):

MAE ¼
1

250

X250

t¼1

jrt � r̂ tj;

3. Partial mean squared error (PMSE):

PMSEðaÞ ¼
1

P250

t¼1
Ifrt<qðaÞ or rt>qð1� aÞg

X250

t¼1

ðrt � r̂ tÞ
2Ifrt<qðaÞ or rt>qð1� aÞg;

where r̂ t denotes the estimate of rt, IA denotes the indicator function of an event A, q(α)

denotes the α-th quantile of the distribution of {rs, s = 1, . . ., 250}, and α 2 (0, 0.5).
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Similarly, to evaluate the prediction performance, the r̂ t in the above 3 measurements

denotes the one-step-ahead prediction of rt and is estimated from the information set F t� 1 for

the AR, GARCH, and VAR-GARCH models and from F �t defined in (12) for the NAR-

GARCH model. In addition, the q(α) at time t also turns to be estimated from the empirical

distribution of the historical data {rs, s = t − 1, . . ., t − 249} for each index. To simplify the illus-

tration, we did not use different notations for the 3 measurements when evaluating fitting or

prediction performances.

The MSE and MAE are two widely used measurements to evaluate model performance,

while the PMSE(α) with a small α is adopted to evaluate the performance when rt is highly vol-

atile. In principle, if a return process is highly volatile during a time interval, it means that the

return process has a larger risk and the prediction of the trend of the process plays a more

important role than a less volatile time period.

In Figs 2 and 3, we present the fitted performances of the 4 models for the S&P 500 index

and N225 index, respectively, where the lag parameter Q in the step of the Granger causality

test is set to 2. In both figures, the NAR-GARCH model has smaller values among the 6 mea-

surements (MSE, MAE, and PMSE(α) with α = 0.05, 0.1, 0.2 and 0.4) than the others for most

time periods, especially during the time periods of financial crisis in 2008-2009 and COVID-

19 in 2020. In particular, VAR-GARCH had the best performance for the N225 index in 2008-

2009. Furthermore, we present heatmaps of the 6 measurements of the 20 indices annually

during the investigation time period in Fig 4, where the y-axis lists the codes of the 20 indices

and the x-axis lists the years. In each year, the measurements of the AR, ARMA-GARCH,

VAR-GARCH, and NAR-GARCH are presented sequentially. One can find that the NAR-

GARCH model has the most stable and smallest values of the 6 measurements for each index

during 2007-2020. In particular, comparing the values of PMSE(α) with different α, one can

find that the AR and ARMA-GARCH models perform significantly more poorly than the

VAR-GARCH and NAR-GARCH models when α decreases since the darkening rates of the

colors of the AR and ARMA-GARCH models are more significant than the other 2 models

from Fig 4(c) to 4(f). This finding highlights the importance and advantages of modeling the

cross-correlation among different indices. From Figs 2–4, we conclude that the VAR-GARCH

Fig 2. The fitted performances of the 4 models for the S&P 500 index.

https://doi.org/10.1371/journal.pone.0255422.g002
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and NAR-GARCH models have better fitting performances than the AR and ARMA-GARCH

models for the 20 indices during 2007-2020.

Next, we investigate the prediction performances of the 4 models. Similar to Figs 2–4, we

compute the 6 measurements of the one-step-ahead predictions of the 4 models. The results

are presented in Figs 5–7. In particular, we additionally divide the measurement values of the

AR, ARMA-GARCH, and VAR-GARCH models by the associated values of the NAR-GARCH

model in Figs 5 and 6. The results in Figs 5–7 reveal that the NAR-GARCH model has the

most robust and better prediction performances than the other 3 models. Accordingly, we find

that the NAR-GARCH model is capable of improving the prediction of market trends, espe-

cially when a market has strong upward or downward movements. In the next section, we

Fig 3. The fitted performances of the 4 models for the N225 index.

https://doi.org/10.1371/journal.pone.0255422.g003

Fig 4. The fitted performances of the 4 models for the 20 indices from 2007 to 2020.

https://doi.org/10.1371/journal.pone.0255422.g004
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conduct an investment strategy based on market trend predictions and investigate whether

accurate trend prediction could remarkably increase investment performance.

Investment performance

In this section, we propose the following trading strategy based on the market trend predic-

tions from the 4 models and compare their investment performances. Let r̂ t denote the one-

step-ahead prediction of rt, which is defined the same as in the previous section. Initially, set

t = 1, and perform the following procedure with a predetermined α 2 (0, 0.5).

1. Before the opening time of the market on date t, if r̂ t > qð1 � aÞ, set a long position of the

index; if r̂ t < qðaÞ, set a short position of the index; otherwise, do nothing at the opening

time of the market on date t.

Fig 5. The prediction performances of the 4 models for the S&P 500 index.

https://doi.org/10.1371/journal.pone.0255422.g005

Fig 6. The prediction performances of the 4 models for the N225 index.

https://doi.org/10.1371/journal.pone.0255422.g006
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2. Close the position at the closing time on date t.

3. Let t = t + 1, and repeat the above 2 steps until the end of the investigation time period.

Let P0
t and P1

t denote the opening and closing values, respectively, of the underlying index

on date t. Similarly, let V0
t and V1

t denote the opening and closing values, respectively, of the

portfolio on date t. In addition, let V(t) = kc P(t), which means that, for example, 1 point of the

S&P500 index costs kc US dollars. To consider transaction costs when performing the above

trading strategy in each year and to simplify the illustration, let tj, j = 1, . . ., m denote the dates

when setting a long or short position based on the above trading strategy with market predic-

tions in a year. In particular, let kp denote the commission rate proportional to the value of a

portfolio, kf denote a fixed amount of commission for trading the underlying index per share,

and kt denote the tax or other expenses when selling the underlying index per share.

In the following investigation, we consider a long or short 1 share of an underlying index at

the opening time and close the position at the closing time on date tj, and we denote the associ-

ated profit by ΔV(tj). For simplicity, we ignore the effect of the interest rate. Therefore, the

annual investment profit is computed by

DV ¼
Xm

j¼1

DVðtjÞ: ð13Þ

Specifically, if the underlying index is S&P500, the profit of setting a long position on date tj
and closing it on the same trading date is

DVðtjÞ ¼ kcðP
1

tj
� P0

tj
Þ � ðkcP

1

tj
� kp þ 2kf þ ktÞ;

and the profit of setting a short position on date tj and closing it on the same day is

DVðtjÞ ¼ kcðP
0

tj
� P1

tj
Þ � ðkcP

0

tj
� kp þ 2kf þ ktÞ:

If the underlying index is N225, the profit of setting a long position on date tj and closing it on

Fig 7. The prediction performances of the 4 models for the 20 indices from 2007 to 2020.

https://doi.org/10.1371/journal.pone.0255422.g007
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the same day is

DVðtjÞ ¼ kcfP
1

tj
ð1 � kpÞ � P0

tj
ð1þ kpÞg;

and the profit of setting a short position on date tj and closing it on the same day is

DVðtjÞ ¼ kcfP
0

tj
ð1 � kpÞ � P1

tj
ð1þ kpÞg:

Fig 8 presents ΔV defined in (13) of each market trend prediction model during 2007-2020

for the S&P500 and N225 indices with α = 0.2 and 0.4 under the assumption of P0
t ¼ P1

t� 1
,

where we set (kc, kp, kf, kt) = (250, 0.00221%, 0.003, 0.000119) for the S&P500 index, and (kc,
kp, kf, kt) = (1000, 0.0822%, 0, 0) for the N225 index. From Fig 8, one can find that the NAR-

GARCH model has the best investment performances in most cases according to its accurate

market trend predictions. In particular, when a market has large upward or downward move-

ments in an investigation year (for example, 2008 and 2020), the numerical results reveal sig-

nificant superiority of the investment profit based on the NAR-GARCH model over the other

3 competitors in these two markets. This phenomenon highlights that market participants

could benefit from obtaining accurate market trend predictions of large movements by accom-

modating the most updated information via the proposed approach.

Discussion

In this study, we propose an NAR-GARCH model to describe the important features inherent

in each stock index return and capture the joint effects among different nonsynchronous

return processes simultaneously. The dynamics of each index return process are marginally

depicted by a conventional time series model, which can be obtained by performing many soft-

ware programs. The joint effects among different indices are captured by adopting a network

model with the standardized residual processes of the indices. In particular, the proposed

Fig 8. The investment performances of the 4 models for the S&P 500 and N225 indices from 2007 to 2020 with α = 0.2 and 0.4.

https://doi.org/10.1371/journal.pone.0255422.g008
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model is capable of effectively accommodating the most updated market information by defin-

ing a reasonable adjacency matrix under a network framework. The Granger causality test and

Pearson’s correlation test with sharp price movements are employed to determine the lags and

significance of the adjacency matrices, respectively.

The NAR-GARCH model is easy to implement, and the model estimation does not require

heavy computational costs. It is also convenient to include/withdraw any time series into/from

the current model by establishing/removing the marginal model of the related time series,

adding/deleting the related rows and columns in the adjacency matrix, and using the LS

method to update the coefficients of the network models. Therefore, adaptivity is another

advantage of the NAR-GARCH model. Moreover, by applying the NAR-GARCH model to 20

global stock indices during 2006-2020 and comparing its fitting and prediction performances

with 3 other commonly used models, the numerical results reveal that the NAR-GARCH

model is capable of providing satisfactory market trend predictions and obtaining stable and

good investment profits, especially when a market index has strong upward or downward

movements.

Usually, a strong upward or downward index movement is caused by a sudden and unex-

pected event, such as the bankruptcy of Lehman Brothers in 2008 and the COVID-19 outbreak

in 2020. When this type of event occurs, some global markets deeply related to the event will

have a quick reaction, and other markets may be influenced by the latter event. The proposed

NAR-GARCH model is designed to capture this situation effectively. The results of our empir-

ical study provide strong evidence to support that the NAR-GARCH model can depict the

above phenomenon well and obtain reliable market trend predictions.

An alternative approach for volatility forecasting is to further include nonlinear patterns,

which cannot be captured by GARCH models, in financial time series by the artificial neural

network-GARCH (ANN-GARCH) model [21–23]. The ANN-GARCH model aims to forecast

multistep price volatility by including many endogenous and exogenous variables as well as

GARCH forecast errors to train an ANN model. The numerical results in the literature reveal

that the ANN-GARCH model is capable of improving multistep volatility forecasting for time

series. Intuitively, if we can improve the 1-step ahead volatility prediction for each index in (3),

we might improve the performance of the proposed NAR-GARCH procedure. Nevertheless,

the ANN-GARCH model adopts future realized volatilities as the target for multistep volatility

forecasting when establishing an ANN model. This approach cannot be applied directly to the

prediction of 1-step volatility. In addition, since this type of deep learning framework usually

requires more computational costs to train an ANN model than establishing a classical time

series model, it is not suitable to apply a rolling-window framework with a fast update fre-

quency, such as the one-day interval used in this study, to investigate its prediction perfor-

mance. Therefore, further studies are needed to investigate this interesting direction. We refer

it to our future research.
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