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Abstract

Spermatozoa released from testes undergo a maturation process and acquire the capacity

to fertilize ova through epididymal transit. The epididymis is divided into four regions, each

with unique morphology, gene profile, luminal microenvironment and distinct function. To

study the functions of relevant genes in the epididymal initial segment (IS), a novel IS-spe-

cific mouse model, Lcn9-Cre knock-in (KI) mouse line was generated via CRISPR/Cas9

technology. The TAG stop codon was replaced by a 2A-NLS-Cre cassette, resulting in the

co-expression of Lcn9 and Cre recombinase. IS-specific Cre expression was first observed

from postnatal day 17. Using the Rosa26tdTomato reporter mice, the Cre-mediated DNA

recombination was detected exclusively in principal cells. The epididymal IS-specific Cre

activity in vivo was further confirmed using Lcn9-Cre mice crossed with a mouse strain car-

rying Tsc1 floxed alleles (Tsc1flox/+). Cre expression did not affect either normal develop-

ment or male fecundity. Different from any epididymis-specific Cre mice reported previously,

the novel Lcn9-Cre mouse line can be used to introduce entire IS-specific conditional gene

editing for gene functional study.

Introduction

Infertility affects about 15% of the global population, and approximately half of the cases are

attributed to a “male factor” [1, 2]. In male infertility, sperm dysfunction is considered as the

most principal cause [3]. Impaired epididymal spermatozoa maturation is an important cause

of sperm dysfunction [4]. Following testicular spermatogenesis, immature and nonfunctional

spermatozoa pass through the efferent ducts into the epididymis and undergo a complex mat-

uration process through epididymal transit [3, 5].

The epididymis is a conserved part of the male reproductive tract in all vertebrate species

that practice internal fertilization [6–8]. The studies carried out in laboratory animal models

are meaningful to our understanding of the structure, function, physiology and
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pathophysiology of human epididymis [9, 10]. In rodents, the epididymis is composed of a

highly convoluted tubule, further divided into four distinct regions from proximal to distal:

the initial segment (IS), caput, corpus and cauda [11–14], in which the major specialized epi-

thelial cells, principal cells, clear cells, narrow cells and basal cells, distribute in a region-spe-

cific manner to establish region-specific luminal environments and distinctive functions [3,

15]. Furthermore, genes are highly ordered and compartmentalized in discrete epididymal seg-

ments [16–18]. With specific cell composition, unique morphology, and gene profile, each

region carries out a distinct luminal fluid environment and distinctive maturational events.

Until now, the molecular and biochemical events essential for epididymal sperm maturation

have remained largely unknown.

Genetically engineered mouse models have been widely used to study the functions of epi-

didymis-expressed genes in sperm maturation. For many ubiquitous genes, mutations by con-

ventional gene targeting methods may increase the risk of embryonic mortality and premature

death. Thus, conditional ablation of genes in particular epididymal regions with the Cre/loxP
system is an ideal approach to annotating gene functions, and construction of different epidid-

ymal region-specific Cre mouse models is important. The emergence of clustered regularly

interspaced short palindromic repeats (CRISPR)/Cas9 technique with higher efficiency and

reduced cost, has opened a new era in the generation of Cre mouse lines [19].

Several epididymis-specific Cre mouse lines have been established. Two caput-specific Cre

mouse lines by the Lcn5 promoter were generated through a transgenic strategy, one of which

is tamoxifen-inducible [20, 21]. In the other mouse lines (Defb41-Cre [22, 23], Rnase10-Cre

[24] and Crisp4-Cre [25]), the NLS-Cre cassettes inserted into the endogenous gene loci were

reported to mediate gene editing in the IS, but few could accomplish the editing in the entire

IS region. Thus, even though the IS is considered important for male fertility, the understand-

ing of gene functions related to IS in epididymal sperm maturation remains limited due to the

lack of effective models.

The murine epididymal secretory protein LCN9 belongs to the evolutionarily conserved

lipocalin (Lcn) family [26, 27]. Lcn9 expression is dependent on the presence of circulating tes-

ticular factors in the epididymal lumen, and detectable as early as postnatal 3 weeks [26], and it

exhibits a conserved IS-specific distribution pattern in mice and rat [26]. Disruption of endog-

enous Lcn9 in male mice showed normal spermatogenesis, sperm maturation and fertility

[28]. Here, a novel KI mouse model was established through CRISPR/Cas9 technology, in

which the endogenous Lcn9 promoter directs the IS-specific expression of Cre recombinase. It

is a promising tool for use in generation of conditional knock-out mice and for functional

studies of relevant genes in sperm maturation, specifically in the IS.

Materials and methods

Animals

All animal experiments were approved by the Ethics Committee for Animal Research of

School of Life Sciences of Shandong University (permit number: SYDWLL-2018-18) and car-

ried out accordingly. All surgery was performed under sodium pentobarbital anesthesia, and

all efforts were made to minimize suffering. C57BL/6J mice were housed in individually venti-

lated cage systems under a strictly controlled environment (22–24˚C; 12h light/dark cycle),

with ad libitum access to standard chow. B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J

(Rosa26tdTomato) reporter mice [29], obtained from The Jackson Laboratory, were crossed with

Lcn9-Cre mice to generate Lcn9-Cre; Rosa26tdTomato males. Tsc1flox/+ mice [30] were imported

from The Jackson Laboratory, and mated with Lcn9-Cre mice to establish Lcn9-Cre; Tsc1flox/+

mice. Genomic DNA was isolated from tails and genotype was identified through polymerase
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chain reaction (PCR) followed by electrophoresis with a DNA ladder (250 bp-I DNA ladder;

MD Bio). Primers for genotyping are listed in S1 Table.

Construction of sgRNA and donor vector

A pair of oligonucleotides against Lcn9 sgRNA (5’-TTGCTTTTTATAGACCATAGAGG-3’)

were annealed and cloned into the pX330 plasmid (42230; Addgene) through BbsI site. Cas9

mRNA and sgRNA were synthesized with a mMESSAGE mMACHINE T7 transcription kit

(AM1344; Life Technologies) and MEGAshortscript T7 transcription kit (AM1354; Life Tech-

nologies), respectively.

For donor vector construction, 2A self-cleaving peptides-nuclear localization signal -Cre

(2A-NLS-Cre) sequence, 1.0 kb 5’-homology arm, the 970 bp 3’-homology arm, and other

DNA fragments were pooled together and assembled by a “T5 exonuclease DNA assembly”

method [31]. The donor vector was digested by KpnI and EcoRI. Linearized DNA fragments

were recovered and purified.

Generation of Lcn9-Cre KI mice

Cas9 mRNA, sgRNA, and linearized donor vectors were co-injected into fertilized zygotes to

generate targeted Lcn9-Cre KI offspring. F0 founders were identified by PCR, which were

bred to wild-type (WT) mice to test germline transmission and F1 animal generation. The

insertion was amplified and further confirmed by sequencing.

Southern blotting

Southern blotting was performed as described previously [32]. Genomic DNA was extracted

from tails and digested by SacI. DNA fragments were electrophoresed on a 0.8% agarose gel

and transferred to a nylon membrane. A probe targeting the Cre element was synthesized with

the PCR DIG Probe Synthesis Kit (Roche). The membrane was hybridized with the Dig-label-

ing probe and detected with a DIG DNA Labeling and Detection Kit (Roche).

RT-PCR

Total RNA was extracted with TRIzol reagent (15596018; Invitrogen), genomic DNA was

removed, and the complementary DNA (cDNA) was synthesized with the PrimeScript™ RT

reagent Mix (RR0047A; TAKARA). The reverse-transcribed product was diluted and utilized

to amplify the genes of interest (GAPDH served as the internal reference; primers listed in S1

Table). Tissues obtained from more than 3 different animals in each group were analyzed.

Western blotting

Total protein lysates were isolated, separated with SDS-PAGE and transferred to a 0.45 μm

PVDF membrane (Millipore). Blots were probed with anti-GAPDH (60004-1-Ig; rabbit; Pro-

teintech; 1: 20,000) [33], anti-TSC1 (6935; rabbit; CST; 1:1000) [34], and anti-Cre recombinase

(15036; rabbit; CST; 1:1000) [35] antibodies, developed with an HRP conjugated goat anti-rab-

bit secondary antibody (BA1054; Boster-bio; 1:10000) and detected with an electrochemilumi-

nescence (ECL) detection kit (32106; Thermo). More than 3 mice were included in each

group. The bands were quantified using the ImageJ software (NIH).

Immunofluorescence imaging

To investigate the spatial distribution of active Cre recombinase, tdTomato signals in various

tissues from 5-month-old Lcn9-Cre; Rosa26tdTomato mice were examined with a fluorescence
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stereomicroscope (M165; Leica). To determine changes over time, tdTomato signals in

Lcn9-Cre; Rosa26tdTomato mice of different ages were detected.

To visualize the precise distribution of active Cre recombinase and track the cell types with

positive signals, epididymal samples isolated from the heterozygous Lcn9-Cre; Rosa26tdTomato

males were embedded in Tissue-Tek OCT (4583; Sakura). Six-μm thick frozen sections were

washed with phosphate-buffered saline (PBS), blocked with 10% goat serum and incubated

with primary antibodies overnight at 4˚C. Immunofluorescence signals were screened after

FITC-conjugated secondary antibody incubation and counterstaining with DAPI. Primary

antibodies included cytokeratin 5 (Krt5) (ab52635; rabbit; Abcam; 1:200) [36] for basal cells,

α-SMA (BM0002; mouse; Boster-bio; 1:200) for smooth muscle cells, and vacuolar H+-ATPase

(V-ATPase) (ab200839; rabbit; Abcam; 1:200) [37] for narrow cells and clear cells. FITC-con-

jugated goat anti-mouse IgG (ZF-0312; ZSGB-bio; 1:100) and goat anti-rabbit IgG (ZF-0311;

ZSGB-bio; 1:100) were used as secondary antibodies. Fluorescent images were captured with a

confocal microscope (LSM900; ZEISS).

Histological analysis and imaging

Testes and epididymides, collected from six-month-old Cre KI males and WT controls, were

visualized and imaged with a stereomicroscope, fixed in the Bouin’s fluid and embedded in

paraffin. Five-μm sections were stained with hematoxylin and eosin (H&E) according to the

standard protocols. Sperm were collected from cauda, spread on slides, fixed and then stained

with H&E solution.

Mating tests

To study male fertility, two-month-old homozygous Lcn9-Cre KI males and WT male litter-

mates were mated with C57BL/6J females. One male was caged with 2 females in each cage for

4 months. The number of offspring and litters was recorded. Four homozygotes and four WT

controls were used in this experiment.

Statistical analysis

Almost all experiments in this study were conducted at least three times using different batches

of mice. Representative images are shown in the corresponding figures. All values are shown

as the mean ± standard deviation (SD). Statistical analyses were conducted with Student’s t-
test.

Results

Generation of Lcn9-Cre KI mouse

The mouse Lcn9 gene consists of 7 exons with the ATG start codon in exon 1 and the TAG

stop codon in exon 6. To generate an allele in which Cre recombinase expression recapitulates

endogenous Lcn9 expression without disrupting Lcn9 function, we integrated the 2A-NLS-Cre

cassette into exon 6 at the TAG stop codon locus (Fig 1A). As a result, Cre expression was

driven by the Lcn9 promoter in tandem with endogenous Lcn9 expression as expected. The

target insertion was amplified by PCR and confirmed with sequence analysis (Fig 1B). F1 mice

4, 7 and 8, derived from positive F0 mice, were identified with positive Cre insertion (Fig 1C).

Correct Cre insertion into Lcn9 locus was also confirmed by Southern blotting. All positive

Cre KI mice were detected with a 6.00 kb fragment (Fig 1D). The Cre KI pups were genotyped

by PCR with primers F1/R1/R2. A 505 bp-band was assessed in WT offspring. A 252 bp-band

and a 1621 bp-band were monitored in homozygotes (Fig 1E).
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Region-specific and temporal expression of Cre recombinase in Lcn9-Cre

KI mice

To check the spatial expression of Cre recombinase under the Lcn9 promoter, tissues including

brain, liver, kidney, heart, testis, lung, and four epididymal regions, were collected from

2-month-old WT and Cre KI mice. Cre mRNA expression was evaluated by RT-PCR. No

band was detected in any of the tested tissues from the WT controls (Fig 2A). However, Cre

Fig 1. Generation of the Lcn9-Cre mouse line. (A) Schematic diagram of the knock-in strategy of the Lcn9-Cre mouse line. The sgRNA targeted exon 6 of

mouse Lcn9. The TAG stop codon was replaced with the 2A-NLS-Cre cassette. The 1.0 kb 5’-homology arm and the 970 bp 3’-homology arm are marked with

red and green double-headed arrows, respectively. Black arrows indicate the primer sets for genotyping. The brown double-headed arrow indicates the probe for

Southern blotting. E, exon; HA, homology arm; NLS, nuclear localization signal; PAM, protospacer adjacent motif. (B) Genomic DNA sequence chromatograms

of Lcn9-Cre KI mice showed the 5’ junction and 3’ junction of the insertion (inserted sequence marked in red). (C) PCR genotyping of 9 F1 pups derived from

one Cre-positive founder using a pair of primers targeting the Cre insertion. Pups 4, 7 and 8 were Cre-positive. (D) Southern blotting analysis of SacI-digested tail

DNA from Cre-positive mice. Predicted knock-in allele is 6.00 kb. W, wild-type control. (E) Typical genotyping of WT and Lcn9-Cre KI mice (1621 bp and 252

bp for KI allele, and 505 bp for WT allele) with primers F1/R1/R2.

https://doi.org/10.1371/journal.pone.0254802.g001

Fig 2. Spatial-temporal expression of Cre recombinase in Lcn9-Cre mice. (A) Tissue-specific mRNA distribution of Cre and endogenous Lcn9 detected by

RT-PCR in 2-month-old homozygous males and WT controls. (B) Western blotting analysis of Cre distribution in different tissues. (C) Changes of Cre

recombinase and Lcn9 in epididymal IS in postnatal development of Lcn9-Cre males at different ages were assessed by RT-PCR. (D) Western blotting

analysis of Cre expression in epididymal IS of postnatal Lcn9-Cre males at different ages. P10, postnatal day 10; P14, postnatal day 14; P17, postnatal day 17;

P18, postnatal day 18; P21, postnatal day 21; 1m, 1-month-old; 2m, 2-month-old. GAPDH served as the internal reference.

https://doi.org/10.1371/journal.pone.0254802.g002
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mRNA was detectable in the IS of Lcn9-Cre mice, with a 151 bp band observed, indicating the

IS-specific distribution of Cre (Fig 2A). Simultaneously, normal expression of Lcn9 mRNA

was examined to exclude the possibility of Cre insertion affecting original expression of Lcn9
gene. Western blotting was performed to examine Cre protein expression. A 37 kDa single

band was detected exclusively in the IS samples from Lcn9-Cre KI males (Fig 2B). Therefore,

Cre recombinase is expressed specifically in the IS, driven by the endogenous Lcn9 promoter.

The change in Cre mRNA and protein expression over time was examined by RT-PCR and

Western blotting. RNA and protein samples were prepared from the epididymal IS of

Lcn9-Cre KI homozygotes. Consistent with the expression changes of endogenous Lcn9, the

initial mRNA expression of the Cre recombinase was detected at postnatal day 17, with a sig-

nificantly high level detected at postnatal 2 months (Fig 2C). No Cre protein expression was

observed in the samples extracted from Lcn9-Cre KI males at day 14, while detectable, elevated

expression was observed from postnatal day 18 to 2 months (Fig 2D), consistent with the

mRNA expression pattern.

Identification of Cre-mediated DNA recombination with a reporter mouse

line

To detect Cre recombination, we crossed Cre KI mice with the Rosa26tdTomato reporter mice,

which possess two loxP sites on either side of a stop element preceding a tdTomato cassette. In

Cre; Rosa26tdTomato mice, Cre recombinase mediates deletion of the stop sequence between

the loxP sites, resulting in tdTomato expression in cells with active Cre (Fig 3A).

To test Cre-mediated fragment deletion, a pair of primers flanking the loxP sites were

designed to amplify the recombinant allele (Fig 3A and S1 Table). Ten types of tissues were

Fig 3. Spatial distribution of active Cre recombinase in Lcn9-Cre KI mice. (A) Schematic diagram of the Rosa26tdTomato reporter mice used in the study and

Cre recombinase-mediated activation of tdTomato expression. In Cre; Rosa26tdTomato mice, Cre recombinase mediates the deletion of the stop sequence

between the loxP sites, resulting in tdTomato expression in cells with Cre activity. Primers of F/R were used to identify Cre-mediated genomic DNA alteration.

FRT, FLPP recombination target; WPRE, regulatory element of woodchuck hepatitis virus. (B) Detection of recombinant alleles in various tissues of Lcn9-Cre;

Rosa26tdTomato mice by PCR. A smaller 300 bp band of recombined allele was detected exclusively in the IS from Lcn9-Cre mice. (C) tdTomato signals detection

in various tissues with Cre recombination, collected from 5-month-old Lcn9-Cre; Rosa26tdTomato mice. Scale bar = 500 μm.

https://doi.org/10.1371/journal.pone.0254802.g003
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isolated to extract genomic DNA and prepared for PCR amplification. No recombinant allele

but a 1.2 kb product was detected in the WT; Rosa26tdTomato control (Fig 3B). In Lcn9-Cre;

Rosa26tdTomato mice, a smaller 300 bp recombinant allele was observed only in the IS sample,

indicating the IS-specific Cre-mediated recombination.

To screen for spatial distribution of Cre activity, different tissues including epididymis,

brain, kidney, liver, testis, heart and spleen, were collected from Lcn9-Cre; Rosa26tdTomato

mice and examined with a fluorescence stereomicroscope. tdTomato expression was detected

in the epididymis, predominantly restricted to the IS, while no signal was observed in other tis-

sues (Fig 3C). Thus, Lcn9-Cre KI mice exhibited IS-specific Cre activity.

Time course analyses of Cre activity were conducted by determining the tdTomato signals

in postnatal development of IS from Cre; Rosa26tdTomato males. tdTomato expression in the IS

was initially observed on P17, and it continued to increase during the first 2 months, driven by

the Lcn9 promoter, consistent with the Cre mRNA and protein expression patterns (Fig 4).

Epididymal tissues were also collected from adult Lcn9-Cre; Rosa26tdTomato males and pre-

pared as cryosections to examine tdTomato distribution in more detail. tdTomato fluores-

cence, indicating the Cre recombination, was observed throughout the entire IS (Fig 5A). No

detectable expression was monitored in the efferent duct or other epididymal regions. Consis-

tent with the information from previous studies [26], a mosaic distribution of tdTomato sig-

nals was observed at the boundary between the IS and proximal caput.

Identification of cell types with Cre activity in Lcn9-Cre mouse

Given the fact that the epithelial duct of IS consists mainly of principal cells, narrow cells,

smooth muscle cells and basal cells, the cell types with Cre activity were identified with immu-

nostaining of cryosections from Lcn9-Cre; Rosa26tdTomato epididymal samples. As shown in

Fig 5B (white arrows), narrow cells labeled by V-ATPase, elongated in the direction of apical

to basal axis and contacted the epididymal lumen with their apical surface; there was no

Fig 4. Temporal distribution of active Cre recombinase in Lcn9-Cre mice. tdTomato signals detected in epididymides collected from

Lcn9-Cre; Rosa26tdTomato males at different postnatal stages from P17 to 2m. Scale bar = 2 mm. BF, bright field.

https://doi.org/10.1371/journal.pone.0254802.g004
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colocalization with tdTomato positive cells. Basal cells, identified specifically by Krt5 antibody,

were located at the base of the epididymal epithelium and presented lateral body projections

toward the lumen, and no double-positive cell was observed (Fig 5B). In addition, a-SMA-pos-

itive smooth muscle cells located lining the peripheral boundary of the epididymal ducts, were

Fig 5. Epididymal region-specific and cellular localization of active Cre recombinase in Lcn9-Cre mice. (A) The proximal region-specific distribution of

tdTomato signals detected in epididymis with Cre recombination, collected from 2-month-old Lcn9-Cre; Rosa26tdTomato males. (B) Cellular distribution of

tdTomato signals detected in IS epididymal epithelium with Cre recombination, collected from 2-month-old Lcn9-Cre; Rosa26tdTomato males. V-ATPase, a marker

for narrow cells; Krt5, a marker for basal cells; a-SMA, a marker for smooth muscle cells. FITC indicates the signals labelled by antibodies. Nuclei were visualized

with DAPI. White arrows indicate the narrow cells labelled by V-ATPase without tdTomato signals. (A) Scale bar = 500 μm; (B) Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0254802.g005
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not included in the tdTomato positive position (Fig 5B). Unfortunately, even after testing a

series of potential products, we could not obtain any effective commercial antibodies that spe-

cifically labeled the principal cells. However, considering the cell-type composition of the IS

epithelial duct and the fact that Lcn9 is a secretory protein synthesized by principal cells, it

could be inferred that the Cre activity was present exclusively in the principal cells lining the IS

epithelium. Thus, the present results were consistent with previous reports of specific localiza-

tion of Lcn9 in the principal cells of IS epithelium [26].

Cre-mediated DNA recombination was further identified by crossing with

Tsc1 floxed alleles

To further check Cre activity in vivo, Lcn9-Cre; Tsc1flox/+ mice were generated by mating the

Lcn9-Cre mouse strain with the Tsc1flox/+ mouse line. Cre recombinase mediates deletion of

exons 17 and 18 between the two loxP sites, resulting in conditional knockout of Tsc1 in cells

with Cre activity. A 2.1 kb WT band was detected in the DNA from Lcn9-Cre; Tsc1flox/+ males

and WT; Tsc1flox/+ controls, while a smaller 420 bp DNA fragment corresponding to the

recombinant Tsc1 allele was specifically observed in the IS samples from Lcn9-Cre; Tsc1flox/+

males (Fig 6A and 6B). The IS samples were collected from 2-month-old males, and the

expression of TSC1 was tested through Western blotting. The amount of TSC1 protein

decreased in the Lcn9-Cre; Tsc1flox/+ samples compared with WT; Tsc1flox/+ controls (Fig 6C

Fig 6. Cre activity in vivo confirmed by using Lcn9-Cre; Tsc1flox/+ mice. (A) Schematic diagram of the Tsc1 floxed mice and Cre

recombinase-mediated DNA deletion in vivo. Cre recombinase mediates the deletion of exons 17 and 18 between the loxP sites.

F/R indicate the primer set for detecting Cre-mediated genomic DNA alteration. E, exon. (B) Detection of recombinant alleles in

various tissues of Tsc1flox/+ mice by PCR. The WT band was 2.1 kb. A smaller 420 bp band of recombined allele was detected

exclusively in the IS from Lcn9-Cre; Tsc1flox/+ mice. (C) Western blotting analysis to measure expressions of TSC1 protein in the

IS, collected from 2-month-old males. (D) Quantification of TSC1 protein amount using ImageJ. (n = 3, ��p<0.01).

https://doi.org/10.1371/journal.pone.0254802.g006
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and 6D). Thus, the Cre recombinase in the Lcn9-Cre KI mice can mediate the disruption of

floxed genes in vivo exclusively in the epidydimal IS.

The Cre KI mice are characterized by normal development

To determine whether Cre insertion and expression in vivo can induce an abnormal develop-

mental phenotype or infertility, homozygous Lcn9-Cre KI mice were analyzed.

Firstly, we examined the behavior and appearance of homozygous mice, and observed no

apparent abnormalities (data not shown). Comparison of morphology of tissues from postna-

tal homozygotes with those from WT controls indicated a normal developmental phenotype

in homozygous mice (data not shown). Histological analyses showed an apparently normal

morphological phenotype of testes and epididymides in Lcn9Cre/Cre males and WT controls

(Fig 7A and 7C). The cauda lumen was filled with high concentrations of sperm (Fig 7C). All

homozygous males produced sperm with normal morphology (Fig 7B).

To determine whether Cre insertion induced abnormal fertility, two-month-old homozy-

gous Cre KI males and WT controls were mated with C57BL/6J females. As is shown in Fig

7D, homozygous Lcn9-Cre males showed normal fecundity (average litter size: 7.2 ± 0.2 for

Lcn9Cre/Cre, 7.4 ± 0.4 for WT controls; p = 0.62).

Taken together, the insertion and expression of Cre recombinase did not affect the normal

development or male fertility.

Fig 7. Fecundity of Lcn9-Cre KI mice. (A) Morphological images of male reproductive ducts from 6-month-old Lcn9-Cre KI males and WT controls. (B)

Morphological observation of sperm collected from the cauda. (C) Histological analysis with H&E staining of the testes and epididymides collected from

homozygous Cre KI males and WT controls. (D) Male fecundity. Comparable average litter size was observed between homozygous Cre KI males and WT

controls (p = 0.62). (B) Scale bar = 50 μm; (C) Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0254802.g007

PLOS ONE Epididymal initial segment-specific Cre mouse

PLOS ONE | https://doi.org/10.1371/journal.pone.0254802 July 26, 2021 10 / 14

https://doi.org/10.1371/journal.pone.0254802.g007
https://doi.org/10.1371/journal.pone.0254802


Discussion

In this study, a novel Cre KI mouse line with epididymal IS-specific Cre activity was generated

via the CRISPR/Cas9 system. In this Cre mouse line, a 2A-NLS-Cre element was introduced

into the endogenous Lcn9 gene locus, ensuring that the Cre expression driven by the Lcn9 pro-

moter is in tandem with Lcn9 expression. The temporal and spatial expression of Cre mRNA

was consistent with that of endogenous Lcn9 in Lcn9-Cre mice according to the results of

RT-PCR. The spatial expression patterns of Cre recombinase including IS- and principal cell-

specific localization, were similar to those of endogenous Lcn9 reported previously [26, 27,

38].

Surprisingly, the temporal expression patterns of the Cre recombinase were not exactly

identical with that previously reported for endogenous Lcn9. According to Northern blotting

analysis, Lcn9 was not detectable before postnatal 3 weeks, correlated with the absence of tes-

ticular fluid circulating within the epididymal lumen [26]. However, in our Lcn9-Cre KI

mouse lines, initial expression of Cre with normal recombinase activity could be detected on

postnatal day 17 by RT-PCR or tdTomato observation within Lcn9-Cre; Rosa26tdTomato mice.

This discrepancy could be attributed to the sensitivity of the methods used in these studies to

detect Lcn9 mRNA expression, since the RT-PCR method is characterized by exponential

amplification and is able to detect very low level of target molecules. Additionally, to detect the

ontogenic expression of Lcn9 mRNA, the epididymal samples were collected at weekly inter-

vals in previous studies [26], while here the expression of Cre or Lcn9 was measured day by

day from postnatal day 14 to day 21, in order to determine the time at which the genes were

first expressed. The expression of Lcn9 or Cre mRNA was quite weak on P17. And accordingly,

a faint, mosaic pattern of tdTomato expression was observed in epididymal IS of Lcn9-Cre;

Rosa26tdTomato males of the same age, indicating only a few cells have positive Cre activity. For

the temporal inconsistence, the other possibility might be the differences in the genetic back-

ground of the mice used in these studies or diet differences, which could potentially affect the

growth rates of the mice.

In murine epididymis, as an evident portion of the proximal region, the IS is considered to

be responsible for the absorption of the fluid from the rete testis, which is necessary for sperm

concentration, and functions as a major player in spermatozoa maturation [7–9, 14]. Principal

cells, which account for the majority of the epididymal epithelium, are highly active absorptive

and secretory cells responsive for the synthesis of almost all proteins secreted into the epididy-

mal lumen [39]. Within principal cells, gene expression and protein secretion are tightly regu-

lated and region-dependent, and the compartmentalized gene expression contributes to

region-specific luminal protein profile and segment-restricted microenvironment for sperma-

tozoa maturation [17, 40]. The identification and elucidation of the functions of genes

expressed in the principal cells originating in IS region, remains an ongoing effort. Up to now,

several epididymis-specific Cre mouse models have been reported with Cre activity in the epi-

didymal IS region, but none exhibited Cre expression limited exclusively to the entire IS

region. In Crisp4 iCre KI mice, the distribution of active Cre was monitored in the IS, caput,

corpus and cauda with different levels found in each region [25], while in the Defb41 iCre

mouse line, Cre expression was examined in both the IS and caput [23]. In Rnase10-Cre mice,

Cre activity was limited to only a part of the epididymal IS, an expression pattern identical to

that of Rnase10 itself [24, 41]. Therefore, with the expression of Cre recombinase specific to

principal cells throughout the entire IS, the Lcn9-Cre mouse line should be an appropriate tool

for functional studies of genes in the epididymal IS using the Cre/loxP system.
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